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Abstract—A novel non-linear adaptive filter for the lineariza-
tion of Radio Frequency (RF) Power Amplifiers (PAs) is pre-
sented. In this study, we aim at reducing the Digital Predistortion
(DPD) complexity and enhancing its convergence speed for
reduced computation time. The Walsh Transform is used as a
computational basis for evaluating a predistorter (PD) model.
The mathematical properties of the Walsh theory are exploited
to adapt a memory polynomial (MP) in the sequency domain.
A block-based Walsh LMS is introduced to seek the optimal
PD coefficients. Simulations and results of linearization of class-
AB PAs are exhibited. The comparison with conventional DPD
algorithms shows that the proposed method converges 10 times
faster with a reduction of 12% of the complexity for similar
accuracy. Finally, a complete DPD architecture based on the
Walsh Transform is proposed.

Index Terms—Digital Predistortion, Walsh Transform, Non-
linear Adaptive Filtering, Power Amplifier (PA).

NOTATION AND DEFINITION

Scalars are in italics and vectors or matrices are in bold:

xxx =


x[1]

x[2]

...
x[N ]


For complex data, the transpose (.)T must be replaced by

the Hermitian (complex conjugate) transpose (.)H.
Uppercase variables correspond to the Fast Walsh Transform

(FWT) of lowercase variables:

XXX = W{xxx}

The logical convolution, also known as dyadic convolution
is defined by the symbol ⊛.

I. INTRODUCTION

D IGITAL communications techniques (OFDM, carrier ag-
gregation) increase considerably the spectral efficiency

of communications to meet their exponential growth. How-
ever, these techniques generate signals with a high Peak-to-
Average-Power Ratio (PAPR). They are very sensitive to the
non-linearities and memory effects introduced by the Power
Amplifier (PA) [1], [2]. These effects distort the amplitude
and phase of the useful signal, leading to asymmetric spec-
tral regrowth in adjacent communication channels [3]–[7]
and degradation of the error vector magnitude (EVM) [8].
Linearization techniques minimize distortions and allow the

PA to operate near their saturation point which improves
the linearity versus power added efficiency (PAE) trade-off
[9], [10]. DPD techniques have been investigated in the past
decades as powerful linearization solutions. These methods
invert amplitude, phase, and memory effects non-linearities
with a predistorter (PD). Depending on the position of the PD,
the DPD can operate in baseband (BB) as shown in Fig. 1,
intermediate frequencies (IF), or radio frequencies (RF) [11].

The most adopted method is the BB pre-distortion which
operates at the lowest operating frequency compared to IF and
RF and can be easily implemented on a DSP or an FPGA. In
the literature, the derived functions of the Volterra series [12],
[13] are conventionally used to model the dynamic behavior
of the PA as well as its inverse characteristic.
These include memory polynomial (MP) [14], [15], gener-
alized memory polynomial (GMP) [16], Hammerstein and
Wiener models [17] and neural networks [18]. However,
the number of required coefficients becomes larger as the
complexity of the models increases to reach mandatory EVM
and adjacent channel power ratio (ACPR). This results in
a time-consuming process to compute the DPD. Researches
have focused on improving PD mathematical models [19]–
[21] in an effort to reduce the number of terms to save time
without losing accuracy. Another way to reduce the processing
time is to lower the complexity and enhance the convergence
speed of Least Mean Square algorithms (LMS) [15], [22]
or Recursive Least Square algorithms (RLS) [23], [24], also
known as adaptive filters, which compute the PD terms. While
these methods provide a scalar approach to data processing,
other comparable algorithms employ a vector approach [25]
to enhance their performance, at the expense of hardware
resources [26]. To address this concern, researchers have
proposed the use of transforms, such as the Fourier Transform
[25], [27].
In this paper, we use a block LMS associated with the Walsh
Transform [28] to compute the coefficients of linear and non-
linear adaptive filters with a 10-time faster convergence and
12% reduction of complexity compared to conventional scalar
LMS approaches. Also, similar linearization performances to
these methods are obtained with an MP PD computed with the
proposed method. One potential application of the proposed
method is the implementation of DPD in energy-efficient
devices like smartphones. The method enables the rapid de-
velopment of a straightforward PD MP model, which may not
necessarily deliver the best DPD performances. Nevertheless,
this model is effective in meeting spectral pollution regulations
while keeping costs low, as it does not require an excessive
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Fig. 1. Typical baseband DPD architecture.

amount of energy for computation.
The paper is organized as follows: Section II introduces

a block-based LMS using the Walsh Transform. Section III
presents simulations and performance results of the proposed
adaptive filter. In Section IV, experimental results are presented
as a proof of concept (PoC). Section V presents a complete
DPD architecture based on the Walsh Transform. Finally,
conclusions and future work are stated in Section VI.

II. THE WALSH-BASED BLOCK LMS

A. The Walsh Transform

The Walsh Transform and the Fourier Transform, among
other transformations, are a possible base of the adaptive
filtering process. The Walsh functions WWW are an ordered set
of rectangular waveforms and only take the values +1 and
−1. Figure 2 displays the first 8 Walsh sequences. The binary
nature of the sequences makes them very suitable for digi-
tal implementation. Therefore, the discrete Walsh Transform
(DWT) described by Eq. 1 can be computed much faster than
the discrete Fourier Transform (DFT).

X[i] =

N∑
n=1

x[n]W [i, n] (1)

The Walsh Transform decomposes the time-discrete signal
into a sequency-discrete signal. The set of Walsh coefficients

Fig. 2. The first 8 Walsh sequences.

X[i] represents the sequency spectrum [29] of x[n] in the same
sense that a set of Fourier coefficients represents a frequency
spectrum. The sequency domain convolution, also known as
dyadic convolution [29], is described in Eq. 2.1:

ZZZ =XXX⊛YYY ⇐⇒ Z[i] =
1

N

N−1∑
j=0

X[j ⊕ i]Y [j] (2.1)

With j ⊕ i the dyadic sum of integers j an i:

j ⊕ i =

number of bits∑
b=0

|jb − ib|2b (2.2)

The Walsh Transform also has analog properties to the
Fourier Transform. A dyadic convolution in the Walsh domain
is equivalent to a point-wise multiplication in the time domain.

W{xxxyyy} =XXX⊛YYY (3.1)

Reciprocally:

W{xxx⊛yyy} =XXXYYY (3.2)

An N -point DWT can also be performed with matrix
multiplication as an N -point Fast Walsh Transform (FWT).
As an example for N = 4:

XXX = xxx×WWW4 (4.1)

With:

WWW4 =
1√
4


+ + + +

+ + − −
+ − − +

+ − + −

 (4.2)

The Walsh matrix is symmetric, hence WWW = WWWT. More-
over, as the Walsh sequences constitute an orthonormal basis
we have:

WWWWWWT = III ⇐⇒WWWWWW = III (5)

Therefore WWW =WWWT =WWW−1. A Walsh power spectrum can
also be computed. The Walsh power spectrum PPP of a signal
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Fig. 3. (a) Normalized Fourier power spectra and (b) normalized Walsh power spectra of a two-tone input (black) and output (red/blue) of a non-linear
system.

x can be obtained after averaging A energy spectra windows
Sa[i] = |X[i]|2:

P [i] =
1

A

A∑
a=1

Sa[i] (6)

This theorem is known as the sequency Wiener-Khintchine
theorem [29]. Comparisons of Fourier power spectra and
Walsh power spectra are illustrated in the following example.

The input signal x is composed of two tones at frequency
bins fb[1] = 15 and fb[2] = 19. A non-linear function
(representing a PA) is applied to the signal. The Fourier power
spectra of x and y are shown in Fig. 3(a). The non-linearities of
the PA create intermodulation products (IM) in y at frequency
bins 2fb[1]− fb[2] = 11 and 2fb[2]− fb[1] = 23.
Similarly, as illustrated in Fig. 3(b), the Walsh power spectra
also display intermodulation products at several sequency bins.
From this result, one can extract the non-linearities of a system
to feed a non-linear adaptive filtering method based on the
Walsh Transform as described in the following sub-section.

B. The Walsh block LMS (WLMS)

WLMS algorithm combines the convergence properties of
an overlap-save block-based LMS algorithm with the Walsh
Transform to reduce its computational complexity. The block
LMS algorithm is fully described in Appendix A-D, it consists
of the following set of equations:

yyyj = χχχj × cccj (7.1)
eeej = fff(dddj −yyyj) (7.2)

cccj+1 = cccj + 2µχχχT
jeeej (7.3)

With χχχj the circulant matrix of the input data set xxxj , dddj

the desired output of the model, eeej the error vector, cccj the
coefficients of the model and fff a diagonal window matrix.

The following base change formula is applied to pass χχχj into
the Walsh domain :

XXXj =WWW2N χχχj WWW
−1
2N (8)

Where WWW2N is the symmetric matrix that applies a 2N -
DWT. Since χχχj is circulant, it has been shown in [30] that XXXj

is diagonal by part and antisymmetric. The structure of XXXj is
shown in Fig. 4(a) for 2N = 8. Depending on the application,
the Walsh sequences forming WWW2N can be arranged in an or-
der called the Hadamard order [31]. Figure 4(d) illustrates the
Hadamard matrix structure HHH2N . Using the Hadamard matrix
in Eq. 8, XXXj becomes block-diagonal and antisymmetric [30].

Using this diagonal structure, the number of non-zero coef-
ficients (NZ) of XXXj can be deduced. It is defined in Eq. 9.

NZ = 2 +

log2(2N/4)∑
n=1

22n (9)

DDDj , YYYj , EEEj , CCCj correspond to the 2N -DWT of dddj , yyyj , eeej ,
cccj respectively. The index 2N in WWW2N no longer appears in
the following equations for simplicity. The output of the filter
in the WLMS is:

YYYj =XXXjCCCj (10)

Since XXXj is block-diagonal and antisymmetric, the number
of multiplications NM to process Eq. 10 is equal to NZ and
the number of additions NA is:

NA = 2 +

log2(2N/4)∑
n=1

2n(2n − 1) (11)

The error vector in the Walsh domain is:

EEEj =WWWfff(dddj −yyyj)

EEEj =WWWfff(WWW−1WWWdddj −WWW−1WWWYYYj)
(12.1)
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By factoring by WWW−1:

EEEj = FFF(DDDj −yyyj) (12.2)

with:

FFF =WWWfffWWW−1 (12.3)

According to the gradient method, the updating equation of
the filter coefficients is:

CCCj+1 =CCCj −µµµ∇̂̂∇̂∇CCCj

=CCCj −µµµ
∂|Ej |2

∂CCCj

(13.1)

with ∇̂̂∇̂∇CCCj the estimated gradient of the squared error in the
Walsh domain. The squared error is defined as:

|Ej |2 = EEET
jEEEj = (DDDT

j −YYYT
j )FFF

TFFF(DDDj −YYYj) (13.2)

f is diagonal and WWW =WWW−1 =WWWT (Eq. 5), therefore:

FFFT = (WWW−1)T fffT WWWT =WWWfffWWW−1 = FFF (13.3)

Moreover, since f has its right N × N bottom corner equal
to III, it is known that f ff ff f = fff . Therefore, it can be stated:

FFFTFFF = FFFFFF

=WWWfffWWW−1WWWfffWWW−1 =WWWfffWWW−1 = FFF
(13.4)

Equation 13.2 can be restated as:

|Ej |2 = (DDDT
j −CCCT

jXXX
T
j )FFF(DDDj −XXXjCCCj)

=DDDT
jFFFDDDj − 2DDDT

jFFFXXXjCCCj +CCCT
jXXX

T
jFFFXXXjCCCj

(13.5)

We assume that XXXj and DDDj are independent of CCCj and that
the system is time-invariant. Taking the partial derivative of
the squared error in regard to CCCj :

∂|Ej |2

∂CCCj
= 0− 2DDDT

jFFFXXXj + 2CCCT
jXXX

T
jFFFXXXj

= −2FFFXXXj(DDD
T
j −CCCT

jXXX
T
j )

= −2XXXT
jFFF(DDDj −XXXjCCCj) = −2XXXT

jEEEj

(13.6)

Therefore the updating equation of the filter coefficients in the
WLMS is:

CCCj+1 =CCCj + 2µWXXXT
jEEEj (13.7)
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Fig. 4. (a) XXXj with Walsh ordering (black ̸= 0, white = 0). (b) XXXj with Hadamard ordering (black ̸= 0, white = 0). (c) Walsh matrix WWW8 (black = 1,
white = -1) (d) Hadamard matrix HHH8 (black = 1, white = -1).
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DWT

Coefficients update

Fig. 5. WLMS block diagram.

µW has the same purpose as µ in the conventional LMS
algorithm. Figure 5 shows the WLMS block diagram.
In the WLMS, the estimated gradient of the squared error is
computed as an average of the data instead of its instantaneous
value as in the scalar time domain approach. Therefore, it is
a more accurate representation of the true gradient and leads
to faster convergence of the algorithm [25].

Equation 12.2 and 13.7 perform a linear system identifica-
tion. However, in the case of DPD, the adaptive filter is non-
linear. As explained in the introduction, the derived functions
of the Volterra series are conventionally used to model a non-
linear system. Therefore, for a scalar LMS approach, given by
Eq. 26.1 to Eq. 26.3 in Appendix A-A can be restated as:

yk =

Q∑
q=1

M−1∑
m=0

cqmkxk−m|xk−m|q−1

yk = xxxkccc
T
k

(14.1)

where Q is the non-linearity order of the system, M the
memory depth and xxxk the state vector of MP input samples
defined as:

xxxT
k = (xk, ..., xk|xk|Q−1, ..., xk−M+1|xk−M+1|Q−1) (14.2)

To present the form of the block LMS needed in the WLMS,
the input data set is segmented into Q vectors (one for each q
order) of length 2N points vectors that overlap on the last N
points every j iteration. Also, M is assumed to be less than
or equal to N . If M is not a power of two, N is the nearest
higher power of 2 to M .

xxxj,q[n] = x[(j − 1)N + n]|x[(j − 1)N + n]|q−1 (15)

Therefore, the adaptive filter is cccj and is also segmented into
Q sub-adaptive filters of length 2N with their last 2N − M
values set to 0.

cccT
j,q = (cj,q0, c2j,q1, ... , cj,qM−1, 0, ... , 0) (16)

The final output vector is the sum of each circular convo-
lution between xxxj,q and cccj,q:

yyyj =

Q∑
q=1

χχχj,q × cccj,q (17)

With its last N points being the result of the linear convolu-
tion. The error vector is the same as in Eq. 33 and the update
of the coefficients is defined by:

cccj+1,q = cccj,q + 2µχχχT
j,qeeej (18)

The WLMS equations for the identification of an MP model
are derived by running Eq. 16 to Eq. 18 through the same
process as described above.
The base change:

XXXj,q =WWWχχχj,qWWW
−1 (19)

The model adaptation:

Yj =

Q∑
q=1

XXXj,qCCCj,q (20)

The error equation is the same in Eq. 12.2. The update of each
sub-filter’s coefficients is Eq. 21.

CCCj+1,q =CCCj,q + 2µWXXXT
j,qEEEj (21)

III. SIMULATION RESULTS AND COMPARISON WITH OTHER
TECHNIQUES

This section presents a comparison between the WLMS
algorithm and conventional algorithms: LMS, Normalized
LMS (NLMS), and Recursive Least Square (RLS). For each
algorithm, the study assesses various factors such as conver-
gence speed, accuracy, sensitivity to noise, and complexity.
Additional details on the conventional methods can be found
in Appendix A.

A. Convergence speed, accuracy, and noise simulations

First, the accuracy and convergence speed are evaluated
throughout the Normalized Mean Square Error (NMSE) given
by Eq. 22.

NMSE =

J∑
j=1

|dj − yj |2

J∑
j=1

|dj |2
(22)

The system to be identified is a FIR filter of length N = 32.
The input is a complex randomized data set drawn from
the standard normal distribution and quantified on 10 bits.
For each algorithm, the convergence constant was chosen
to achieve the fastest convergence rate without causing the
algorithm to diverge: µ = 0.1 (LMS), µn = 1 α = 3 (NLMS),
δ = 1 λ = 0.97 (RLS), µW = 0.01 (WLMS).

The NMSE evolution of each algorithm was evaluated over
J = 1000 iterations. This experience was repeated 100 times
to evaluate the average behavior of each algorithm. Figure 6
displays the simulation results.

One can notice from the results that the RLS and WLMS
algorithms demonstrate a much faster convergence rate com-
pared to the LMS and NLMS algorithms. To achieve an
NMSE of -40dB, RLS and WLMS required only 150 and
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Fig. 6. NMSE of LMS, NLMS RLS and WLMS over 1000 model updates.

160 iterations, respectively, while LMS and NLMS took 400
and 600 iterations, respectively. Furthermore, the minimum
NMSE threshold, which is noise and quantization dependent
[32], [33] is comparatively lower in the WLMS than in LMS,
NLMS, and RLS. The reason for this is that the estimation
of the error gradient in WLMS is calculated as an average
of the data rather than the instantaneous value, effectively
minimizing the influence of noise. Consequently, fluctuations
in the NMSE are significantly reduced in WLMS compared
to the other methods.
Although this study initially focused on linear system esti-
mation through an equation, a second study was conducted
to benchmark the DPD algorithms for the estimation of MP
models to linearize a PA. The simulation utilized an NXP Air-
fast LDMOS PA with an operating frequency of 3.6-3.8GHz,
29dB gain, and an output compression point at 47dBm with
inherent non-linearities and memory effects due to its Doherty
topology. The PA model was available in Mathworks [34]. The
study used two different inputs. The first input was a 16-QAM
Root Raised Cosinus filter (RRC) with 50MHz bandwidth,
5.6dBm input power, and 7.5dB PAPR. The second input was
a 64-QAM OFDM, 50MHz bandwidth, 2.7dBm input power,
and 10.7dB PAPR. For both inputs, the parameters of the PD
MP model were Q = 5 and M = 8. The results of the study
are presented in Fig. 7(a) and Fig. 7(b), which illustrate the
power spectra of the PA output and the evolution of the ACPR
reduction for each algorithm over 20 iterations with the second
input. For each algorithm, the convergence parameters were
chosen to achieve the fastest convergence rate without causing
the algorithm to diverge: µ = 0.02 (LMS), µn = 0.5 α = 3
(NLMS), δ = 1 λ = 1 (RLS), µW = 0.08 (WLMS).

The parameters of the PD are equal in the four algorithms,
therefore the PD coefficients will converge to the same values
at some point, leading to the same ACPR reduction. How-
ever, as illustrated in Fig. 7(b), the WLMS has the second-
fastest convergence speed and accuracy for a finite number
of iterations with the chosen parameters. Also, a few non-
symmetric spectral regrowths, resulting from the memory
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Fig. 7. (a) Power spectrum of PA output with and without DPD after 20
iterations of each algorithm. (b) ACPR evolution over 20 iterations of each
algorithm.

effect of the PA [5]–[7], remain after the application of DPD.
This phenomenon arises from the attempt to compensate for
the memory effect by employing an inverse memory effect
generated by the PD within the MP model. Due to the limited
number of iterations in our study, the obtained model does
not fully compensate for the memory effect. Table I presents
a comparison of the performance of the MP DPD with each
algorithm for both modulation schemes. The evaluated metrics
are the ACPR over two different adjacent bandwidths (50MHz
and 100MHz), NMSE and EVM.

From the Table I results, one can notice that RLS DPD
generally provides the best performance in both modulation
schemes, achieving the lowest ACPR, NMSE, and EVM
values. However, it is important to note that the WLMS
outperforms the LMS/NLMS methods in the given scenarios.

As a first additional study, the behavior of the WLMS DPD
was examined in both modulation scenarios by adjusting the
parameters Q and M . Detailed simulation results are provided
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TABLE I
ACPR, NMSE AND EVM COMPARISONS AFTER 20 ITERATIONS OF LMS, NLMS, RLS, AND WLMS DPD FOR 2 DIFFERENT INPUTS.

Waveform 16-QAM RRC 64-QAM OFDM
ACPR L/U (dBc) NMSE EVM ACPR L/U (dBc) NMSE EVM

Adjacent Bandwidth 50MHz 100MHz (dB) (%) 50MHz 100MHz (dB) (%)
No DPD -34.5 / -34.3 -41.0 / -41.5 / 6.37 -32.2 / -32.5 -41.5 / -42.4 / 7.21
LMS DPD -40.3 / -39.3 -45.2 / -45.1 -32.2 4.62 -39.1 / -38.9 -44.5 / -45.1 -30.3 4.36
NLMS DPD -42.0 / -40.8 -48.1 / -47.1 -33.3 4.47 -41.8 / -41.1 -48.3 / 48.0 -31.6 4.05
RLS DPD -45.6 / -45.4 -51.3 / -51.0 -37.9 3.54 -45.0 / -44.8 -50.6 / -50.7 -35.3 0.69
WLMS DPD -45.2 / -43.9 -50.4 / -49.9 -36.4 3.62 -44.3 / 43.3 -50.0 / -47.7 -34.51 0.72

in Appendix B-A. Notably, for a wide range of parameter
values, the WLMS algorithm exhibited consistent and stable
behavior in both modulation schemes.

A second additional study investigated the impact of noise
and SNR on the WLMS algorithm. The simulation was per-
formed by varying the SNR range from 25dB to 50dB and
the number of quantization bits from 5 to 16. The results of
the simulation are presented in Appendix B-B. The WLMS
algorithm demonstrated a stable behavior and did not diverge
in the presence of noise. It was able to effectively linearize
the PA at an SNR of 35dB and with quantization of 7 bits of
data.

B. Complexity

This section provides a detailed analysis of the computa-
tional complexity of the algorithms. To simplify the complex-
ity calculation, subtractions are considered additions.

To filter L points of data with a filter of size QM , the
conventional LMS algorithm requires L iterations. In each
iteration, the adaptation of the model and the update of the
coefficients both need QM additions and QM multiplications.
Therefore, the LMS requires 2QM additions and multiplica-
tions in total.

To filter L points of data with a filter of size QM , the
NLMS algorithm requires L iterations. In each iteration,
the adaptation of the model needs QM additions and QM
multiplications. The update of the coefficients needs 2QM
additions and 2QM multiplications. Therefore the NLMS
requires 3QM additions and multiplications in total.

To filter L points of data with a filter of size QM , the
RLS algorithm requires L iterations. In each iteration, the
adaptation of the model needs QM additions and QM mul-
tiplications. The update of R̂̂R̂R−1 requires 2(QM)2 additions
and 3(QM)2 multiplications. The update of the coefficients
needs (QM)2 additions and QM + (QM)2 multiplications.
Therefore, the RLS requires QM + 2(QM)2 additions and
2QM + 4(QM)2 multiplications.

For the WLMS, since it has a block approach, to filter
L points of data with a filter of size QM it needs L/N
iterations (with N the nearest higher power of 2 to M ).
2Q+ 1 DWT are processed, each composed of 2Nlog2(2N)
additions. The adaptation of the model requires Q(2N +NA)
additions and QNM multiplications (cf. Eq. 9 and Eq. 11).
The update of the coefficients requires QNA additions and
QNM multiplications. Therefore, the WLMS requires (2Q+
1)(2Nlog2(2N)) + 2Q(N +NA) additions and 2QNM mul-
tiplications.

Table II compares the computational resources for LMS,
NLMS, RLS and WLMS for different filter sizes M over L =
M data points.

The WLMS algorithm has significantly lower computational
complexity in terms of both additions and multiplications
compared to the RLS. For example, when Q = 7 and
M = 8, the WLMS algorithm only requires 2192 additions
and 1204 multiplications, while RLS requires 75712 additions
and 101696 multiplications. The NLMS algorithm is a direct
competitor to the WLMS algorithm in terms of computa-
tional complexity. Both algorithms have a linear complexity
in terms of the number of filter taps. The WLMS requires
more additions than the NLMS since the Walsh Transform is
only composed of additions and substractions. However, the
number of multiplications required has been reduced thanks
to the block-diagonal structure of XXX and becomes 12% lower
than the number of multiplications in the NLMS when M
is a power of two. Indeed, as the transformation can only
be applied to vectors having a size equal to a power of 2,
when M is not a power of 2, it is necessary to apply a zero
padding to verify this requirement making the computation
more expensive. This phenomenon is shown in Fig. 8(a) and
Fig. 8(b) displays the evolution of the ratio of multiplications
between WLMS and NLMS (MuWLMS/MuNLMS) for the
different parameters. This phenomenon is also found in the
ratio of the number of additions of both algorithms.

TABLE II
COMPARISON OF COMPUTATIONAL REQUIREMENTS FOR LMS, NLMS, RLS AND WLMS WITH DIFFERENT FILTER SIZES.

LMS NLMS RLS WLMS
Add. Mul. Add. Mul. Add. Mul. Add. Mul.

Q = 3, M = 4 96 96 144 144 756 2448 312 132
Q = 3, M = 6 216 216 324 324 5940 8100 732 387
Q = 5, M = 6 360 360 540 540 16380 22140 1188 645
Q = 5, M = 8 640 640 960 960 38720 5160 1584 860
Q = 7, M = 8 896 896 1344 1344 75712 101696 2192 1204
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Fig. 8. (a) Ratio of multiplications between WLMS and NLMS for multiple
Q and M orders. (b) Ratio of multiplications between WLMS and NLMS
for multiple M orders with Q fixed.

C. Comparative Performance

An overview of the comparative performances of the four
algorithms is presented in Fig. 9. The RLS algorithm has better
performances in terms of convergence speed and accuracy
compared to other conventional algorithms, but it may suffer
from noisy systems and also consumes more energy due to its
high complexity of calculus [33]. Therefore, the RLS would
be preferable in a DPD application where performance is a
priority and noise/energy consumption is not a major issue. On
the other hand, in terms of accuracy and convergence speed,
the WLMS outperforms the LMS and NLMS algorithms
while having a reduced computational complexity compared
to the NLMS. Therefore, the WLMS is the preferred choice
in a DPD application where convergence speed, accuracy,
low-noise sensitivity, and energy consumption are important
factors. For instance, in the case where energy consumption
is a critical criterion for low-power 5G devices and meeting
the minimum ACPR and EVM values is sufficient to comply
with ETSI regulations [35], the WLMS algorithm may be a
suitable option.

Complexity

Accuracy

Convergence Speed

Noise sensitivity

LMS NLMS RLS WLMS

Fig. 9. Overview of the comparative performances of the LMS, NLMS, RLS
and WLMS algorithms.

2.5GHz SiGe PA

+11dB

LAN TCP/IP

USB 3.0

Carrier frequency

PC: DPD With MATLAB

FSW                (R&S)SMW200A        (R&S)

Fig. 10. Synoptic view of the DPD measurement bench.

IV. EXPERIMENTS AND MEASUREMENT RESULTS

In order to validate the performances of the proposed
algorithm, the WLMS DPD was applied on a 2.5GHz SiGe
PA.

A. Experimental Setup

Figure 10 provides detailed information about the measure-
ment setup. The signal processing is performed in MATLAB.
The input signal of the PA is generated by the ROHDE &
SCHWARZ (R&S) SMW200A Vector Signal Generator [36],
which is USB 3.0 (VISA) controlled. On the other hand, the
R&S FSW Signal/Spectrum Analyzer [37] samples the output
of the amplifier and is controlled with TCP/IP. The two devices
are synchronized to minimize the frequency shift between their
local oscillators. The PA that is being linearized is a deep AB-
class PA. Its structure is a one-state common emitter with a
BFP780 SiGe transistor from Infineon. It operates at 2.5GHz,
has a linear gain of 11dB, and its output 1dB-compression
point is equal to 14dBm. Figure 11 shows the experimental
setup.

B. Measurement results

The signal used is a 16-QAM OFDM signal with a band-
width of 50MHz, an average power level of -3dBm, and a
PAPR of 7dB. The evaluation of an MP PD with a Q = 4 and
M = 8 was performed with LMS, NLMS, RLS and WLMS.

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2023.3294959

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

Fig. 11. DPD measurement bench.
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Fig. 12. Measured power spectrum of PA output with and without DPD after
20 iterations of each algorithm.

The evaluation was conducted on a dataset of 5000 samples
and after 20 iterations. For each algorithm, the convergence
parameters were chosen to achieve the fastest convergence rate
without causing the algorithm to diverge: µ = 0.01 (LMS),
µn = 0.5 α = 3 (NLMS), δ = 1 λ = 0.99 (RLS), µW = 0.05
(WLMS). The results are presented in Fig. 12 which displays
the measured PA output spectra with and without DPD using
the four different algorithms. Table III compares the ACPR
obtained with each algorithm for a 50MHz and 100MHz adja-
cent channel bandwidth. Figure 13(a) and Fig. 13(b) depict the
linearized AM/AM and AM/PM characteristics, respectively,
of the measured PA, using the WLMS.

Figure 12 shows that the WLMS can perform a strong
ACPR reduction on AB-class PA with 50MHz signal band-

(a)

(b)
Fig. 13. (a) AM/AM characteristic without and with WLMS DPD. (b)
AM/PM characteristic without and with WLMS DPD.

width. Furthermore, the AM/AM and AM/PM in Fig .13(a)
and Fig .13(b) indicate that the memory effect is also sig-
nificantly reduced but not completely eliminated, as indicated
by the presence of the remaining asymmetric regrowths in
the PA output spectrum. Table III indicates that WLMS DPD
offers the second-best linearization performance, which is
consistent with the simulation results. The only algorithm that
outperforms WLMS is RLS DPD, but it comes at the cost of
much higher computational complexity.

TABLE III
ACPR, NMSE AFTER 20 ITERATIONS OF LMS, NLMS, RLS, AND WLMS DPD

16-QAM OFDM
ACPR L/U (dBc) NMSE (dB) EVM (%)Adjacent Bandwidth 50MHz 100MHz

No DPD -32.7 / -30.8 -46.8 / -44.2 / 6.99
LMS DPD -40.5 / -39.5 -47.6 / -46.6 -33.1 5.09
NLMS DPD -43.8 / -42.1 -49.2 / -48 -37.6 4.54
RLS DPD -46.1 / -44.5 -53.5 / -48.8 -40.1 3.24
WLMS DPD -44.3 / -42.2 -48.8 / -46.8 -37.8 4.36
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Fig. 14. DPD RF Transmitter based on the WLMS and the Walsh Transform.

V. WALSH-BASED DPD ARCHITECTURE

Figure 14 illustrates a comprehensive DPD transmitter ar-
chitecture that utilizes both the Walsh Transform and WLMS.

In the DPD transmitter architecture, the direct path com-
prises the upper part. To generate the Tx RF signal, the
Inverse Walsh Transform (IWT) (also known as Walsh series
decomposition) is carried out, as described in Eq. 23.

x(t) =

N∑
i=1

Xj(i, t)×W (i, t) (23)

Recent research indicates that using Walsh sequences for
generating RF signals is a viable option [38], [39]. To
produce these sequences, digital clocks generate the Walsh
sequences W (i, t), which are then weighted by the Walsh co-
efficients XXXj using DACs. The resulting weighted sequences,
Xj(i, t)W (i, t), are combined to form the RF signal. The
Walsh sequence set W (i, t) can be obtained from a single
clock working at the system’s highest frequency, fW , using
frequency dividers and XOR gates. This method is also
wideband, as it generates signals ranging from the lowest
frequency in the Walsh sequences (fR = fW /N with N being
the number of sequences in the set) to fW . Additionally, the
Walsh coefficients change only every TR = 1/FR.

Moving to the feedback path, a coupler captures a copy of
the PA’s output signal, which is then subjected to analog Walsh
Transform using a Radix architecture to compute its Walsh
coefficients [40]. These coefficients are sampled and input
into the Walsh DPD algorithm. By knowing the input/output
Walsh coefficients of the PA, the WLMS computes the Walsh
coefficients of the pre-distorted signal. The pre-distorted RF
signal is generated by the direct path with the IWT.

The system has been simulated in MATLAB. The data is
quantized over 8 bits. The signal used is a 5G NR-FR1 [41].
It is a 64-QAM OFDM with 100MHz bandwidth, a PAPR
of 10.4dB, and an average power Pin of 2.6dBm. The PA to
be linearized is the NXP Airfast LDMOS Doherty from the
previous simulations. The PD model used has a Q = 5 and
M = 8. It was calibrated after 100 iterations of the WLMS
(µW = 0.08), each using a set of 10000 samples. Figure 15(a)

displays the PA output spectra with and without DPD. Figure
15(b) shows the constellations of the input and output of the
PA with and without DPD. Table IV presents a comparison
of the ACPR (lower/upper) and EVM levels with and without
WLMS DPD.

The proposed architecture achieves an 11.2dB improvement
in ACPR and a 50% reduction in EVM for high PAPR large
signal bandwidth. These results indicate that the architecture
has the potential for direct RF signal generation with highly
competitive linearization capabilities, made possible by the use
of the Walsh Transform.

VI. CONCLUSION

This work proposes a Walsh-based LMS algorithm for eval-
uating a PD model using the input/output Walsh coefficients
of the system. Both simulation and measurement results are
presented, showing that the novel algorithm can perform a
11dB ACPR reduction with up to 10 times the speed of
conventional LMS algorithms at 12% lower computational
complexity. As a result, the energy cost of the digital resources
is reduced and the energy efficiency of the PA is increased
as it operates in the non-linear region. A Walsh-based DPD
system was also presented. The Walsh Transform offers a
direct generation of the RF signal and a copy of the PA’s output
signal. Simulation results of the WLMS DPD on an RF PA
are also shown, paving the way for a novel RF DPD system
based on Walsh theory. Finally, future work will integrate the
proposed architecture in 28nm FDSOI CMOS technology from
STMicroelectronics.

APPENDIX A
LMS AND RLS ALGORITHMS

This section presents the different algorithms used to com-
pare the proposed method, including LMS, NLMS, and RLS.
The block LMS is also described, as the proposed method is
based on this approach.

A. The LMS Algorithm
The LMS algorithm is a time-domain adaptive filter. Its goal

is to find weights of the transversal filter c[n] to minimize the
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Fig. 15. (a) Power spectrum of PA output with and without DPD after 100 iterations of WLMS algorithm. (b) Output constellation with and without WLMS
DPD.

TABLE IV
SIMULATED ACPR AND EVM LEVELS OF PA OUTPUT SPECTRA.

5G-NR-FR1 64-QAM
ACPR L/U (dBc) EVM (%) NMSE (dB)Adjacent Bandwidth 100MHz 200MHz RMS Peak

No DPD -32.1 / -32.3 -40.8 / -41.4 5.5 20.5 /
WLMS DPD -43.3 / -43.2 -46.8 / -46.8 2.5 10.2 -37.4

error between the output of the filter y and a reference signal
d [33]. It can be used to filter a noisy set of data or to find a
model for a system or inverse model as for DPD. The optimal
solution (Wiener [17]) of the filter/model is given by:

cccopt =RRR−1ppp (24)

with RRR = E[xxxkxxx
T
k] and ppp = E[dkxxx

T
k] assuming that x

and d are jointly Wide Sense Stationary (WSS). Since the
model has to be evaluated with a finite number of samples, an
instantaneous estimation of matrix RRR denoted R̂̂R̂R and vector
ppp, denoted by p̂̂p̂p are used in a steepest-descend algorithm to
search for the Wiener solution as follows:

ccck+1 = ccck + µ∇̂̂∇̂∇ccck

= ccck + 2µ(p̂̂p̂pk − R̂̂R̂Rk)
(25.1)

with:

R̂̂R̂Rk = xxxkxxx
T
k

p̂̂p̂pk = dnxxx
T
k

(25.2)

The result gradient estimate is given by:

∇̂̂∇̂∇ccck = −2ekxxxk =
∂2ek
∂ccc

(25.3)

The resulting gradient-based algorithm is known as the LMS
algorithm using the equation updated as:

ek = dk − yk = yk −xxxT
kccck

ccck+1 = ccck − 2µekxxxk

(26.1)

where xxxk corresponds to the state vector of input samples
stored in the adaptive filter:

xxxT
k = (xk, xk−1, ... , xk−N+1) (26.2)

ccck the coefficients of the filter after the kth iteration:

cccT
k = (ck,0, ck,1, ... , ck,N−1) (26.3)

and µ is the convergence factor that has to be chosen in
an appropriate range to guarantee the convergence of the
algorithm. As the value of µ increases, the algorithm will
converge more quickly, but this may also result in instability
and divergence of the algorithm.

B. The NLMS Algorithm

The NLMS algorithm [42] is similar to the LMS algo-
rithm, with the only variance lying in the coefficient updating
equation. In the NLMS algorithm, µ is optimized to achieve
faster convergence. It is normalized by xxxT

kxxxk to reduce the
instantaneous error. Also, a factor α is introduced to avoid
large step size when xxxT

kxxxk becomes too small, leading to a
divergence of the algorithm. The updating equation of the
NLMS is given by:

ccck+1 = ccck +
µnekxxxk

α+xxxT
kxxxk

(27)

C. The RLS Algorithm

The Wiener solution can be evaluated if RRR−1 and ppp are
known. However, only an estimation of these parameters can
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be computed (R̂̂R̂Rk and p̂̂p̂pk) [33]. The RLS uses a recursive es-
timation of R̂̂R̂R−1

k to improve the convergence of the algorithm
at the cost of an increase in computational complexity. The
updating equation of the RLS is given by:

ccck+1 = ccck + ekR̂̂R̂R
−1
k+1xxxk (28.1)

with:

R̂̂R̂R−1
1 = δIII

R̂̂R̂R−1
k+1 =

1

λ

(
R̂̂R̂R−1

k −
R̂̂R̂Rkxxxkxxx

T
kR̂̂R̂R

−1
k

λ+xxxT
kR̂̂R̂R

−1
k xxxk

)
(28.2)

The parameter λ is an exponential weighting factor that should
be chosen in the range ]0,1]. This parameter is also called the
forgetting factor since the information from the distant past has
an increasingly negligible effect on the coefficient updating. δ
can be chosen as the inverse input signal power estimate.

D. The Block LMS Algorithm

As described above, the conventional LMS, NLMS, and
RLS filters use scalars (ek, yk, dk). However, in a block-based
LMS, the output of the filter and the error are vectors. This
algorithm uses the overlap-save method [43].
The order M of the adaptive filter is assumed to be less than
or equal to N . In this method, the adaptive filter is of size
2N . It has M coefficients followed by 2N −M values set to
0:

cccT
j = (cj,0, cj,1, ... , cj,M−1, 0, ... , 0) (29)

In a block LMS, the input data set x is segmented into
2N point vectors that overlap on the last N points every j
iteration:

xj [n] = x[(j − 1)N + n] (30)

In a time overlap-save algorithm, the output vector yyyj is
obtained by circular convolution of the input vector and the
filter coefficients. It is defined in Eq. 31.



yj [1]
yj [2]

...
yj [N ]

yj [N + 1]
...

yj [2N − 1]
yj [2N ]


=



xj [1] xj [2N ] ... xj [2]
xj [2] xj [1] ... xj [3]

...
...

...
...

xj [N ] xj [N − 1] ... xj [N + 1]
xj [N + 1] xj [N ] ... xj [N + 2]

...
...

...
...

xj [2N − 1] xj [2N − 2] ... xj [2N ]
xj [2N ] xj [2N − 1] ... xj [1]





cj,0
cj,1

...
cj,M−1

0
...
0
0


(31)

Which can be reduced as:

yyyj = χχχj × cccj (32)

With χχχj the circulant matrix of the input data set xxxj .
The error vector eeej is defined by:

eeej = fff(dddj −yyyj) (33)

With fff a diagonal window matrix with its first N elements
equal to 0 and its last N elements equal to 1. The update of
the filter coefficients cccj is given by:

cccj+1 = cccj + 2µχχχT
jeeej (34)

Because the last N points of cccj are equal to 0, the result
of the linear convolution is the last N point of yyyj hence the
use of the window matrix fff . This algorithm offers enhanced
convergence speed compared to the conventional scalar LMS
algorithm at the expense of hardware resources [26].

APPENDIX B
ADDITIONAL SIMULATIONS

This section presents additional simulations complementing
the WLMS study presented in Section III. The simulations
explore various models and consider different levels of SNR
and quantization bits.

A. ACPR simulations for different MP models

The ACPR evolution for different Q and M combinations
of the predistorter during 20 iterations of the WLMS algorithm
is shown in Fig. 16(a) and Fig. 16(b) for two inputs (50MHz
16-QAM RRC and 64-QAM OFDM).

The simulations demonstrate that the behavior of the algo-
rithm remains stable in the given scenarios, regardless of the
number of coefficients utilized for the PD.

B. SNR and Quantization simulations

The ACPR evolution during 20 iterations of the WLMS al-
gorithm with different bits of quantization and SNR (Gaussian
noise) is shown in Fig. 17(a) and 17(b) for the second input
(50MHz 64-QAM OFDM).

To achieve a reduction in ACPR, the simulations revealed
that the output signal should be quantized to at least 6 bits,
and the SNR must be 30dB. Also, the WLMS demonstrated
stable performance during the linearization phase.
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received the M.S. degree in electronics from EN-
SEIRB, the school of Electrical Engineers of Bor-
deaux, France, in 1991, and the Ph.D. degree from
the University of Bordeaux, France, in 1996. He
joined the University of Bordeaux in 1996 as an As-
sistant Professor, working in the domains of LASER
testing and radiation hardened electronics at IXL,
the Microelectronics laboratory of the University of
Bordeaux. In 2000 he joined the IC Design Team
of IXL, modifying his research interests toward the

domains of RFIC design and Design for Test (DfT). In 2007, IXL merged with
two other research laboratories in the EE field to create IMS, the laboratory of
Integration, from Materials to Systems of the University of Bordeaux. In this
new research laboratory, Dr. Lapuyade is currently an Associate Professor
in charge of high reliability electronics and Design for Availability (DfA)
activities in the IC Design Team, IC Design Group.

Yann Deval Prof. Yann DEVAL (M’96, SM’07)
joined the University of Bordeaux in the Southwest
of France in 1993, as an Assistant Professor, focus-
ing on the design of analog ICs, RFICs, high-speed
mixed-signal ICs, and high-reliability electronics. He
pursues his researches within the IMS, the laboratory
of Integration, from Material to System. In 1999 Dr.
Deval became an Associate Professor and, in 2004,
a Full Professor. From 2006 to 2010 he was the head
of the IC design Group, and from 2011 to 2016 the
head of the Devices, Circuits and Systems (DCS)

Department. Since 2016, Dr. Deval is the director of IMS. This public research
laboratory is composed of 150 Ph.D. students and 150 faculties, with the
support of roughly 100 technicians, engineers and admin assistants.

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2023.3294959

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	The Walsh-based block LMS
	The Walsh Transform
	The Walsh block LMS (WLMS)

	Simulation results and comparison with other techniques
	Convergence speed, accuracy, and noise simulations
	Complexity
	Comparative Performance

	Experiments and measurement results
	Experimental Setup
	Measurement results

	Walsh-based DPD Architecture
	Conclusion
	Appendix A: LMS and RLS algorithms
	The LMS Algorithm
	The NLMS Algorithm
	The RLS Algorithm
	The Block LMS Algorithm

	Appendix B: Additional simulations
	ACPR simulations for different MP models
	SNR and Quantization simulations

	References
	Biographies
	Maxandre Fellmann
	François Rivet
	Nathalie Deltimple
	Eric Kerhervé
	Hervé Lapuyade
	Yann Deval


