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Abstract

Long time series of underwater images have become a tool widely used within the benthic ecology research
community. The development of new acquisition systems with bigger storing capacities lead researchers and sci-
entists to deploy them for longer periods resulting in large amounts of data. This paper focuses on the first steps
of analyzing large numbers of underwater images, which involves assessing the amount of valid data while assum-
ing no technical problems. The question here addressed is how many of the in situ images can reliably be really
used for benthic ecology purposes. To answer this question, we propose a method to eliminate nonvalid images
and use it with four different sets of time-lapsed images acquired for long periods ranging from 73 to 371 ds in a
row. The results show that elimination of between 8% and 22% of the images is possible depending on the data
set. The main advantage of the method is easing and accelerating automation of subsequent analysis.

The importance of coastal and marine observations to
acquire knowledge and the need for an increase of marine bio-
logical observation is a topical subject for researchers, marine
policies decision makers and conservation managers (Bax
et al. 2019; Estes et al. 2021). Biological ocean observations
can be any data collected in a systematic and regular way on
living ocean inhabitants (She et al. 2019). One example of this
data could be time-lapse images and video recordings like at
the cabled ocean observatory, NEPTUNE (Barnes et al. 2007,
2011) or the HAUSGARTEN (Soltwedel et al. 2005).

The use of time-lapse images (or video recordings) as a tool
to study marine biology and ecology is commonly done
within the benthic ecology research community (Smith
et al. 1993; Kaufmann and Smith 1997; Maire et al. 2006;
Bernard et al. 2016; Balazy et al. 2021). Time-lapse images can
provide novel data that could not be acquired otherwise on
the seabed (Bett 2003) and can capture events that are rare,
unknown or unpredictable. Long-term deployments are used

*Correspondence: alicia.romero-ramirez@u-bordeaux.fr

Author Contribution Statement: The work and effort of each of the
authors has been necessary to achieve this manuscript. The conception
and design of this study have been directed by the first (A.R.R.) and the
last author (P.B.).

This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.

169

to study slow-moving biological and geological phenomena
that are otherwise unnoticeable in the short term as well as in
the deep or remote areas where direct human access is limited
(Smith et al. 1993; Kaufmann and Smith 1997; Bett 2003;
Eleftheriou 2013; Smith and Rumohr 2013).

Information extracted from a time-lapse camera deployment
for benthic surveys can be spatial or temporal in nature. Mobile
platforms like remotely operated vehicles and autonomous
underwater vehicles are frequently used for spatial information
such as the study of benthic biodiversity, faunal composition and
habitat mapping (Spencer et al. 2005; Cuvelier et al. 2012; Wil-
liams et al. 2012; Pizarro et al. 2013; Duffy et al. 2014; Mallet and
Pelletier 2014; Gauci et al. 2020; Jac et al. 2021). Static platforms,
for example benthic landers, are used to obtain temporal infor-
mation such as the characterization and quantification of biologi-
cal behaviors and activities (Lampitt 1990; Maire et al. 2007a;
Matabos et al. 2011, 2015; Schories et al. 2020) and the bioturba-
tion rates of benthic fauna (Bett and Rice 1993; Solan et al. 2004;
Maire et al. 2006, 2007b; Vardaro et al. 2009; Bernard et al. 2012).

Among the difficulties in long-time in situ submerged
machines and systems, biofouling and corrosion are problems
that can be particularly troublesome for underwater cameras.
Biofouling disturbs camera lenses and strobes needed for com-
plete visibility of the system. Systems deployed for long periods
require periodic cleanings in the field (Baschek et al. 2017) or
expensive mechanical antifouling tools (Balazy et al. 2018) as
most of the available antifouling coatings are not transparent
and can affect the benthic organisms in the direct vicinity.
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Apart from these well-known problems, there are other cau-
ses responsible for a decrease in the visibility of in situ time-
lapse systems. These include the increase of water turbidity
and the variability of natural light conditions (particularly in
shallow waters due to storm events or freshwater discharge), the
appearance of mobile megafauna and large swarms of plankton
that can be light-attracted, and the presence of seaweeds and
other marine debris dragged with ocean currents to list a few.

Within the context of acquiring a long series of images from
the seabed by a static device, this article focuses on assessing the
number of valid images for information extraction. Other than
technical problems during deployment, this is the first question
to address before assessing any benthic ecology issue. Manual
image classification (like usable or nonusable image) is very time-
consuming and often operator-dependent. Verifying the validity
of images needs to be done prior to any further analysis. An auto-
matic solution would reduce: (1) the time needed to manually sort
the images out and (2) the computational resources needed since
there will be fewer images to be analyzed. This paper presents a
method based on the dissimilarity of the gray-level co-occurrence
matrix (GLCM) to automatically classify images into usable or not
usable. This study is part of our experience analyzing large data
sets acquired with a time-lapse camera system monitoring the
activity of benthic filter feeders in the Arctic conditions.

Materials and methods

Data acquisition

Images were taken using a diver deployed autonomous time-
lapse system specially developed for ecological studies (Balazy
et al. 2018). Four identical systems were deployed in four differ-
ent places in the high-Arctic (Spitsbergen Island, Svalbard Archi-
pelago, 78°N) and in the sub-Arctic (Northern Norway, 68°N)
at depths of 17-20 m. The time-lapse systems were set up to
acquire an image every 30 min during long periods (Table 1).
Camera 3 and Camera 4 were deployed for a complete year;
however, they were recovered after a period of 186 and 174 d
and relaunched for 180 and 197 d, respectively. The recovery
and redeployment time was between 1 and 2 days in which:
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(1) the battery of the camera was recharged, (2) the camera
housing was cleaned and (3) the memory card was emptied.

Data processing and analysis

In order to analyze this large number of images we used
AviExplore (Romero-Ramirez et al. 2016), a software developed
for video analysis with benthic applications. Time-lapse series
of images were converted into avi-formatted video files.

In studies of texture in images, the most prevalent
technique is the GLCM (Coburn and Roberts 2004). The
co-occurrence matrix is a transformation of an image based
on how often a pair of pixels with specified values and spatial
relationship occurs in an image (Chatterjee et al. 2022).
When the co-occurrence transformation is done on the gray-
scale image, the resulting matrix is called the GLCM. Differ-
ent disciplines such as medicine (Aborisade et al. 2014;
Aggarwal 2022) and remote sensing (Haralick 1979; Ferro and
Warner 2002; Coburn and Roberts 2004; Hall-Beyer 2017b)
use the GLCM as a technique of texture analysis.

Several features can be extracted and computed from the
GLCM (Haralick et al. 1973; Hall-Beyer 2017a). The GLCM dis-
similarity represents the heterogeneity in the image texture
(Aggarwal 2022) and is commonly used as a texture feature that
defines the variation of gray level pairs (pixel and its neighbor) in
an image. For each image, the dissimilarity of the GLCM is com-
puted following Eq. 1, where i and j correspond to the horizontal
and vertical coordinate in the GLCM, P;; is the probability value
recorded for the cells i, j, and N is the number of row or columns.

N-1
D Pijli—jl (1)
i

The mean and the standard deviation of the dissimilarity
GLCM are computed. The usable range of values is here
defined by the mean + standard deviation. Images with higher
dissimilarity values than the mean plus the standard deviation
and lower dissimilarity values than the mean — standard devi-
ation were classified as nonusable images.

Table 1. Summary of the location and period of the camera deployment.

Camera 1 Camera 2 Camera 3 Camera 4

Location Longyearbyen Longyearbyen Longyearbyen Tromso
GPS position 78°11'18.5"N 78°11'18.3"N 78°11'18.0"N 69°31'53.3"N

15°08'41.6"E 15°08'41.4"E 15°08'41.1"E 19°03'23.2"E
Period of acquisition 02 Aug 2019-15 Oct 2019 28 Jul 2019-15 Oct 2019 28 Jul 2019-27 Jul 2020 18 Jul 2019-22 Jul 2020
Total number of days 75 366 (186 + 180) 371 (174 +197)
Recover time (days) No Yes (1.5 d) Yes (1 d)
Number of images 3524 17,901 17,737

First set: 8634
Second set: 9267

First set: 8321
Second set: 9415
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In order to proceed with a visual validation, a trained oper-
ator classified the complete set of images into valid or not
valid. A valid image is here defined as an image where the
human operator was able to see at least 50% of the filter
feeders present in the image. We calculate the total percentage
of nonusable images for each camera.

A well-classified image for the automatic method is here
defined by the agreement with the visual operator, which
means that the automatic and the visual classification have
the same label. Thus, the performance of the proposed
automatic method is measured by the accuracy. The accu-
racy is calculated by the number of images well classified
by the automatic method divided by the total number of
images.

N
o
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In order to summarize the results of the four different cam-
eras, we calculate a weighted mean percentage of images clas-
sified as: (1) nonusable with the method and (2) nonusable by
the trained operator. The agreement between both classifica-
tions (accuracy) was measured as the number of images agree-
ing divided by total number of images.

Results

Figures 1-4 show the GLCM dissimilarity value for each of
the images corresponding to camera 1, 2, 3, and 4, respectively,
with examples of images. For each data set, the mean GLCM
dissimilarity value is represented with a straight line whereas
the standard deviation is represented with dash lines.

A A A
A~ O ©

GLCM Dissimilarity

Image Number

Fig. 1. Results from the GLCM values of the complete image series of camera 1 located in Longyearbyen. The continuous line represents the mean
GLCM value (m), the dashed lines represent the mean =+ standard deviation (s). (A) Image with GLCM values in the range (m — s, m + s), (B-F) images

with GLCM values outside the range (m — s, m + s).
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Fig. 2. Results from the GLCM values of the complete image series of camera 2 located in Longyearbyen. The continuous line represents the mean
GLCM value (m), the dashed lines represent the mean =+ standard deviation (s). (A) Image with GLCM values in the range (m — s, m + s], (B-F) images

with GLCM values outside the range (m — s, m + s).

Different images A, B, C, D, E, and F are shown to illustrate
the use of GLCM dissimilarity values to eliminate images. For
all the figures, image A belongs to the range of usable images
and allows visualizing the benthic ecological interest of the
image series. It is to be noted that not all of the images with
dissimilarity values beyond the usable range are not ecologi-
cally usable; this is the case in Fig. 3C where only a part of the
image is hidden by the crab. In this example, this image is still
labeled as usable by a trained expert.

Results of the classification can be compared with those
from the visual validation in Table 2. Except for camera 4, the
number of images that were visually nonusable (validation)
were lower than with the method (classification); the main
reason is that this method is detecting events like the appear-
ance of fauna or algae that might (or might not) hide the filter
feeders present in an image. Accuracy values varied between
82.09% and 91.91%. The weighted mean shows similar values
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for the classification and the validation achieving a total accu-
racy of 88.68%.

Discussion and conclusions

Automatic image analysis for image series

The question addressed in this paper focuses on assessing
the number of valid images available for information extrac-
tion before any other further analysis. To our knowledge,
this question has not specifically been studied before. How-
ever, within the development of underwater camera traps,
automated classification algorithms are used to sort out images
containing fish or not (Bilodeau et al. 2022), and this part of
the work can be compared to the detection of usable or non-
usable images in this study.

The analysis of image series from the seabed is often done
manually (Chauvet et al. 2018) which is very time-consuming
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Fig. 3. Results from the GLCM values of the complete image series of camera 3 located in Longyearbyen. The continuous line represents the mean
GLCM value (m), the dashed lines represent the mean + standard deviation (s). (A) Image with GLCM values in the range (m — s, m + s), (B-F) images

with GLCM values outside the range (m — s, m + s).

and often operator-dependent. Our method aims to clean up
data sets containing information not relevant for benthic sur-
veys. It is to be noted that there is currently a big effort from the
community to use deep learning algorithms to automatically
extract spatial information (Katija et al. 2022). Temporal surveys
using static platforms need also to lighten the manual analysis.
When a researcher recovers his equipment that has been
submerged for a long period, he always wonders if the data
would be properly acquired for the intended purpose. Our
experience here relates to time-lapse photography system, but
the same kind of disturbances are to be expected for other types
of sensors deployed for a long period. Other equipment can
also be affected with similar artifacts namely the increase of
water turbidity, appearance of megafauna, swarms of plankton
and seaweeds. In our study, these issues represented between
3% and 31% of the data with a weighted mean of 15.62%.
Long-term series of images normally come from a deep-sea
observatory with relatively stable hydrodynamic conditions
(Chauvet et al. 2018, 2019). The long time series of images
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used for our work came from shallow waters in a polar region.
Although this data set is unique; the proposed method has
potential to work in very different conditions.

The method and its results

The proposed method achieved a weighted total accuracy
of 88.69%. Although there is a need for an increase in accu-
racy, the goal here was also to propose a solution that was
fast and easy to implement. The agreement between the
operator and the method is related to the definition of a non-
valid image. For instance, the method excludes more images
than the human would do; the reason for that is linked to
the size of the hidden part of an image and the selected range
of values (x — o, X + o) that are classifying images as usable.
For example, the image in Fig. 3C is automatically classified
as nonusable because of the presence of fauna, but this image
is visually classified as valid. Thus, the proposed method
could also be seen as a detector of events like the appearance
of macrofauna, fish or algae. If more of those events would
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Fig. 4. Results from the GLCM values of the complete image series of camera 4 located in Tromso. The continuous line represents the mean GLCM value (m),
the dashed lines represent the mean =+ standard deviation (s). (A,D) Images with GLCM values in the range (m — s, m + s), (B,C,E,F) images with GLCM values

outside the range (m — s, m + s).

Table 2. Results from classification and validation for the different cameras assessed.

Camera 1 Camera 2 Camera 3 Camera 4 Overview (weighted mean)
Classification 18.32 20.55 8.23 21.94 15.79
Nonusable images (%) (X & o)
Validation 12.85 5.51 3.03 30.99 15.62
Nonusable images (%)
Accuracy (%) 87.23 82.09 91.91 87.09 88.68
Data 1 (when camera retrieved) 87.85 89.56
Data 2 (when camera retrieved) 95.99 84.62

need to be classified as usable images then an increase of
the range of dissimilarity values (i.e., [x — 26, X 4+ 20¢]) would
be necessary; on the other hand, if more of those events
would need to be classified as nonusable then the range of
dissimilarity values should be decrease.

174

The GLCM and its associated texture features (Haralick
et al. 1973) are an image analysis technique normally used in
different textural image classification applications. Here, we
propose to use the dissimilarity in the GLCM as a measure to
classify the image. Since some of the features extracted from
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Fig. 5. Comparison of the camera setups: (A) camera 3 at Spitsbergen and (B) camera 4 in Tromso.

the GLCM can provide redundant information on the texture
(Hall-Beyer 2017b), it is likely that other features extracted
from the GLCM such as the energy or the correlation would
provide similar results. GLCM dissimilarity has been used
before in an underwater case study from a mobile device
(Romero-Ramirez et al. 2016), the novelty presented here relies
on its use with underwater static cameras for benthic surveys.
It is to be noted that for a similar period of acquisition, cam-
era 4 had 10 times more invalid images than camera 3. The rea-
son for that can be explained by the layout of the camera in
relation with the organisms being monitored (Fig. 5). Camera
3 (Fig. SA) was set up to record epifaunal organisms (mostly bar-
nacles) located on the overhang and vertical side of the small
boulder on a relatively flat seabed, while camera 4 (Fig. 5B) was
set up to capture barnacles located directly on the seabed right
under the large boulder. This, which a priori seems like an insig-
nificant difference, had a meaningful effect on the acquired
data. In the literature there are instances in which epifaunal
communities can differ depending on the surface orientation
(horizontal vs. vertical; Zintzen et al. 2006; Balazy et al. 2019) as
an effect of sedimentation rate, which is very important for filter
feeders. Horizontal location means not only a higher possibility
of being covered by sediments but also a higher chance of
trespassing mobile fauna such as sea stars, brittle stars, hermit
crabs, and so on, covering fully or partially either the objects
being photographed or the capture system. Furthermore, at the
location of camera 4, the slope of the sea floor was much steeper
(see Fig. SB). In such an environmental setting, any underwater
installation protruding above the seabed acts like a trap/anchor
for the detached marine algae and other debris coming from
above (Fig. 4C,E,F). Such sites prone to the accumulation of par-
ticles of different origin should be avoided whenever possible.
Regardless of the location, artificial objects submerged on
the seabed can act as artificial reefs in microscale attracting
large numbers of organisms seeking for shelter or food (Balazy
et al. 2019). In our case study, animals investigating new items
on the seabed are largely responsible for disturbing the view
and producing “invalid” images. In addition, artificial light
coming from the flash lamp can attract some species,
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particularly during the typically completely dark conditions of
the polar night. This has to be taken into account when secur-
ing the camera set-up and light arm at the site. Finally, any
irregularities of the camera set-up, even small unevenness of its
surface, can be responsible for invalid images. This was the case
when sea urchins entered the camera viewfinder depression
and stayed moving around constantly for hours (Figs. 1C, 2C).
In conclusion, in order to accelerate automation of subse-
quent analysis and reduce the computational resources
needed, we propose a method based on the dissimilarity of
the GLCM to automatically classify images into usable or not
usable. In our case study, depending on the data set this
method eliminated between 8% and 22% of the images.

Data availability statement
The images used for this study can be requested to
Dr. P. Balazy.

References

Aborisade, J. A, J. A. Ojo, A. O. Amole, and A. O. Durodola.
2014. Comparative analysis of textural features derived
from GLCM for ultrasound liver image classification. Int.
J. Comput. Trends Technol. 11(6): 239-244. doi:10.14445/
22312803/JCTT-V11P151.

Aggarwal, A. K. 2022. Learning texture features from GLCM
for classification of brain tumor MRI images using random
Forest classifier. WSEAS Trans. Signal Process. 18: 60-63.
doi:10.37394/232014.2022.18.8

Balazy, P., P. Kuklinski, and J. Berge. 2018. Diver deployed
autonomous time-lapse camera systems for ecological stud-
ies. J. Mar. Eng. Technol. 17: 137-142. doi:10.1080/
20464177.2017.1357164

Balazy, P., U. Copeland, and A. Sokotowski. 2019. Shipwrecks
and underwater objects of the southern Baltic-Hard sub-
strata islands in the brackish, soft bottom marine environ-
ment. Estuar. Coast. Shelf Sci. 225: 106240. doi:10.1016/j.
€css.2019.05.022

85U8017 SUOWILLOD 3ATe810 3(eoljdde ayy Aq peusenob afe ssjoiie VO ‘@SN Jo Sa|ni oy Afelq)8UlUO A8]IAA UO (SUORIPUOD-PUR-SUB)LI0O" AB|IM"Ae.q 1 |Bu [UO//:SANY) SUORIPUOD pUe SWie | 38U 88S *[£202/20/2T] uo AkeiqiTauljuo Ae|1m ‘xmespiog 8@ a1sieAun Aq ZES0T EWO|/Z00T 0T/I0p/wod A8 |im Areiq1jeujuo'sqndo se//:sdny Wwo.y papeojumod ‘v ‘€202 ‘9S8STHST


info:doi/10.14445/22312803/IJCTT-V11P151
info:doi/10.14445/22312803/IJCTT-V11P151
https://doi.org/10.37394/232014.2022.18.8
https://doi.org/10.1080/20464177.2017.1357164
https://doi.org/10.1080/20464177.2017.1357164
https://doi.org/10.1016/j.ecss.2019.05.022
https://doi.org/10.1016/j.ecss.2019.05.022

Alicia et al.

Balazy, P., M. J. Anderson, M. Chelchowski, M. Wtodarska-
Kowalczuk, P. Kuklinski, and J. Berge. 2021. Shallow-water
scavengers of polar night and day—An Arctic time-lapse
photography study. Front. Mar. Sci. 8: 1-10. doi:10.3389/
fmars.2021.656772

Barnes, C. R,, M. M. R. Best, B. D. Bornhold, S. K. Juniper, B.
Pirenne, and P. Phibbs. 2007. The NEPTUNE project—A
cabled ocean observatory in the NE Pacific: Overview, chal-
lenges and scientific objectives for the installation and
operation of Stage I in Canadian waters, p. 308-313.
In 2007 Symposium on Underwater Technology and Work-
shop on Scientific Use of Submarine Cables and Related
Technologies. IEEE.

Barnes, C. R., M. M. R. Best, F. R. Johnson, L. Pautet, and B.
Pirenne. 2011. Challenges, benefits and opportunities in
operating cabled ocean observatories: Perspectives from
NEPTUNE Canada, p. 1-7. In 2011 IEEE Symposium on
Underwater Technology and Workshop on Scientific Use of
Submarine Cables and Related Technologies. IEEE.

Baschek, B., and others. 2017. The Coastal Observing System
for Northern and Arctic Seas (COSYNA). Ocean Sci. 13:
379-410. doi:10.5194/0s-13-379-2017

Bax, N. J., and others. 2019. A response to scientific and socie-
tal needs for marine biological observations. Front. Mar.
Sci. 6: 1-22. d0i:10.3389/fmars.2019.00395

Bernard, G., A. Grémare, O. Maire, P. Lecroart, F. J. R.
Meysman, A. Ciutat, B. Deflandre, and J. C. Duchéne. 2012.
Experimental assessment of particle mixing fingerprints in
the deposit-feeding bivalve Abra alba (Wood). J. Mar. Res.
70: 689-718.

Bernard, G., J. C. Duchéne, A. Romero-Ramirez, P. Lecroart, O.
Maire, A. Ciutat, B. Deflandre, and A. Grémare. 2016.
Experimental assessment of the effects of temperature and
food availability on particle mixing by the bivalve Abra alba
using new image analysis techniques. PLoS One 11:
€0154270. doi:10.1371/journal.pone.0154270

Bett, B. J. 2003. Time-lapse photography in the deep sea.
Underwater Technol. 25: 121-127.

Bett, B. J., and A. L. Rice. 1993. The feeding behaviour of an
abyssal echiuran revealed by in situ time-lapse photogra-
phy. Deep Sea Res. Part I Oceanogr. Res. 40: 1767-1779.
d0i:10.1016/0967-0637(93)90031-W

Bilodeau, S. M., A. W. H. Schwartz, B. Xu, V. P. Pauca, and M. R.
Silman. 2022. A low-cost, long-term underwater camera trap
network coupled with deep residual learning image analysis.
PLoS One 17: €0263377. doi:10.1371/journal.pone.0263377

Chatterjee, S., D. Dey, and S. Munshi. 2022. Chapter 3—
Extraction of effective hand crafted features from
dermoscopic images, p. 53-94. In S. Chatterjee, D. Dey, and
S. Munshi [eds.], Recent trends in computer-aided diagnos-
tic systems for skin diseases. Academic Press.

Chauvet, P., A. Metaxas, A. E. Hay, and M. Matabos. 2018.
Annual and seasonal dynamics of deep-sea megafaunal epi-
benthic communities in Barkley Canyon (British Columbia,

176

Image analysis and benthic ecology

Canada): A response to climatology, surface productivity
and benthic boundary layer variation. Prog. Oceanogr.
169: 89-105. doi:10.1016/j.pocean.2018.04.002

Chauvet, P., A. Metaxas, and M. Matabos. 2019. Interannual
variation in the population dynamics of juveniles of the
deep-sea crab Chionoecetes tanneri. Front. Mar. Sci. 6: 1-15.
d0i:10.3389/fmars.2019.00050

Coburn, C. A., and A. C. B. Roberts. 2004. A multiscale texture
analysis procedure for improved forest stand classification.
Int. J. Remote Sens. 25: 4287-4308. doi:10.1080/01431160
42000192367

Cuvelier, D., F. de Busserolles, R. Lavaud, E. Floc’h, M. C.
Fabri, P. M. Sarradin, and ]J. Sarrazin. 2012. Biological data
extraction from imagery—How far can we go? A case study
from the Mid-Atlantic Ridge. Mar. Environ. Res. 82: 15-27.
doi:10.1016/j.marenvres.2012.09.001

Duffy, G. A., L. Lundsten, L. A. Kuhnz, and C. K. Paull. 2014.
A comparison of megafaunal communities in five subma-
rine canyons off Southern California, USA. Deep-Sea Res. II
Top. Stud. Oceanogr. 104: 259-266. doi:10.1016/j.dsr2.
2013.06.002

Eleftheriou, A. 2013. Methods for the study of marine ben-
thos. Wiley-Blackwell.

Estes, M., and others. 2021. Enhanced monitoring of life in
the sea is a critical component of conservation manage-
ment and sustainable economic growth. Mar. Policy 132:
104699. doi:10.1016/j.marpol.2021.104699

Ferro, C.]J. S., and T. A. Warner. 2002. Scale and texture in dig-
ital LMAGE classification. Photogramm. Eng. Remote Sens..

Gauci, A., A. Deidun, J. Abela, E. Cachia, and S. Dimech. 2020.
Automatic benthic habitat mapping using inexpensive
underwater drones, p. 2213-2216. In IGARSS 2020-2020
IEEE International Geoscience and Remote Sensing
Symposium. IEEE.

Hall-Beyer, M. 2017a. GLCM texture: A tutorial v. 3.0.

Hall-Beyer, M. 2017b. Practical guidelines for choosing GLCM
textures to use in landscape classification tasks over a range
of moderate spatial scales. Int. J. Remote Sens. 38: 1312-
1338. doi:10.1080/01431161.2016.1278314

Haralick, R. M. 1979. Statistical and structural approaches to
texture. Proc. IEEE. 67: 786-804.

Haralick, R. M., K. Shanmugam, and I. Dinstein. 1973. Tex-
tural features for image classification. IEEE Trans. Syst.
Man. Cybern. SMC-3: 610-621. doi:10.1109/TSMC.1973.
4309314

Jac, C., N. Desroy, J.-C. Duchéne, A. Foveau, C. Labrune, L.
Lescure, and S. Vaz. 2021. Assessing the impact of trawling
on benthic megafauna: Comparative study of video surveys
vs. scientific trawling. ICES J. Mar. Sci. 78: 1636-1649. doi:
10.1093/icesjms/fsab033

Katija, K., E. Orenstein, B. Schlining, and others. 2022. Fath-
omNet: A global image database for enabling artificial intel-
ligence in the ocean. Sci Rep 12. d0i:10.1038/s41598-022-
19939-2

85U8017 SUOWILLOD 3ATe810 3(eoljdde ayy Aq peusenob afe ssjoiie VO ‘@SN Jo Sa|ni oy Afelq)8UlUO A8]IAA UO (SUORIPUOD-PUR-SUB)LI0O" AB|IM"Ae.q 1 |Bu [UO//:SANY) SUORIPUOD pUe SWie | 38U 88S *[£202/20/2T] uo AkeiqiTauljuo Ae|1m ‘xmespiog 8@ a1sieAun Aq ZES0T EWO|/Z00T 0T/I0p/wod A8 |im Areiq1jeujuo'sqndo se//:sdny Wwo.y papeojumod ‘v ‘€202 ‘9S8STHST


https://doi.org/10.3389/fmars.2021.656772
https://doi.org/10.3389/fmars.2021.656772
https://doi.org/10.5194/os-13-379-2017
https://doi.org/10.3389/fmars.2019.00395
https://doi.org/10.1371/journal.pone.0154270
https://doi.org/10.1016/0967-0637(93)90031-W
https://doi.org/10.1371/journal.pone.0263377
https://doi.org/10.1016/j.pocean.2018.04.002
https://doi.org/10.3389/fmars.2019.00050
https://doi.org/10.1080/0143116042000192367
https://doi.org/10.1080/0143116042000192367
https://doi.org/10.1016/j.marenvres.2012.09.001
https://doi.org/10.1016/j.dsr2.2013.06.002
https://doi.org/10.1016/j.dsr2.2013.06.002
https://doi.org/10.1016/j.marpol.2021.104699
https://doi.org/10.1080/01431161.2016.1278314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1093/icesjms/fsab033
info:doi/10.1038/s41598-022-19939-2
info:doi/10.1038/s41598-022-19939-2

Alicia et al.

Kaufmann, R. S., and K. L. Smith Jr. 1997. Activity patterns of
mobile epibenthic megafauna at an abyssal site in the eastern
North Pacific: Results from a 17-month time-lapse photo-
graphic study. Deep Sea Res. Part I Oceanogr. Res. Pap. 44:
559-579.

Lampitt, R. S. 1990. Directly measured rapid growth of a deep-
sea barnacle. Nature 345: 805-807. doi:10.1038/345805a0

Maire, O., J. C. Duchéne, R. Rosenberg, J. B. de Mendonca,
and A. Grémare. 2006. Effects of food availability on sedi-
ment reworking in Abra ovata and A. nitida. Mar. Ecol. Prog.
Ser. 319: 135-153. doi:10.3354/meps319135

Maire, O., J.-M. Amouroux, J.-C. Duchéne, and A. Grémare.
2007a. Relationship between filtration activity and
food availability in the Mediterranean mussel Mytilus
galloprovincialis. Mar. Biol. 182: 1293-1307. doi:10.
1007/s00227-007-0778-x

Maire, O., J. C. Duchéne, A. Grémare, V. S. Malyuga, and F. J. R.
Meysman. 2007b. A comparison of sediment reworking rates
by the surface deposit-feeding bivalve Abra ovata during sum-
mertime and wintertime, with a comparison between two
models of sediment reworking. J. Exp. Mar. Biol. Ecol. 343:
21-36. doi:10.1016/j.jembe.2006.10.052

Mallet, D., and D. Pelletier. 2014. Underwater video tech-
niques for observing coastal marine biodiversity: A review
of sixty years of publications (1952-2012). Fish. Res. 154:
44-62. doi:10.1016/j.fishres.2014.01.019

Matabos, M., J. Aguzzi, K. Robert, C. Costa, P. Menesatti, J. B.
Company, and S. K. Juniper. 2011. Multi-parametric study
of behavioural modulation in demersal decapods at the
VENUS cabled observatory in Saanich Inlet, British Colum-
bia, Canada. J. Exp. Mar. Biol. Ecol. 401: 89-96. doi:10.
1016/j.jembe.2011.02.041

Matabos, M., N. Piechaud, F. de Montigny, P.-M. Sarradin, and
J. Sarrazin. 2015. The VENUS cabled observatory as a method
to observe fish behaviour and species assemblages in a hyp-
oxic fjord, Saanich Inlet (British Columbia, Canada). Can.
J. Fish. Aquat. Sci. 72: 24-36. doi:10.1139/cjfas-2013-0611

Pizarro, O., and others. 2013. Benthic monitoring with
robotic platforms—The experience of Australia, p. 1-10.
In 2013 IEEE International Underwater Technology
Symposium (UT). IEEE.

Romero-Ramirez, A., A. Grémare, G. Bernard, L. Pascal, O. Maire,
and ]J. C. Duchéne. 2016. Development and validation of a
video analysis software for marine benthic applications.
J. Mar. Syst. 162: 4-17. doi:10.1016/j.jmarsys.2016.03.003

Schories, D., M. ]J. Diaz Aguirre, I. Garrido, T. Heran, J.
Holtheuer, J. Kappes, G. Kohlberg, and G. Niedzwiedz.
2020. Analysis of time-lapse images as a tool to study move-
ment in situ in four species of sea urchins and one limpet

177

Image analysis and benthic ecology

from North Patagonia and the South Shetland Islands.
Antarctic Georef. Biodivers. 30: 117-136.

She, J., and others. 2019. An integrated approach to coastal
and biological observations. Front. Mar. Sci. 6: 1-6. doi:10.
3389/fmars.2019.00314

Smith, C. J., and H. Rumohr. 2013. Imaging techniques,
p- 97-124. In Methods for the study of marine benthos.
John Wiley & Sons, Ltd.

Smith, K. L., Jr., R. S. Kaufmann, and W. W. Wakefieldt. 1993
Mobile megafaunal activity monitored with a time-lapse
camera in the abyssal North Pacific. Deep Sea Research
Part I: Oceanographic Research Papers, 40(11), 2307-2324.
https://doi.org/10.1016/0967-0637(93)90106-D

Solan, M., B. D. Wigham, I. R. Hudson, R. Kennedy, C. H.
Coulon, K. Norling, H. C. Nilsson, and R. Rosenberg. 2004.
In situ quantification of bioturbation using time-lapse
fluorescent sediment profile imaging (f-SPI), luminophore
tracers and model simulation. Mar. Ecol. Prog. Ser. 271:
1-12. doi:10.3354/meps271001

Soltwedel, T., and others. 2005. HAUSGARTEN: Multi-
disciplinary investigations at a Deep-Sea, Long-Term Obser-
vatory in the Arctic Ocean. Oceanography 18: 46-61. doi:
10.5670/oceanog.2005.24

Spencer, M. L., A. W. Stoner, C. H. Ryer, and ]J. E. Munk. 200S5.
A towed camera sled for estimating abundance of juvenile
flatfishes and habitat characteristics: Comparison with
beam trawls and divers. Estuar. Coast. Shelf Sci. 64: 497-
503. doi:10.1016/j.ecss.2005.03.012

Vardaro, M. F., H. A. Ruhl, and K. L. Smith. 2009. Climate var-
iation, carbon flux, and bioturbation in the abyssal North
Pacific. Limnol. Oceanogr. 54: 2081-2088.

Williams, S. B., and others. 2012. Monitoring of benthic refer-
ence sites: Using an autonomous underwater vehicle. IEEE
Robot. Autom. Mag. 19: 73-84.

Zintzen, V., C. Massin, A. Norro, and ]J. Mallefet. 2006.
Epifaunal inventory of two shipwrecks from the Belgian
Continental Shelf. Hydrobiologia §55: 207-219.

Acknowledgment
This study received funding from the National Science Centre, Poland,
project no. 2018/29/B/NZ8/02340.

Submitted 18 August 2022
Revised 25 January 2023
Accepted 29 January 2023

Associate editor: Scott Ensign

85U8017 SUOWILLOD 3ATe810 3(eoljdde ayy Aq peusenob afe ssjoiie VO ‘@SN Jo Sa|ni oy Afelq)8UlUO A8]IAA UO (SUORIPUOD-PUR-SUB)LI0O" AB|IM"Ae.q 1 |Bu [UO//:SANY) SUORIPUOD pUe SWie | 38U 88S *[£202/20/2T] uo AkeiqiTauljuo Ae|1m ‘xmespiog 8@ a1sieAun Aq ZES0T EWO|/Z00T 0T/I0p/wod A8 |im Areiq1jeujuo'sqndo se//:sdny Wwo.y papeojumod ‘v ‘€202 ‘9S8STHST


https://doi.org/10.1038/345805a0
https://doi.org/10.3354/meps319135
https://doi.org/10.1007/s00227-007-0778-x
https://doi.org/10.1007/s00227-007-0778-x
https://doi.org/10.1016/j.jembe.2006.10.052
https://doi.org/10.1016/j.fishres.2014.01.019
https://doi.org/10.1016/j.jembe.2011.02.041
https://doi.org/10.1016/j.jembe.2011.02.041
https://doi.org/10.1139/cjfas-2013-0611
https://doi.org/10.1016/j.jmarsys.2016.03.003
https://doi.org/10.3389/fmars.2019.00314
https://doi.org/10.3389/fmars.2019.00314
https://doi.org/10.1016/0967-0637(93)90106-D
https://doi.org/10.3354/meps271001
https://doi.org/10.5670/oceanog.2005.24
https://doi.org/10.1016/j.ecss.2005.03.012

	 Image analysis and benthic ecology: Proceedings to analyze in situ long-term image series
	Materials and methods
	Data acquisition
	Data processing and analysis

	Results
	Discussion and conclusions
	Automatic image analysis for image series
	The method and its results
	Data availability statement

	References


