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ABSTRACT: In a world where concrete is king and because of the environmental challenges, it is 
urgent to find sustainable alternatives to the latter. From this perspective, this study considers the 
replacement of concrete with raw materials, namely sediments. Precisely, this work aims to predict the 
compressive strength of geopolymer mortars made from sediments. The approach combines principal 
component analysis (PCA) and ordinary least squares (OLS) multivariate regression models. The 
predictive model highlights several indicators, such as clay, specific surface, and sediment density. 
Other indicators, such as organic matter and geopolymerization activators, should be considered, 
although not statistically significant. 

Driven by the evolution of the global 
environmental context, public works must 
rethink their sector towards more sustainable 
applications. Numerous research in France 
focuses on the development of alternative 
materials in construction. Dredged sediments are 
a significant source of interest among these 
materials due to their large volume. Therefore 
many emerging projects in France demonstrate 
the ability to use dredged sediments in several 
civil engineering applications: bricks (Serbarh et 
al., 2018), concrete pavements (Limeira et al., 
2010) and lightweight concrete (Abdallah et al., 
2019). Reusing sediments as a component in 
concrete offers both environmental and 
economic benefits. However, one of the 
challenges in using dredged sediments is their 
variable mineralogical properties. Nevertheless, 
its use in the manufacture of geopolymer binders 

proves to be an innovative solution for their 
recovery and could allow the emergence of a 
new ecological binder to replace Portland 
cement. 

Models for predicting the 28-day 
compressive strength of concrete containing 
dredged sediments have been assessed in the 
literature. Among them, Chu and al. (2020) 
developed a strength model with a multi-variable 
methodology to correlate mechanical strength to 
design parameters such as the volumetric ratio of 
dredged sediments and cement paste volume. A 
predictive equation was developed, which 
allowed a better comprehension of the direct use 
of sediments; yet, the model was simplified by 
assuming similar physical and chemical 
properties for the sediment used. Other 
approaches, such as the one developed by Tran 
and al. (2021), show artificial intelligence's 
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ability to predict the mechanical strength of 
stabilized dredged sediments by only considering 
design parameters. One of the few studies that 
linked raw sediment's design parameters and 
properties was the one developed by Moghrabi et 
al. (2018). Based on a statistical study, an 
estimation of the comprehensive strength at 28 
days was established and showed the detrimental 
influence of the organic matter content and 
plasticity index of sediment on mechanical 
strength. 

To date, few studies are predicting the 
influence of sediment, taking into account their 
physicochemical variability, on the properties of 
concrete and, to the author's knowledge, none of 
them were dealing with geopolymer matrix. 
Thus, the objective of the present paper is to 
predict the mechanical performance of a 
sediment-based geopolymer road sub-layer by 
taking into account the variability of the raw 
sediments used. The developed model will 
highlight the effects of various parameters on the 
mechanical strength and obtain a better 
comprehension of the geopolymer matrix with 
untreated dredged sediment. Furthermore, results 
will be transposed to an existing road sub-layer 
model to develop a probabilistic model for 
predicting mechanical performance. On a larger 
scale, this paper aims to facilitate the valorization 
of dredged sediment, which is currently hindered 
due to the difficulty of developing a robust 
predictive model for sediment-based concrete 
performance. 

1. METHODOLOGY 

1.1. Materials and mixed design 

1.1.1. Sampling campaign 
Eight sediment samples were chosen from four 
different Harbors in the Gironde region from the 
South West of France. Pauillac (PAU) refers to 
the sediment obtained from a dredging campaign 
by The Bordeaux Harbor in the Gironde estuary. 
Four sediments were collected from different 
landfill deposits owned by Arcachon Bay. 
Arcachon's sediments are referred to as Audenge 

(AUD), Quiconce (QUIN), Titoune (TIT) and 
LeTeich (LETEI). BY1 and BY2 were dredged 
in Bayonne Harbor and LR in La Rochelle 
Harbor.  

1.1.2. Characterization 
In this study, muddy sediments were chosen, 
given their limited valorization in actual 
research. The physical properties of sediment 
samples have been compared and are presented 
in Table 1. Particle size distribution, density, 
Atterberg limits, clayey and organic content were 
evaluated according to the French Standards. 
Characterization results show that the sampled 
sediments present similar physical properties, 
even if distinctions can be observed. Concerning 
the granular distribution, clay percentage can 
range from 0.72% for AUD to 5.35% for TIT, 
with a total medium value of 2.6%. Silty content 
is the highest for QUIN (56.53%) and lowest for 
LR (35.21%), whereas sand content varies from 
5.69% for TIT and 26.74% for LR. Particle size 
distributions of the sediments are presented in 
Figure 1. High plasticity indexes are observed for 
BY1 and low for QUIN. As well as for the 
organic content, sediments sampled in the same 
Harbor do not present the same value, especially 
when observing the sediments from Arcachon 
Harbors. 

 
Table 1: Physical properties of the sediments. 

 PAU AUD QUIN TIT 
Clay [%] 2.93 0.72 1.44 5.35 
Fine silts [%] 23.15 22.89 36.09 41.08 
Coarse silts [%] 23.15 18.26 20.44 13.09 
Fine sand [%] 10.76 10.07 5.87 4.06 
Coarse sand[%] 0.43 13.32 1.37 1.63 
Blaine [m2/g] 0.65 0.16 0.43 00.48 
Density [g.cm-3] 1.45 1.57 1.24 1.35 
Ip [%] 25.75 19.00 16.00 42.24 
VBS [g.100g-1] 2.80 1.55 1.7 1.13 
OM [mg.kg-1] 10500 2466 34300 41000 
 LETEI BY1 BY2 LR 
Clay [%] 0.94 2.88 3.14 3.26 
Fine silts [%] 25.77 21.78 24.26 22.17 
Coarse silts [%] 16.21 18.72 21.00 13.04 
Fine sand [%] 9.84 12.21 10.61 18.91 
Coarse sand[%] 12.45 9.61 6.19 7.83 
Blaine [m2/g] 0.38 0.49 0.48 0.37 
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ρ [g.cm-3] 1.70 1.30 1.34 1.72 
Ip [%] 41.00 61.00 49.50 48.00 
VBS [g.100g-1] 3.00 1.67 1.00 4.67 
OM [mg.kg-1] 41000 37100 39600 3790 
 

Regarding chemical properties, the 
elemental composition obtained by Scanning 
Electron Microscopy was investigated in this 
study in addition to the associated minerals 
obtained with X-Ray Diffraction. The studied 
sediments are mainly aluminosilicate materials 
which justify their use in geopolymer matrix as a 
precursor. The chemical properties of sediments 
are presented in Table 2.  

 
Table 2: Chemical properties of the sediments. 
 PAU AUD QUIN TIT 
Al2O3 [%] 14.19 15.91 21.27 16.81 
SiO2 [%] 41.38 54.25 58.76 51.91 
SiO2/ Al2O3 2.92 3.41 2.76 3.09 
 LETEI BY1 BY2 LR 
Al2O3 [%] 15.34 15.94 12.97 11.06 
SiO2 [%] 44.75 49.93 46.63 25.44 
SiO2/ Al2O3 2.92 3.13 3.59 2.30 

1.1.3. Mix design 
Previous studies conducted by the authors have 
sought to use sediments as a precursor in the 
geopolymerization process regarding their 
aluminosilicate nature. Following the work made 
by Monteiro and al. (2022) and in order to 
observe the influence of the sediment properties 
on the final mechanical strength of a sediment-
based geopolymer sub-layer, a unique optimal 
formulation was fixed.  

The production of geopolymerized mortar 
from dredged sediments is based on the reaction 
between 70% of untreated sediment at a water 
content of 30% with 30% alkali reagent by mass. 
The alkali reagent mixture is a combination of a 
4 mol.L-1 solution of NaOH and Na2SiO3 with an 
optimum weight ratio of SiO2/Na2O solution of 
1.2. Sodium hydroxide (NaOH) was used in the 
form of pellets (99% purity) which were 
dissolved in a ready-to-use silicate solution 
(Na2SiO3). The volume and the water/solid ratio 
are kept constant at 1 m3 and 0.40, respectively. 
The specimens, 4x4x16 cm3 in size, were 

vibrated with a vibrating table, removed from the 
mold after 24 hours and then stored in a room 
maintained at relative humidity and a respective 
temperature of RH=60% and T=20°C for 28 
days. Compressive strength measurements were 
carried out according to French standard NF EN 
1015-11 with an electromechanical press 
capacity of 100 kN at a constant loading speed of 
0.6 mm/min at 28 days.  

1.2. Statiscal approach 
This section defines the statistical approach to 
link the sediments' physicochemical parameters 
with the experimentally obtained compressive 
strength. Two methods were used: Principal 
Component Analysis (PCA) and Ordinary Least 
Square (OLS) regressions. Methods are 
developed below. 

1.2.1. Principal Component Analysis (PCA) 
PCA is a quantitative data analysis method based 
on multidimensional exploratory statistics. The 
"exploratory" term refers to the descriptive side 
of the method, as opposed to inferential statistics, 
which consists of generalizing results to an entire 
population by formalizing statistics risk 
thresholds. The "multidimensional" term refers 
to the simultaneous study of a complex data 
table, where I individuals are represented in 
lines, and K variables are represented in 
columns. 

PCA is used here to represent both Table 1 
and Table 2 in the simplest way possible. The 
idea is to have an appropriate and simplified 
image of all the points given by the cloud of 
points or I-K matrix. Methodologically, from a 
large dataset of K-correlated variables, PCA 
creates uncorrelated components “where each 
component is a linear weighted combination of 
initial variables” (Vyas & al., 2006). Euclidean 
geometry calculates the distance between 
individuals to know their multidimensional 
resemblance. In practice, data must first be 
centered and reduced to implement this method. 

Thus, the cloud of points is projected on a 
minimum of axes called “components” 
(deforming it as little as possible), spreading it as 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 
Dublin, Ireland, July 9-13, 2023 

 4 

much as possible on the projection planes. The 
idea is to search for a series of orthogonal axes of 
maximum inertia (defined as the squares' sum of 
the distances of the points from the center of 
gravity). Ultimately, it is known that the 
correlation matrix admits eigenvalues and 
eigenvectors. The solution is to diagonalize this 
correlation matrix where eigenvectors give the 
weight of each principal component and 
eigenvalues represent the variance of each 
principal component (the maximum of projected 
inertia). Finally, each component will explain 
one part of the initial database variance, but 
explanations will be progressively less efficient 
as the components are retained. 

The “images” of statistical reality, obtained 
according to the principles set out above, are 
only images reflecting this reality “at best”. 
Therefore, it is necessary to establish figures 
allowing the results to be interpreted rigorously 
and appropriately. According to the previous 
remark, three main tools help with the 
interpretation. First, the quality of the cloud's 
representation by an axis helps measure the 
percentage of the total statistical information 
captured by a projection axis. Second, the quality 
of an element's representation by an axis helps 
measure the percentage of the statistical 
information carried by the element considered, 
which is captured by the axis considered. Third, 
the contribution of an element to the inertia of an 
axis helps measure the percentage of the 
statistical information carried by the axis 
considered, which is attributable to the element 
considered. 

1.2.2. Ordinary Least Square (OLS) 
In the second part, a linear regression model is 
used to explain the dependent variable, which is 
the compressive strength (𝑅_𝐶) as a function of a 
set of other variables (called explanatory 
variables) by quantifying a single equation: 

𝑅_𝐶𝑖 = ∑ 𝛽!
"#$	 $ ± 𝛽&𝑋& ± 	𝛽'𝑋' ± 𝜀" (1) 

where 𝑅_𝐶𝑖, 𝑋"  and 𝜀"	are the ith observation of 
the dependent variable, the independent variable, 

and  the error term, respectively; the estimators 𝛽 
are the regression coefficients; and 𝑁  is the 
number of observations. 

Three main reasons drive the choice to use 
an OLS estimation technique. First, this 
estimator is relatively easy to use. Second, as the 
studied relationship is supposed to be linear, the 
goal of minimizing the summed squared 
residuals is entirely appropriate from a 
theoretical point of view. Finally, this estimator 
has several valuable properties as the sum of the 
residuals is precisely zero, and it is the 
“best” estimator possible under a set of specific 
assumptions that should be checked here. The 
OLS method is BLUE (best linear unbiased 
estimate) if five assumptions are verified: 
1. Linearity of the relationship between the 

parameters studied. 
2. 𝐸(𝜀"|𝑋') = 0:  Exogeneity between 

regressors and the error term. 
3. Absence of colinearity between regressors 

(not perfectly correlated with each other).  
4. Var (𝜀"|𝑋') = 𝜎( : Homoscedasticity of the 

variance (that means the error of the variance 
is constant). 

5. Use of data that are randomly sampled from 
the population.  

2. RESULTS 

2.1. Compressive Strength 
As illustrated in Figure 4 further in the text, the 
compressive strength results of the eight tested 
individuals range from 3.64 MPa for TIT to 0.31 
MPa for AUD. Therefore, sediments from 
different places with different parameters and 
explanatory variables can lead to different results 
when using a similar formulation. A statistical 
approach will be used in the following parts to 
observe the main determinants of compressive 
strength variation between individuals. In other 
words, the objective is to determine the influence 
of sediments, more precisely their properties, on 
mechanical resistance. 
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2.2. PCA results 
The PCA analyzes the eight individuals through 
14 parameters referring to their physical and 
chemical properties (Table 1 and Table 2). PCA's 
first approach involves studying individual 
variability, as illustrated in Figure 1. 
 

 
Figure 1: PCA graph of individuals. 
 

 The first two components of PCA are 
retained in this figure to have a simple two-
dimensional picture of individuals, accounting 
for 62.66% of the total dataset inertia and their 
representation quality (see the color's intensity 
for cos2 graphically). The first axis demonstrates 
an opposition between TIT and QUIN (to the 
right of the graph, characterized by a strongly 
positive coordinate on the axis ) to LR (to the left 
of the graph, characterized by a strongly negative 
coordinate on the axis). Precisely, TIT and QUIN 
are similar by sharing a high value for Blaine and 
low values for Density and Coarse sand. In 
opposition, LR is characterized by high values 
for VBS and Fines sand and low values for 
Density and Coarse sand. As part of the second 
axis, it distinguishes individuals such as AUD (to 
the bottom of the graph, characterized by a 
strongly negative coordinate on the axis) sharing 
high values for the Coarse sand variable.  

Besides, Figure 2 and Figure 3 describe the 
second approach of PCA that establishes links 
between the 14 parameters studied to synthesize 
them. As previously seen (in section 1.2.1), the 
results presented are selected according to the 
respective contribution of parameters to the 
inertia of axes and their representation quality. 

Components retained should represent a high 
variability in initial multidimensional data. The 
criterion is generally to retain components with 
eigenvalues greater than 1. Here, the first three 
acomponents are retained, which is already 
satisfying, accounting for 76.43% of the total 
dtaset inertia. 

     In Figure 2, the first component opposes 
Fine silts, Al2O3, and SiO2 (positive coordinates 
on the axis) to Fine sand, Density, and VBS 
(negative coordinates on the axis). The second 
component traduces the opposition between 
R_C, Clay, and Blaine (positive coordinates on 
the axis) to Coarse sand (negative coordinates on 
the axis). Finally, in Figure 3, the third 
component illustrates the opposition between Ip, 
SiO2/Al2O3, and OM (positive coordinates on the 
axis) with Fine silts, Al2O3, and VBS (negative 
coordinates on the axis). 

 

 
Figure 2: PCA graph of Figure variables 
representing the first two components. 
 

 
Figure 3: PCA graph of Figure variables 
representing the first and third components. 
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2.3. OLS results 
In this section, the objective is to predict the 
mechanical performance (𝑅_𝐶) of the different 
raw sediments collected. The results in Table 3 
show p-values of statistically significant causal 
relationships between the independent 
parameters tested and the explained variable 
(𝑅_𝐶 ). Different potential determinants of 𝑅_𝐶 
are tested. First, Clay and Blaine are strongly 
correlated to 𝑅_𝐶  according to the second 
component of the PCA analysis. Knowing that 
correlation is not a synonym for causality but can 
highly indicate its potential presence, Model 1 of 
Table 3 tests these parameters. 

Following Chu and al. (2020) highlighting 
the importance of the volumetric ratio of dredged 
sediments for mechanical strength, the Density 
parameter is added in Model 2. Models 3 and 4 
test the causal impact of Ip and OM parameters 
on 𝑅_𝐶. Indeed, these parameters are presented 
as determinants by Moghrabi et al. (2018) and 
appear essential in the third component of the 
PCA analysis. Finally, Models 5 and 6 
investigate the impact of sediments' chemical 
properties which are Al2O3 and SiO2. The best 
predictions for R_C are obtained in Models 3 and 
6, which have a very satisfying adjusted R-
squared of 87.1% and 98.8%, respectively. 

These coefficients of determination tell how 
much variation in the dependent variable can be 
explained by the independent variables tested 
and are very satisfying. Moreover, the F-statistic 
tells the regression's goodness of fit, indicating 
the pertinence of selected parameters. According 
to these best models, three main significant 
parameters influence 𝑅_𝐶, which are Blaine (at a 
5% level of confidence), Density (at 10%), and 
Clay (at 5%). More precisely, in Model 6, which 
is the best, a unit change in Blaine rises 𝑅_𝐶 by 
7.184, 7.112 for Density, and 0.903 for Clay. We 
also partially validate the results of Moghrabi et 
al. (2018) by showing that Ip and OM negatively 
impact mechanical strength, although these 
parameters are statistically non-significant here. 
Concerning SiO2, it also seems positively impact 
𝑅_𝐶  but is non-significant too. Although non-

significant, Ip, OM, and SiO2 appear as 
important variables to control for, expected to 
play a role in 𝑅_𝐶  prediction and increase the 
model's power. Thanks to the Model 6 retained, 
𝑅_𝐶 can be predicted with confidence, as seen in 
Figure 4. 

Table 3: OLS results with regression coefficients (8 
individuals). 

 
 

These results satisfy previously announced 
OLS assumptions in section 1.2.2 to have an 
unbiased estimator. First, 𝑅_𝐶  can be estimated 
through a linear relationship. Second, essential 
regressors are included in regression analysis to 
avoid approaching a zero error term. Third, 
colinearity between regressors is studied through 
VIF analysis (Variance Inflation Factor) in Table 
3. In parallel, the OLS method must satisfy two 
conditions to be the most optimal and precise 
estimator. Concerning that fact, robust variance 
estimates are proposed in the results to control 
for potential homoscedasticity issues. Finally, 
data should be randomly sampled from the 
population, and the sample size should be 
sufficient (N>30) to guarantee a normal data 
distribution and use the Central Limit Theorem 
(CLT). The sample is very limited to satisfy this 
condition, and the data are not entirely normally 
distributed. 

 Model1 Model2 Model3 Model4 Model5 Model6 
VARIABLES R_C R_C R_C R_C R_C R_C 
       
Clay 0.550** 0.580* 0.819** 0.832** 0.832 0.903** 
 (0.209) (0.242) (0.151) (0.147) (0.208) (0.0308) 
Blaine 2.597 4.027 4.425** 4.388 4.397 7.184** 
 (3.587) (3.708) (1.290) (1.791) (2.676) (0.558) 
Density  2.686 3.527* 3.793* 3.806 7.112* 
  (1.656) (1.359) (1.279) (1.979) (0.744) 
Ip   -

0.0440** 
-0.0467 -0.0465 -0.0243 

   (0.00975) (0.0164) (0.0284) (0.00605) 
OM    4.91e-06 4.76e-06 -1.74e-05 
    (1.42e-

05) 
(2.43e-

05) 
(5.24e-

06) 
Al2O3     0.00180  
     (0.163)  
SiO2      0.0902 
      (0.0163) 
Constant -1.029 -5.640 -5.993* -6.425 -6.481 -17.12* 
 (1.094) (3.257) (2.377) (2.540) (5.622) (2.108) 
       
Observations 8 8 8 8 8 8 
Adjusted R-
squared 

0.495 0.558 0.871 0.814 0.628 0.988 

F-Stat 822.2 822.2 822.2 822.2 822.2 822.2 
Prob > F 0.0267 0.0267 0.0267 0.0267 0.0267 0.0267 

Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0. 
Source: author’s calculations. 
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Figure 4: Comparison between actual measurements 
of R_C and predictions. 

2.4. Extension to OLS results 
One noting fact with these results is the absence 
of water, sediment, and alkali reagents as 
significant determinants of 𝑅_𝐶 . These results 
are not surprising given the construction of these 
eight sediment samples, all coming from Pauillac 
as explained in part 1.1.1 and based on the better 
mixture obtained from 27 individuals (see 
section 1.1.3). Hence, for the eight individuals 
previously studied, parameters such as H2O, 
NaOH, and Na2SiO3 are considered constant 
(fixed for a mixture volume equal to 1). An 
extension to the research question of this article 
could be the study of parameters that more 
broadly influence 𝑅_𝐶, using these 35 individuals 
in total. These results are presented in Table 4. 
The best predictions are obtained in Models 3 
and 4, which have an adjusted R-squared of 
40.2% and 42.4%, respectively. 

Model 1 is inspired by the best OLS model 
proposed in this paper to predict 𝑅_𝐶 given the 
eight individuals, where H20 and VBS were 
added (also considering a quadratic relationship 
for Clay). In model 2, the Density was removed 
because it is strongly insignificant due to the 
constraint imposed on the mixtures to respect a 
density of 1. Model 3 tests the causal impact of 
SiO2/Al2O3 on 𝑅_𝐶, which is strongly correlated 
to Ip and OM (statistically significant here) 
according to the third part of the PCA analysis. 
Finally, Ip is removed in Model 4 to limit 

collinearity bias with OM and SiO2/Al2O3, 
demonstrated as statistically significant in Model 
3. According to model 4 in Table 4, three main 
significant parameters positively influence 𝑅_𝐶 , 
which are Blaine (at a 1% level of confidence), 
SiO2/Al2O3 (at 1%), and VBS (at 1%). 
Specifically, a unit change in Blaine rises 𝑅_𝐶 by 
7.851, 0.999 for SiO2/Al2O3, and 0.498 for VBS. 
In opposition, OM negatively impacts 𝑅_𝐶 where 
an increase of 1 unity of it decreases 𝑅_𝐶  by 
2.79 × 10)*.  Finally, Clay first negatively 
affects 𝑅_𝐶 (at 1%) until a turning point where 
the effect becomes positive. The squared of the 
Clay variable indicates that a unit change 
increases 𝑅_𝐶 by 0.402. 

 
Table 4: OLS results (35 individuals) 

 

3. CONCLUSION 
In this work, two conclusions emerge from the 
various sediment samples studied. First of all, 
based on the study of the eight types of 
sediments characterized by various resistance to 
compression; the results demonstrate the 
importance of the physical properties of the 
sediments. More precisely, the Blaine, Density, 

 Model1 Model2 Model3 Model4 
VARIABLES R_C R_C R_C R_C 
     
Clay -1.835*** -1.869*** -1.890*** -1.904*** 
 (0.445) (0.367) (0.381) (0.325) 
Clay_sqr 0.374*** 0.379*** 0.402*** 0.402*** 
 (0.0617) (0.0497) (0.0505) (0.0476) 
VBS -0.282*** -0.263*** 0.534** 0.498*** 
 (0.0902) (0.0852) (0.203) (0.0972) 
Blaine 7.517*** 7.235*** 7.791*** 7.851*** 
 (2.232) (1.748) (1.794) (1.825) 
H2O 26.32 26.28 26.43 26.41 
 (16.42) (16.03) (16.07) (15.73) 
OM -2.23e-05** -2.16e-05** -2.62e-05** -2.79e-05** 
 (9.07e-06) (8.07e-06) (9.76e-06) (1.04e-05) 
SiO2 -0.0667** -0.0744***   
 (0.0270) (0.0101)   
Ip -0.0112*** -0.0125* -0.00230  
 (0.00329) (0.00678) (0.0128)  
Density 0.564    
 (1.550)    
SiO2_Al2O3   1.073* 0.999*** 
   (0.568) (0.341) 
Constant -2.136 -0.786 -9.924* -9.657** 
 (6.986) (3.543) (5.213) (4.270) 
     
Observations 35 35 35 35 
Adjusted R-squared 0.381 0.404 0.402 0.424 
F-Stat 191.5 191.5 191.5 191.5 
Prob > F 0 0 0 0 

Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0. 
Source: author’s calculations. 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 
Dublin, Ireland, July 9-13, 2023 

 8 

and Clay are highlighted as positive determinants 
of 𝑅_𝐶. In a certain measure, results also seem to 
corroborate the literature by showing the role of 
sediments' chemical properties. The Ip, OM, and 
SiO2 are non-significant determinants in our 
model, but the PCA analysis highlights a strong 
correlation between these parameters, which may 
explain their non-significance when put together. 
Moreover, one limitation of the study is the very 
restricted sample size, so it is challenging to 
approach reality accurately. Finally, H2O and 
alkali reagents (NaOH and Na2SiO3) do not 
appear in the results, as they are considered 
constant according to the previously described 
mix design. 

Secondly, the eight types of sediments and 
27 mixtures were studied together to understand 
better which mechanical and chemical properties 
influence compressive strength. In these 
estimates, activators of geopolymerization 
(SiO2/Al2O3 and OM) are statistically 
significant, with a negative impact for the first 
one and a negative for the latter. As expected, 
H2O is not far from the 10% significance level. 
Finally, Blaine, Clay, and VBS are determinants 
for 𝑅_𝐶 . Unfortunately, the predicted power of 
the model is about 43% because the sample is 
limited and, more specifically, not normally 
distributed. Indeed, the 27 mixtures were first to 
respect a mass of 1, and then the optimal 
formulation was fixed according to Pauillac 
properties. 

The last model, although promising, is 
ultimately limited by the sample size and its non-
randomly character. Further investigations 
should consider a larger sample of random 
individuals, different by their chemical and 
physical properties, with varying mortars size to 
have more robust and better predictions. In 
conclusion, this work represents the first 
essential step in this research question and offers 
many fruitful perspectives. 
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