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ABSTRACT
BACKGROUND: A large body of evidence highlights the importance of genetic variants in the development of
psychiatric and metabolic conditions. Among these, the TaqIA polymorphism is one of the most commonly studied in
psychiatry. TaqIA is located in the gene that codes for the ankyrin repeat and kinase domain containing 1 kinase
(Ankk1) near the dopamine D2 receptor (D2R) gene. Homozygous expression of the A1 allele correlates with a 30% to
40% reduction of striatal D2R, a typical feature of addiction, overeating, and other psychiatric pathologies. The
mechanisms by which the variant influences dopamine signaling and behavior are unknown.
METHODS: Here, we used transgenic and viral-mediated strategies to reveal the role of Ankk1 in the regulation of
activity and functions of the striatum.
RESULTS: We found that Ankk1 is preferentially enriched in striatal D2R-expressing neurons and that Ankk1 loss of
function in the dorsal and ventral striatum leads to alteration in learning, impulsivity, and flexibility resembling
endophenotypes described in A1 carriers. We also observed an unsuspected role of Ankk1 in striatal D2R-
expressing neurons of the ventral striatum in the regulation of energy homeostasis and documented differential
nutrient partitioning in humans with or without the A1 allele.
CONCLUSIONS: Overall, our data demonstrate that the Ankk1 gene is necessary for the integrity of striatal functions
and reveal a new role for Ankk1 in the regulation of body metabolism.

https://doi.org/10.1016/j.biopsych.2023.02.010
Psychiatric diseases are multifactorial disorders, and the risk
of developing these is influenced by both genetic and envi-
ronmental factors. Even though classically considered as
distinct pathologies, various psychiatric disorders share com-
mon symptomatic dimensions such as alterations of mood,
cognitive functions, or reward processing, suggesting similar
pathophysiological mechanisms. In line with this, the Research
Domain Criteria classifies psychiatric illnesses based on
common neurobiological, behavioral, or genetic dimensions,
aimed at identifying both the mechanisms that are shared
across multiple psychiatric disorders and the processes that
are unique to specific psychiatric symptoms (1). Interestingly,
psychiatric disorders are often accompanied by disturbances
in energy metabolism and a higher risk of developing metabolic
syndrome, with appetite changes as a core feature of multiple
diseases (2). This raises the possibility of an overlap in the
pathogenic mechanisms that underlie neuropsychiatric and
metabolic symptoms.

It is well established that single nucleotide polymorphisms
are associated with a higher risk of developing psychiatric
disorders (3). Among single nucleotide polymorphisms, TaqIA
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polymorphisms have attracted growing attention. The TaqIA
polymorphism was initially believed to be in the D2R gene but
was later mapped to the neighboring gene that codes for the
ankyrin repeat and kinase domain containing 1 kinase (Ankk1)
and corresponds to the single nucleotide polymorphism A2
(T/C) in the position 2137 of the Ankk1 transcript (4). The
TaqIA variant results in an amino acid change (E[GAG]/K
[AAG], Glu/Lys) in position 713 of ANKK1 protein in humans.
While the minor A1 variant is the ancestral polymorphism, the
A2 variant has only recently appeared in primate evolution (5).
Ankk1 maps onto chromosome 11 in humans and chromo-
some 9 in mice, which includes the dopamine receptor D2

(D2R). TaqIA corresponds to 3 variants, A1/A1, A1/A2, and A2/
A2. Approximately 30% of European, 80% of Asian, and 40%
of African populations possess 1 or 2 copies of the A1 allele.

Strikingly, in humans, the A1 allele is associated with psy-
chiatric and neurological disorders such as attention-deficit/
hyperactivity disorder (6), Parkinson’s disease (7), and addic-
tion (8–10) as well as metabolic dysfunction and eating disor-
ders (11–14). A1 carriers are more likely to have increased
waist circumference and risk for obesity (14,15). Recent
ticle under the
-nd/4.0/).
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studies have also reported an association between the pres-
ence of A1 and some of the characteristics of anorexia nervosa
(13). Of note, weight loss has been reported to be easier in
obese individuals bearing the A1 variant. Altogether, this
suggests that A1 might be a genetic node for the convergence
of neuropsychiatric and metabolic symptoms.

Alterations in reward processing, motivation, working
memory, and cognitive flexibility, all characterized by dysre-
gulation of the corticolimbic system and its regulation by
dopamine neurotransmission (16,17), are observed across all
the pathologies associated with TaqIA (15,18,19). Accordingly,
the A1 variant is associated with reduced activity in the pre-
frontal cortex and striatum during reversal learning (15);
reduced activity in the midbrain, prefrontal cortex, and thal-
amus during consumption of a milk shake (20); and greater
impulsivity (15,21,22) or steeper delayed discounting, which
are typical features of several psychiatric symptoms and eating
disorders. Moreover, homozygous dosage of the A1 allele cor-
relates with an w30% to 40% reduction in striatal D2R abun-
dance (23–25). Yet, such a decrease in D2R availability is a
typical feature of addiction and is believed to be a core endo-
phenotype responsible for compulsive drug consumption
(26,27), overeating, and obesity-related reduction in activity (28).

These observations strongly suggest that 1) the interaction
between environment and Ankk1 is critical in the susceptibility
to reward-related and metabolic-based dysfunctions and 2)
perturbations of various components of ingestive behavior in
A1 carriers may result from a dysregulation of D2R-dependent
dopamine transmission. To date, the molecular and cellular
functions of Ankk1 remain largely unknown, primarily because
of the lack of animal models. As a consequence, very little is
known regarding the mechanisms by which A1 and A2 variants
of Ankk1 alter dopamine signaling and, in general, in which
direction those variants affect Ankk1 activity and D2R-related
function to contribute to the protection or vulnerability to
psychiatric and metabolic diseases.

METHODS AND MATERIALS

Animals

Both male and female Ankk1lox/lox, Ankk1D-D2R Neurons

(Ankk1D-D2R N), and Drd2-Cre mice were used. Animal pro-
tocols were performed in accordance with the regulations
and approved by the relevant committee: Paris, guidelines of the
French Agriculture and Forestry Ministry for handling animals
(decree 87–848) under the approval of the Direction Départe-
mentale de la Protection des Populations de Paris (authorization
No. C-75-828, license B75-05-22), Animal Care Committee of
the University of Paris (APAFIS No. 2015062611174320), Institut
de Biologie Paris Seine of Sorbonne University (C75-05-24)
(Supplemental Methods).

Human Participants

Thirty-six subjects were recruited from the greater New Haven,
Connecticut, area, via flyers or social media advertisements.
Subjects were enrolled in this pilot study based on body mass
index (BMI) (,26) and underwent indirect calorimetry mea-
surement and genotyping on separate days. All subjects pro-
vided written informed consent at the first visit, and the study
Biological Psych
was approved by the Yale Human Investigation Committee
(Supplemental Methods).

Total RNA Purification, Complementary DNA
Preparation, and Real-Time Polymerase Chain
Reaction

Real-time quantitative polymerase chain reaction (PCR) was
normalized to a housekeeping gene using the delta-delta cycle
threshold method (Supplemental Methods).

Pharmacological Treatments

For acute treatments, apomorphine (Tocris) was dissolved in
phosphate-buffered saline and injected intraperitoneally (i.p.) (3
mg/kg). Phosphate-buffered saline was used as the vehicle
treatment in control conditions. Haloperidol (Tocris) was dis-
solved in saline and injected i.p. (0.5 mg/kg).

Histology

Mice were anesthetized with pentobarbital (500mg/kg, i.p.)
(Sanofi-Aventis) and transcardially perfused with 4 �C para-
formaldehyde (4%) for 5minutes. Sections were processed as
in (29) (Supplemental Methods).

Patch-Clamp Recordings of D2R Spiny Projection
Neurons in the Nucleus Accumbens

Mice were anesthetized with isoflurane, decapitated, and coronal
brain slice sections were prepared. D2R spiny projection neurons
(SPNs) identified in the nucleus accumbens (NAc) were patch-
clamped and recorded as described in Supplemental Methods.

Stereotaxic Injections

Ankk1lox/lox animals were anesthetized with isoflurane and
received 10 mg/kg i.p. of Buprécare (buprenorphine 0.3 mg),
diluted 1/100 in NaCl 9 g/L, and 10 mg/kg of Ketofen (ketoprofen
100 mg), diluted 1/100 in NaCl 9 g/L, and placed on a stereotactic
frame (Model 940; David Kopf Instruments). We bilaterally injec-
ted 0.6 mL (dorsal striatum, DS) or 0.3 mL (NAc) of virus
(AAV9.CMV.HI.eGFP-Cre.WPRE.SV40 or AAV5.CM
V.HI.eGFP-Cre.WPRE.SV40) and GFP (green fluorescent pro-
tein) controls, (titer $ 1013 vg/mL, working dilution 1:10) into the
DS (lateral = 61.75; anteroposterior = 10.6; ventral = 23.5,
and23 in mm) or the NAc (lateral =61; anteroposterior =11.55,
ventral = 24.5) at a rate of 100 nL/min. The injection needle was
carefully removed after 5 minutes waiting at the injection site and
2 minutes waiting halfway to the top.

Behavioral and Metabolic Characterization

Haloperidol-induced catalepsy was measured 45 to 180 mi-
nutes after haloperidol injection. The behavior of mice was
explored using a food-cued T-maze paradigm, operant con-
ditioning, and binge eating protocols (Supplemental Methods).

Binge Feeding Experiment

Intermittent access to a palatable food (High Fat Diet;
ResearchDiet D12492i) was provided for 1 hour/day during 4
consecutive days from 10 to 11 AM. During binge sessions,
chow pellets were not removed. The amount of the consumed
palatable food was measured at the end of each session, and
data were presented as kcal/body weight.
iatry September 1, 2023; 94:424–436 www.sobp.org/journal 425
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Metabolic Efficiency Analysis

All mice were monitored for metabolic efficiency (Labmaster;
TSE Systems GmbH). After an initial period of acclimation of at
least 2 days in the calorimetry cages, food and water intake,
whole energy expenditure, oxygen consumption, carbon di-
oxide production, respiratory quotient (RQ) (RQ = VCO2/VO2, in
which V is volume), and locomotor activity were recorded as
previously described. Additionally, fatty acid oxidation was
calculated as previously reported (30). Data are the result of the
average of the last 3 days of recording. Before and after indi-
rect calorimetry assessment, body mass composition was
analyzed using an Echo Medical Systems EchoMRI (Whole
Body Composition Analyzers; EchoMRI).

Statistical Analyses

Compiled data are reported as mean 6 SEM with single data
points plotted. Data were analyzed with GraphPad Prism 9.
Normal distribution was tested with the Anderson-Darling,
D’Agostino Pearson, Shapiro-Wilk, and Kolmogorov-Smirnov
tests. Data were analyzed with two-tailed Mann–Whitney, un-
paired Student t test, one-way analysis of variance (ANOVA),
two-way ANOVA, or repeated-measures ANOVA, as applicable
and Holm-Sidak’s post hoc test for 2 by 2 comparisons. All
tests were two tailed. Significance was considered p , .05.
Detailed statistical results are reported in Table S3.

RESULTS

Striatal Regional Distribution and Regulation of
Ankk1 Messenger RNA

We first showed an enrichment of Ankk1 messenger RNA
(mRNA) expression in the DS as compared to the NAc
(Figure 1A, AI). We next reanalyzed available RNA sequencing
data from striatal extracts based on translating ribosome af-
finity purification technology (Figure 1B) (31) and showed that
Ankk1 mRNA is virtually absent in D1R-SPNs and selectively
expressed in D2R-SPNs (Figure 1BI). We experimentally
confirmed Ankk1 mRNA enrichment in D2R-expressing neu-
rons (Figure 1B) by performing real-time quantitative PCR on
mRNA isolated by translating ribosome affinity purification
selectively from D1R- and D2R-SPNs (Figure 1C). Next, we
showed that stimulation of dopamine receptors by apomor-
phine treatment induced downregulation of Ankk1 mRNA in
both NAc and DS 1 and 3 hours after injection (Figure 1D, E).

We then assessed whether Ankk1 loss of function selec-
tively in D2R-expressing neurons could recapitulate some of
the phenotypes of A1 carriers. To do so, we generated Ank-
k1lox/lox mice in which exons 3–8 are flanked with LoxP sites
allowing for Cre-targeted deletion of most of the Ankk1 gene
(Figure 1F; Figure S1A), which we crossed with a Drd2-Cre line.
Specificity of the recombination of the Ankk1 floxed locus was
assessed by PCR on brain punches and peripheral tissues
(Figure S1B). Cre-mediated decrease in Ankk1 mRNA was also
validated in the NAc of Ankk1lox/lox::Drd2-Cre1/- (Ankk1D-D2R N)
mice compared with control Ankk1lox/lox::Drd2-Cre-/- (Ankk1lox/lox)
mice (Figure 1G). However, because of the genetic construc-
tion of the Drd2-Cre bacterial artificial chromosome, which
bears an additional copy of Ankk1 (32), crossing leads to a
426 Biological Psychiatry September 1, 2023; 94:424–436 www.sobp.o
downregulation of Ankk1 rather than a full knock out in D2R-
expressing neurons. Interestingly, we found a downregulation
of w24% of the D2r mRNA in Ankk1D-D2R N (Figure 1H), which
resembles the w30% reduction of striatal D2R availability in
homozygous A1 allele carriers (23). Decreased D2R activity by
downregulation of Ankk1 in D2R-expressing neurons was
further supported by blunted cataleptic effects of haloperidol in
Ankk1D-D2R N mice (Figure 1I) in both males and females
(Figure S2A, B). These results suggest that the A1 variant in
humans might be associated with a loss of function for the
ANKK1 protein.

Specific Invalidation of Ankk1 in D2R Neurons
Affects the Integrative Properties of D2R-SPNs

We next performed whole-cell patch clamp recording in brain
slices of Ankk1D-D2R N and Drd2-Cre mice locally injected with a
viral vector bearing a Cre-dependent mCherry reporter. First, we
confirmed the downregulation of Ankk1 mRNA in Ankk1D-D2R N

as compared with Drd2-Cre mice (Figure 2A). D2R-SPNs were
identified based on mCherry fluorescence (Figure 2B). Ankk1
downregulation did not affect basic membrane and synaptic
properties in D2R-SPNs, as shown by resting membrane po-
tential, resistance and rheobase (Figure 2C; Table S1), and
amplitude and frequency of spontaneous excitatory (Figure 2D)
and inhibitory (Figure 2E) postsynaptic currents. By contrast,
paired-pulse response (50 ms interval) of excitatory inputs onto
D2R-SPNs were reduced in Ankk1D-D2R N mice, compared with
Drd2-Cre mice (Figure 2F), suggesting an enhanced presynaptic
probability of glutamatergic inputs onto D2R-SPNs (33).
Accordingly, spiking probability in response to electrical stimu-
lation of excitatory afferents to the NAc was significantly
enhanced in D2R-SPNs of Ankk1D-D2R N mice (Figure 2G),
reflecting an increase in excitability (34). Overall, these data
demonstrate that Ankk1 downregulation in D2R-expressing
neurons enhances glutamatergic transmission onto D2R-
SPNs, leading to increased excitability (35).

Effect of Ankk1 Downregulation in D2R-Expressing
Neurons on Striatal-Related Learning

We next assessed the effect of Ankk1 downregulation on
tasks known to strongly depend on striatal integrity. We first
used striatal-dependent procedural learning, based on an
egocentric strategy to learn to locate, without any external
cues, the baited arm in a T-maze (36,37) (Figure 3A, right).
Ankk1D-D2R N mice displayed a strong impairment in the
ability to learn the location of the reward in the maze
(Figure 3A), supporting a key role of Ankk1 in procedural
learning. We next investigated performance of control and
Ankk1D-D2R N mice in an operant conditioning paradigm
(Figure 3B, right), another striatal-related associative task
(38). Both male and female Ankk1lox/lox and Ankk1D-D2R N

mice displayed similar discriminatory performances when
analyzing the percentage of lever presses on the reinforced
lever (Figures S2C–F and S3A, C, E, F). Ankk1D-D2RN dis-
played enhanced active lever pressing when operant ratios
were increased (Figure 3B). Although this result suggests an
enhanced motivational component in Ankk1D-D2R N mice,
performances were similar to control mice in a progressive
ratio task (Figure S3A–D). We also analyzed the time to initiate
rg/journal
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Figure 1. Ankk1 mRNA is expressed in the D2R-
SPNs of the DS and NAc and its downregulation leads
to a decrease of D2r mRNA. (A) Schematic repre-
sentation of the dissected tissue samples on coronal
sections of striatum. Brains were rapidly dissected
and placed in a stainless-steel matrix with 0.5-mm
coronal section interval. A thick slice containing the
striatum (3 mm thick) was obtained. The DS (green)
and the NAc (light blue) were punched out on ice. (AI)
mRNA was purified from the NAc and DS of C57BL/6
mice and analyzed by real-time quantitative poly-
merase chain reaction. The expression levels were
calculated by the comparative delta-delta cycle
threshold method with RPL19 as an internal control.
Data points are individual results from different mice
(n = 5 per group). Means 6 SEM are indicated. Sta-
tistical analyses were performed using a two-tailed
Mann-Whitney test, **p = .0079. (B) Schematic rep-
resentation of the TRAP technique. Briefly, mRNA
from either D2R- (orange) or D1R- (gray) SPNs were
immunoprecipitated by using antibodies against the
EGFP expressed in D2R or D1R ribosomes. (BI)
Analysis of available RNA sequencing data from TRAP
reveals a specific enrichment of Ankk1mRNA in D2R-
SPNs as compared with D1R-SPNs in both NAc and
DS. Count per millions in each immunoprecipitation
are reported. Data points are individual results from
different pools of mice. Means 6 SEM are indicated.
Statistical analyses were performed using two-way
ANOVA: interaction F1,56 = 8.643, p = .0048, Nu-
cleus Accumbens/Dorsal Striatum NAc/DS F1,32 =
8.25, p = .0057, D1/D2 SPNs: F1,56 = 319.5, p, .0001
Tukey’s post hoc test ****p , .0001, ***p = .0007. (C)
mRNA level of Ankk1 in isolated D1R- or D2R-SPN
populations, analyzed by real-time quantitative poly-
merase chain reaction from male and female trans-
genic D1- and D2-TRAP mice. Statistical analyses
were performed using two-tailed Mann-Whitney un-
paired t test: ****p , .0001. (D, E) mRNA level of
Ankk1 in the NAc (D) and the DS (E) of mice injected
with either saline or apomorphine (3 mg/kg) and
sacrificed 1 and 3 hours after injections. Data points
are individual results from different mice (n = 5–6 per
group). Means 6 SEM are indicated. (D) Statistical
analyses NAc: one-way ANOVA: F = 11.47 p = .0013
followed by Dunnett’s multiple comparison p = .0012,
and p = .0045. **p, .01. (E) DS, one-way ANOVA, F =
20.87 p , .0001 followed by Dunnett’s multiple
comparison ****p , .0001, **p = .0046. (F) Strategy of
production of Ankk1 floxed mice. (G) Ankk1 mRNA
levels from the NAc of Ankk1lox/lox and Ankk1D-D2R N

mice. Data are reported as means6 SEM of results of
individual mice (n = 11); statistical analyses were
performed with two-tailed Mann-Whitney unpaired t

test: *p = .0473. (H) D2r mRNA level from the NAc of Drd2-Cre and Ankk1D-D2R N mice. Data are reported as means 6 SEM of results of individual mice (n = 7–9).
Statistical analyses were performed with nonparametric Mann-Whitney test, D2r *p = .0418. (I) The effects of Ankk1 andD2rmRNA downregulation on D2R function
were investigated by evaluating catalepsy after haloperidol injection (0.1 mg/kg intraperitoneal). Statistical analyses were performed using two-way ANOVA (18 mice
per group): interaction p = .0008, genotype p = .0020, followed by Sidak’s post hoc test: line 6 p = .018. ***p , .001, **p , .01, *p , .05. ANOVA, analysis of
variance; CPM, counts per million; D2R, D2 receptor; DS, dorsal striatum; EGFP, enhanced green fluorescent protein; mRNA, messenger RNA; NAc, nucleus
accumbens; SPN, spiny projection neuron; TRAP, translating ribosome affinity purification.
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and complete the operant task and found no significant dif-
ference between control and Ankk1D-D2R N mice. Our findings
show that downregulation of Ankk1 in D2R-expressing neu-
rons leads to deficits in an egocentric strategy-based pro-
cedural learning task as well as in reward-driven operant
conditioning paradigms.
Biological Psych
Ankk1 Loss of Function in D2R-Expressing Neurons
Does Not Alter Energy Homeostasis on a Regular
Chow Diet

Given the emerging link between reward-dependent behavior
and energy homeostasis metabolism (39), we next explored
the consequence of Ankk1 knockdown on metabolic efficiency
iatry September 1, 2023; 94:424–436 www.sobp.org/journal 427
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Figure 2. Ankk1 downregulation in D2R-
expressing neurons increases their excitability. (A)
mRNA level of Ankk1 in the NAc of Drd2-Cre and
Ankk1D-D2R N mice. (B) Male and female Drd2-Cre
and Ankk1D-D2R N mice were stereotaxically injec-
ted with a viral vector carrying a flex AAV-mCherry.
D2R-SPNs in the NAc were identified based on red
fluorescence and patched. (C) Illustrative voltage
responses of D2R-SPNs recorded in Drd2-Cre (gray,
left) and Ankk1D-D2R N (orange, right) mice in
response to a series of 600-ms current pulses
starting at 2150 pA with 20 pA increments. (D)
Ankk1 downregulation does not alter frequency (left)
or amplitude (right) of sEPSCs. Mann-Whitney un-
paired t test p = .39 and p = .09, respectively (Drd2-
Cre: n = 15 neurons in 9 mice; Ankk1D-D2R N: n = 14
neurons in 9 mice). (E) Ankk1 downregulation does
not alter frequency (left) or amplitude (right) of
sIPSCs. Mann-Whitney unpaired t test p = .59 (Drd2-
Cre: n = 6 neurons in 3 mice, Ankk1D-D2R N: n = 8
neurons in 3 mice). (F) In PPR experiments, excit-
atory fibers were stimulated twice with an interval of
50 ms, while EPSCs were monitored in voltage
clamp. In D2R-SPNs, Ankk1 downregulation resul-
ted in a decrease of PPR. Two-tailed Mann-Whitney
unpaired t test, *p = .0171 (Drd2-Cre: n = 17 neurons
in 10 mice; Ankk1D-D2R N: n = 15 neurons in 9 mice).
(G) The excitability of D2R-SPNs in the NAc was
measured by quantifying the spiking probability with
increasing electrical stimulation of excitatory inputs.
The spiking probability is represented as a function
of EPSP slope (mV/ms). Excitability of D2R-SPNs is
increased in Ankk1D-D2R N mice (***p , .0001) (Drd2-
Cre: n = 18 neurons in 12 mice; Ankk1D-D2R N: n = 10
neurons in 8 mice). AAV, adeno-associated virus;
D2R, D2 receptor; DS, dorsal striatum; EGFP,
enhanced green fluorescent protein; EPSP, excit-
atory postsynaptic potential; mRNA, messenger
RNA; NAc, nucleus accumbens; PPR, paired pulse
ratio; sEPSC, spontaneous excitatory postsynaptic
current; sIPSC, spontaneous inhibitory postsynaptic
current; SPN, spiny projection neuron.
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in mice fed ad libitum with a standard diet. Food intake, lo-
comotor activity, metabolic efficiency, and selective carbohy-
drates versus lipid substrate utilization in Ankk1lox/lox and
Ankk1D-D2R N mice were measured as previously described
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(30). Both Ankk1lox/lox and Ankk1D-D2R N mice were comparable
for body weight (Figure S4A), body composition (Figure S4B,
C, D), locomotor activity (Figure S4E), energy intake
(Figure S4F), energy expenditure (Figure S4G), and whole-body
Figure 3. Consequences of Ankk1 down-
regulation in D2R-expressing neurons on striatal-
dependent behaviors and energy metabolism. (A)
Effect of downregulation of Ankk1 on procedural
learning. Acquisition of the food-rewarded arm
choice in a T-maze is impaired in Ankk1D-D2R N mice.
Statistical analyses were performed with two-way
ANOVA: interaction p = .12, genotype ****p ,

.0001, n = 12 (males 6–8, females 6–4). (B) Average
of active lever press across FR1 and FR5 of instru-
mental conditioning, statistical analyses were per-
formed with two-way ANOVA: interaction p = .0115,
genotype p = .0964, time (learning) p , .0001, fol-
lowed by Sidak’s multiple comparison *p = .014, n =
18 (males 12–13, females 6–4). ANOVA, analysis of
variance; D2R, D2 receptor; FR, fixed ratio.
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fatty acid oxidation (Figure S4H). Two-way ANOVA of food
intake showed a significant interaction in genotype per time,
with no significant genotype differences (Figure S4H). Similar
results were obtained when male and female mice were
analyzed separately (Figure S5A–P).

D2R-Neuron–Specific Ankk1 Knockdown Leads to
Changes in Nutrient Partitioning and Protection
From Diet-Induced Obesity

Various studies have associated variations of Ankk1 with
metabolic changes and, more specifically, with obesity (40–
42). Hence, we next explored whether the interaction
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between genotype and obesogenic environment would unveil
alterations in energy homeostasis regulation in Ankk1D-D2R N.
Therefore, we subjected Ankk1lox/lox and Ankk1D-D2R N mice to
3 months of a high-fat high-sucrose diet (HFHS) prior to
metabolic characterization. Obese mice (Ob-Ankk1D-D2R N and
Ob-Ankk1lox/lox) showed comparable body weight (Figure 4A)
and lean mass (Figure 4B), however, fat mass was decreased
in Ob-Ankk1D-D2R N mice (Figure 4C, D). Ob-Ankk1D-D2R N and
control mice also displayed similar locomotor activity
(Figure 4E), caloric intake (Figure 4F), and a trend toward
decreased energy expenditure (p = .12) (Figure 4G). Interest-
ingly, upon consumption of the obesogenic diet, Ankk1D-D2RN
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Figure 4. Consequences on metabolism of Ankk1
downregulation in D2R-expressing neurons in a diet-
induced obesity paradigm. Ankk1D-D2R N mice do
not show alteration in body weight (A) and lean mass
(B); however, they do show significant decreases in
fat mass p = .037 (C) and fat mass % p = .0430
(D) (two-tailed Mann-Whitney n = 11–10, males 5–6,
females 6–4). Ankk1D-D2R N and control mice show
similar locomotor activity (E), food intake (F), and
energy expenditure (G). Ankk1D-D2R N mice showed
decreased fatty acid oxidation (H), two-way ANOVA:
interaction p = .4487, genotype p = .0221, time p ,

.0001. Fatty acid oxidation does not correlate with
kcal intake in either light (I) or dark (J) phase. *p ,

.05. ANOVA, analysis of variance; D2R, D2 receptor;
EE, energy expenditure.
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displayed a decreased level in fatty acid oxidation (Figure 4H).
Such a decrease does not seem to depend on the kilocalorie
intake, as shown by the lack of correlation between food intake
and fatty acid oxidation (Figure 4I, J). This finding reveals that
an obesogenic downregulation of Ankk1 in D2R-expressing
neurons is sufficient to induce alterations in peripheral sub-
strate utilization and nutrient partitioning (43,44).

Region-Specific Invalidation of Ankk1 in the Ventral
or Dorsal Part of the Striatum Differentially Affect
Reward-Driven Behavior

To unveil the neuroanatomical specificity of Ankk1 loss of
function within the striatum, we compared the consequence of
viral-mediated knockdown of Ankk1 in the DS or NAc. Litter-
mate Ankk1lox/lox mice received stereotactic injection of AAV-
GFP or AAV-Cre in the NAc or in DS to produce controls
(Ankk1GFP-NAc and Ankk1GFP-DS) or Ankk1 knockdown
(Ankk1D-NAc and Ankk1D-DS). Accuracy of injection site and
consequent change in Ankk1 levels were assessed through
viral-mediated expression of GFP and real-time quantitative
PCR (Figure S6A, B for the DS and Figure S6E, F for the NAc).
Downregulation of Ankk1 in the DS did not affect the levels of
D2r mRNA (Figure S6C) or haloperidol-induced catalepsy
(Figure S6D); however, knockdown of Ankk1 in the NAc signif-
icantly decreased D2r mRNA levels (Figure S6G) and blunted
haloperidol-induced cataleptic events similar to Ankk1D-D2RN

mice (Figure S6H). Furthermore, as for Ankk1D-D2RN, Ankk1D-NAc

mice displayed an impairment in learning the egocentric strat-
egy in the T-maze task (Figure 5A), together with enhanced lever
pressing from lower ratio requirement in the operant condi-
tioning paradigm (Figure 5B). In this latter task, Ankk1D-NAc mice
exerted significantly more lever presses on the nonreinforced
lever, while performance in the progressive ratio task was un-
changed (Figure S7A, B). Ankk1D-NAc mice also produced
significantly more lever presses on the active lever during the
inactive phase, a proxy for impulsive behavior (45). These
behavioral alterations were observed in both ad libitum and
fasting, indicating that this phenotype is not strictly dependent
on hunger state (Figure S7C, D). We also analyzed the time to
initiate and complete the operant task and found no significant
difference between control and Ankk1D-NAc mice.

Altogether, our findings demonstrate that Ankk1 loss of
function in the NAc is sufficient to recapitulate some of the
behavioral phenotypes of Ankk1D-D2R N mice. By contrast,
Ankk1D-DS mice had similar performance to control mice in
both the learning phase of the T-maze paradigm and in operant
conditioning for both ratio requirements. However, Ankk1D-DS

mice displayed a selective deficit in the reversal phase of the T-
maze (Figure S8A, B). This latter finding resembles impaired
cognitive flexibility described in Taq1A carriers (15,46).

Striatal Deletion of Ankk1 Alters Energy
Homeostasis

We next assessed metabolic parameters in Ankk1D-DS and
Ankk1D-NAc mice. Ankk1 loss of function in the NAc did not
result in any significant changes in body weight (Figure 5C) or
lean mass (Figure 5D) but decreased fat mass (Figure 5E) and
fat mass % (Figure 5F). As for the Ankk1D-D2R N groups,
Ankk1D-NAc mice showed unaltered locomotor activity
430 Biological Psychiatry September 1, 2023; 94:424–436 www.sobp.o
(Figure 5G) and caloric intake (Figure 5H), although a trend was
detected (genotype p = .056, interaction p = .06). Moreover,
Ankk1D-NAc displayed a decrease in energy expenditure
(Figure 5I) and fatty acid oxidation (Figure 5J), indicating that
loss of function of Ankk1 specifically influences peripheral
nutrient utilization. Change in fatty acid oxidation correlated
with caloric intake (Figure 5K, L) but was independent from
body weight and lean mass, which were comparable between
the two genotypes (Figure 5C, D). Interestingly, fatty acid
oxidation mostly decreased during the light phase (Figure 5L),
which might indicate a dissociation between circadian-
entrained rhythm and whole-body fatty acid oxidation (47,48).
Importantly, when tested on a binge eating paradigm with
HFHS, a test aimed at evaluating uncontrolled voracious
eating, Ankk1D-NAc mice showed enhanced food consumption
during the binge period (Figure S5E). We next explored
whether the obesogenic environment could magnify the
metabolic consequence of Ankk1 knockdown. Mice were fed
HFHS for 3 months prior to the replication of the metabolic
efficiency assessment. As compared with obese controls (Ob-
Ankk1GFP-NAc), Ob-Ankk1D-NAc mice showed a decrease in
body weight (Figure 6A), comparable lean mass (Figure 6B), a
decrease in fat mass (Figure 6C), and a tendency toward
decreasing fat mass % (Figure 6D). Ob-Ankk1D-NAc mice
showed comparable caloric intake (Figure 6E) but higher lo-
comotor activity (Figure 6F) and decreased energy expenditure
(Figure 6G). As for Ob-Ankk1D-D2RN, Ob-Ankk1D-NAc mice dis-
played lower fatty acid oxidation (Figure 6H), which was in-
dependent from food intake (Figure 6I, J). Overall, these data
indicate that Ankk1 loss of function in the NAc exerts some
protective effect from HFHS-induced disturbance in nutrient
intake and partitioning. On the contrary, Ankk1 loss of function
in the DS did not result in any relevant alteration in body weight
and composition (Figure S6D, G), locomotor activity
(Figure S6H), feeding (Figure S6I), or energy expenditure
(Figure S6J). However, we could observe a small difference in
the light-dark phase distribution of whole fatty acid oxidation in
Ankk1D-DS mice (Figure S6H). No difference between groups
was observed in the binge eating paradigm (Figure S6C).
These results underscore the neuroanatomical discrimination
of Ankk1-dependent regulation of metabolism in the striatum.
Differential Respiratory Quotient as a Function of
Taq1A A1 Allele Status in Human Participants

Given the change in nutrient partitioning associated with
Ankk1 loss of function in mice, we hypothesized that a quali-
tatively similar phenotype could arise from the A1/A2 variant in
humans. We used indirect calorimetry during resting state to
calculate the RQ, the ratio between carbon dioxide (CO2) and
oxygen (O2), indicative of substrate utilization (RQ = 1 for
carbohydrate and RQ = 0.7 for lipid) in 32 healthy human
participants (19 A12 and 13 A11) (Figure 7). Age, fat mass,
and other anthropometric measures were similar for both ge-
notypes (Table S2). The groups also did not differ in hours of
sleep and hours since last meal prior to the metabolic measure
(Table S2). However, there was a significant difference in sex
distribution between A11 and A12 groups (p = .0014)
(Table S2), so this factor was included in statistical models.
Consistent with the observations in mice, A11 individuals
rg/journal
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Figure 5. Consequences of Ankk1 down-
regulation in the NAc on striatal-dependent behav-
iors and energy metabolism. (A) Effect of Ankk1 loss
of function in the NAc on procedural learning.
Acquisition of the food-rewarded arm choice in a T-
maze is impaired in Ankk1D-NAc mice. Statistical
analyses were performed with two-way ANOVA:
interaction ***p = .0004, time p , .0001, genotype p
, .0001. Sidak’s multiple comparison *p = 0.0176,
**p = 0.0055, ***p = 0.0002; n = 9–13 (males 5–8,
females 4–5). (B) Average of active lever press
across FR1 and FR5 of instrumental conditioning is
increased in Ankk1D-NAc as compared with
Ankk1GFP-NAc. Statistical analyses were performed
using two-way ANOVA: interaction p = .776, learning
p = .0006, genotype p = .0162. n = 8–11 (males 4–6,
females 4–5). (C) Ankk1 loss of function in the NAc
does not alter body weight (C) and lean mass (D) but
decreases fat mass (E) and fat mass % (F); statistical
analyses were performed with two-tailed t test: t20 =
2.284, p = .0335; fat mass t20 = 2.696, p = .0139,
respectively. Data are expressed as mean 6 SEM.
n = 10–13 (males 5–7, females 5-5). Ankk1D-NAc and
Ankk1GFP-NAc showed comparable locomotor activity
(G) and food intake (H); however, Ankk1D-NAc display
decreased energy expenditure (I), statistical analysis
by two-way ANOVA: interaction *p = .034, time p ,

.0001, p = .108, and fatty acid oxidation (J); statistical
analysis by two-way ANOVA: interaction ****p ,

.0001, time p , .0001, genotype p = .0075 Sidak’s
post hoc test *p , .05. Fatty acid oxidation signifi-
cantly correlates with food intake for both light (K)
and dark (L) phases. Statistical analysis light phase:
Ankk1GFP-NAc *p = .0009, Ankk1D-NAc *p = .0083.
Statistical analysis dark phase: Ankk1GFP-NAc *p =
.0152, Ankk1D-NAc *p = .0441. ****p , .0001. ANOVA,
analysis of variance; EE, energy expenditure; FR,
fixed ratio; NAc, nucleus accumbens.
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showed a significantly higher resting RQ compared with A12
individuals (R2 = 0.41, F6 = 7.31, p = .012). This result suggests
a shift toward carbohydrate use as a primary energy source in
A11 and a shift toward fat in A12 at rest. This indicates that
the polymorphism affecting the ANKK1 gene in humans does
alter peripheral nutrient utilization. These data support our
reverse translational approach and show that the metabolic
phenotype observed in mice translates to humans.
DISCUSSION

In this study, we showed for the first time that Ankk1 mRNA is
enriched in striatal D2R-SPNs and that its downregulation in
Biological Psych
D2R-expressing neurons is sufficient to alter their activity and
to decrease D2r mRNA expression and D2R-mediated
response. These changes were associated with altered per-
formance in striatal-dependent tasks such as procedural
learning and reward-driven operant conditioning. Both D2R-
specific and accumbal-restricted knockdown of Ankk1 were
similarly associated with change in nutrient partitioning, sug-
gesting a role for Ankk1 in striatal control of energy homeo-
stasis. Finally, we performed a translational study that, in
accordance with the mouse data, revealed differential whole-
body metabolism in A1 carriers versus noncarriers.

The reduction of D2r mRNA expression transcript as a
consequence of Ankk1 knockdown are congruent with
iatry September 1, 2023; 94:424–436 www.sobp.org/journal 431
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Figure 6. Consequences of Ankk1 loss of func-
tion in the NAc on metabolism in a diet-induced
obesity paradigm. Ankk1D-NAc display decreased
body weight (A) two-tailed Mann-Whitney test, p =
.0455, but not lean mass (B), and decreased fat
mass (C) two-tailed Mann-Whitney test, p = .0411,
but not fat-mass percentage (D) two-tailed Mann-
Whitney test, p = .0931. (E) Caloric intake is com-
parable between Ankk1GFP-NAc and Ankk1D-NAc, but
the Ankk1D-NAc group showed increased locomotor
activity (F) and decreased energy expenditure (G).
Statistical analyses in (F) were performed using two-
way ANOVA: interaction p , .0001, time p , .0001,
genotype p = .0138. Statistical analyses in (G) were
performed using two-way ANOVA: interaction p ,

.0001, time p , .0001, genotype p = .0222. (H)
Downregulation of Ankk1 in the NAc decreases fatty
acid oxidation; statistical analyses were performed
with two-way ANOVA: interaction p , .0001, time p
, .0001, genotype p = .0074. Sidak’s post hoc test,
*p , .05, **p , .001, ***p , .0001. (I, J) Fatty acid
oxidation does not significantly correlate with food
intake in both light (I) and dark (J) phases; however,
in the dark phase, slopes of the regression lines are
significantly different between the 2 groups, p =
.0129 (J). Data are expressed as mean 6 SEM, n = 6
(male 2–4, female 2–4). ****p , .0001. ANOVA,
analysis of variance; EE, energy expenditure; NAc,
nucleus accumbens.
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published studies pointing at the consequences of TaqIA
variants on D2R abundance, D2R-dependent function (23–25),
and impaired reward-related behaviors (49,50). The increase in
D2R-SPN activity is consistent with impaired reward-related
behaviors (49,51), in particular, regarding the NAc.

In fact, viral-mediated deletion of Ankk1 selectively in the
NAc during adulthood recapitulates and even amplifies some
of the behavioral phenotypes obtained in Ankk1D-D2R N, such
as alteration in procedural learning and operant behavior. The
consistent deficits we observed in the T-maze task for both
Ankk1D-D2R N and Ankk1D-NAc are unlikely to be solely related
to learning inabilities. In fact, even though it has been shown
that the T-maze task relies on propriocentric and egocentric
strategies that depend on the integrity of the striatum (52),
manipulations of the NAc can spare the acquisition of action-
432 Biological Psychiatry September 1, 2023; 94:424–436 www.sobp.o
outcome associations, while impairing flexible adaptation of
previously learned rules (53,54) in particular when interfering
with D2R-SPNs (55). In accordance, both Ankk1D-D2R N and
Ankk1D-NAc were capable of learning the association between
lever pressing and reward obtainment. However, Ankk1D-NAc

also displayed an increased number of lever presses on the
nonrewarded lever, as well as enhanced active lever pressing
during the timeout period, a feature considered as a proxy for
impulsivity (45,56).

This suggests that the increased operant conditioning
responding in Ankk1D-NAc as well as Ankk1D-D2R N mice might
result from increased impulsivity. Importantly, impulsivity has
been associated with decreased D2R availability in the NAc
(45,57) and represents a main feature of A1 carriers
(21,22,58,59). Additionally, selective impairment in the reversal
rg/journal
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Figure 7. Resting RQ between A1 allele carriers
(A11) and non-A1 carriers (A12) of Taq1A poly-
morphism (rs1800497). (A) Protocol design. Thirty-
two participants with healthy weight (body mass
index , 26) underwent metabolic measurements
using indirect calorimetry and genotyping from
saliva. (B) Respiratory quotient measures, data
points are individual results from different partici-
pants (n = 19 in A12 and n = 13 in A11). Means 1
SEM are indicated. Statistical analysis was per-
formed with an independent t test and controlled for
body mass index, sex, age, and study. *p = .012.
RQ, respiratory quotient.
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phase of the T-maze in Ankk1D-DS mice resembles decreased
cognitive flexibility observed in TaqIA individuals (15,46).
Altogether, the behavioral effects obtained under Ankk1 loss of
function are in line with poorer negative outcome learning
(60,61) and procedural learning (62), increased impulsivity
(21,22,58,59), altered prediction error (60), weaker reward
sensitivity [for a review, see (63)], and impaired cognitive flex-
ibility (15,46) associated with the A1 allele.

Of note, in addition to D2R-SPNs, cholinergic interneurons
also express D2r and therefore could be affected by Drd2-Cre–
mediated Ankk1 knockdown. While the presence of Ankk1 in
cholinergic interneurons remains elusive, one cannot rule out
that loss of Ankk1 in cholinergic interneurons using a Drd2-Cre
driver could contribute to the behavioral and metabolic outputs
we observed, given the prominent role of cholinergic in-
terneurons in various striatal functions (31,64).

In addition to the behavioral consequences of Ankk1
knockdown on reward-related behaviors, the present study
demonstrates a role for Ankk1 integrity in the control of pe-
ripheral substrate utilization in both rodents and humans. In
both rodent models of Ankk1 knockdown, the metabolic
changes were magnified. This is particularly relevant in the
context of interactions of genetic polymorphisms, including
Taq1A, and the modern food environment [for review, see (63)]
as a risk factor for pathological conditions. Furthermore, while
vulnerability for the metabolic defect in Taq1A carriers has
been largely attributed to altered reward feeding and over-
consumption, the link we established between Ankk1 integrity
and nutrient partitioning suggests that an additional compo-
nent of central control of energy homeostasis might be at play,
independent from caloric intake. This is in line with the
Biological Psych
associations with TaqIA and insulin sensitivity (41) and as a
modulator of weight loss induced by monoamine reuptake
inhibitor treatment (40).

In our mice models, Ankk1 loss of function paradoxically
seems to protect against increases in body weight and fat
mass. This could be the result of an overall change in inter-
organ communication and metabolic fluxes (43). Yet, the A1
polymorphism has also been associated with accelerated
weight loss (40) and some features of anorexia (13), which
share common symptomatic dimensions with compulsive
eating, such as deficit in cognitive flexibility, impaired reward
processing, and impulsivity (65). However, while the decreased
D2r mRNA levels under Ankk1 loss of function together with
diminished adiposity seem counterintuitive because a
decrease in D2r in the DS has been associated with obesity
(27), the developmental increase in D2r has been linked to
enhanced predisposition for obesity and metabolic defects
(64), and various studies suggest the decrease in D2R levels
could correlate with other dimensions linked to obesity that are
independent from BMI, such as opportunistic eating or
decreased locomotor activity (28). Moreover, although fewer
studies are available regarding the NAc, findings in humans
and rodents reveal a negative association between ventral
striatal D2R and BMI (66), increased D2R in the ventral striatum
of obese subjects, and increased accumbal D2R levels
following exposure to fat diets (67).

Several molecular mechanisms could account for the
decrease in D2r and defective D2R-neurons in our model of
Ankk1 loss of function or in the TaqIA carrier. Ankk1 has
been found to exert transcriptional control of the nuclear
factor-kappa B (NF-kB)–regulated gene (68). Because
iatry September 1, 2023; 94:424–436 www.sobp.org/journal 433

http://www.sobp.org/journal


TaqI/Ankk1 Controls Reward and Metabolism
Biological
Psychiatry
2 NF-kB–responsive elements exist in the D2r promoter and
positively regulate D2r transcription (69), it is possible that a
reduced dosage of Ankk1 in heterozygous human carriers and
in our animal model of loss of function could lead to decreased
D2r abundance and altered D2R-SPN functions (23,24).

In conclusion, this work provides the first reverse trans-
lational approach exploring the biological functions of Ankk1 in
the central regulation of both metabolic and reward functions
and further translates the metabolic phenotype discovered in
mice to humans. Collectively, our data show that Ankk1 loss of
function is sufficient to mimic some of the phenotypic char-
acteristics of Taq1A individuals and point toward Ankk1 as a
potential molecular hub connecting striatal D2R-SPNs to the
control of energy homeostasis.

A limitation of our study is the lack of precise molecular
mechanisms. We cannot rule out the possibility that D2 re-
ceptor abundance is the sole mechanism by which ANKK1
alters D2R-neuron physiology. Future studies are warranted to
explore whether and how ANKK1 could be targeted for the
treatment of psychiatric and metabolic diseases.
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