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ABSTRACT  
 

Among microfossils currently extracted from Cenozoic sediments to reconstruct past environments are 

planktic foraminifers. These small calcareous organisms are furthermore probably ranked first in this set of 

tools when considering Paleoceanography, a science that has grown up proportionally to their use since now 

more than half a century. Planktonic foraminifera (PF) actually constitute the key material for 

paleoceanographers as a basic tool for stratigraphical and paleoecological reconstructions, both often based 

on coupled geochemical and micropaleontological approaches. Since the late ninety’s, the modern 

calibration of the PF proxy has taken growing importance, challenging the principle of uniformitarianism, 

especially in response to questions introduced by the molecular biology. This calibration can rely on two 

approaches: the first implies repetitive surveys of modern populations (throughout plankton tows or 

sediment traps) and the other one directly targets the analysis of recently fossilized populations in the 

topmost oceanic sediments in order to implement regional databases and develop the statistical approach of 

transfer functions sensu lato. This paper reviews the strengths and weaknesses of the latter approach, 

focusing on the North Atlantic Ocean (and its border seas), which up to now counts the largest existing set 

of data concerning planktonic foraminifera population. 
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INTRODUCTION 
 

The modern earth system cannot be considered 

anymore as a natural system since human imprints 

are detectable among each biotic or abiotic 

reservoir. This is the basic line which has 

contributed to the definition of the “Antropocene 

era” concept, with an anthropogenic bias 

dominating since at least 200 years (e.g., Crutzen 

2002; Crutzen and Steffen 2003) or that could have 

begun as soon as 4000 years ago (Ruddiman 2003). 

In this context the retrospective approaches based 

on fossil archives constitute the unique way to 

define the initial (zero) state of our natural system, 

with additionally the recognition of what are 

natural ranges in environmental oscillations: “what 

has been possible in the past could be possible in 

the future…” 

Few ways exist to provide robust evaluations 

of past environmental changes. Most of them 

firstly depend on the recovery of preserved 

(undisturbed) archives offering enough material to 

undertake statistically valid investigations and 

construct an adequate chronology. Among the 

existing ones, we can cite for instance the high 

resolution reconstructions obtained from geological 

rhythmites (corals, speleothems, varves in 

sediment…), but for marine environments the most 

popular tool is probably the micropaleontological 

record offered by planktic foraminifera. These 

calcareous protists are the basic material of 

paleoceanographical approaches (e.g., Emiliani 

1955) and are used extensively as the support of 

both geochemical (
14

AMS measurements, stable 

isotopes, elemental ratio) and (paleo)ecological 

studies. Geographically confined in bio-climatic 

provinces but also in specific water-depth windows 

(e.g. Hemleben et al. 1989), they represent 

precious (paleo)-bioindicators.  

The present contribution focuses on their 

interest in quantitative approaches and is based on 

the reanalysis of the North Atlantic databases 

delivered in the frame of the MARGO project 

(Hayes et al. 2005; Kucera et al. 2005a, b; 

MARGO project members, 2009). A new database 

has been built from this set of data and is herein 

tested and used to perform quantification of Sea 

Surface Temperatures (SST) with the aid of an 

ecological transfer function (Guiot and de Vernal 

2007) developed at the EPOC laboratory 

(Environnements et Paléoenvironnement 

OCéaniques, Bordeaux1 University, France). 

Several sequences from diversified places within 

the North Atlantic Ocean are furthermore tested to 

highlight the strengths and limitations of this 

approach.  

 

 

QUANTITATIVE TOOLS IN PALEO-

ENVIRONMENTAL 

RECONSTRUCTIONS: POTENTIALITIES 

AND WEAKNESSES OF PLANKTIC 

FORAMINIFERA 
 

Since the discovery of planktic foraminifera 

(PF) and their first use as qualitative proxies of 

sea-surface conditions, researchers tried to 

overcome issues linked to the subjectivity in the 

interpretation of faunal assemblages. Patterns 

within the bioclimatic distribution of foraminifera 

have been established early in the history of 

oceanography (e.g. Brady 1884) and therefore 

many micropaleontologists derived observed 

changes in the assemblages especially for PF to 

environmental variables, such as sea-surface 

temperatures. The next step was to provide data 

beyond these qualitative pictures, and thus 

quantitative palaeoenvironmental reconstructions 

were developed based on statistical and 

mathematical methods (i.e., via transfer functions). 

This contribution does not aim at a review of the 

different methods which were applied to biotic 

assemblages, as many literature has been produced 

on the subject for PF or other microfossils (i.e., 

Imbrie and Kipp 1971; Hutson 1977; Birks 1995; 

Maslin et al. 1995; Pflauman et al. 1996: 

Waelbroeck et al. 1998; Kucera et al. 2005b; 

Telford and Birks 2011; see Guiot and de Vernal 

2007; 2011a, b for a complete review). Focusing 

our summary on PF, the first major achievements 

were obtained with the Imbrie and Kipp (1971) 

approach (IK), which was rapidly replaced by the 

Modern Analogue Technique (MAT), which up to 
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date remains the most applied and performing one 

in spite of the development of much complex 

approaches, such as the Artificial Neural Networks 

(ANN) (e.g. Kucera et al. 2005b, Hayes et al. 2005, 

Guiot and de Vernal 2007). Different versions of 

MAT have been successively developed and they 

are all derived from k-nearest-neighbour 

algorithms (see Guiot and de Vernal 2007 for a 

review). The most critical point is the construction 

of the database, which constitutes the original set 

of training compiling modern analogues, for each 

of the cited approaches. The most extended the set 

is, the most analogues it provides, but conversely 

regional extremes could bias quantifications (see 

discussions in Waelbroeck et al. 1998; Guiot and 

de Vernal 2011a, b). Using micropaleontological 

assemblages, modern samples are thus obtained 

from oceanic surface sediments for which the age 

control is of primary importance (see 

recommendations in Kucera et al. 2005a). 

 

 

The n=1007 Database 
 

The database herein discussed was built upon 

two of the geo-referenced databases which were 

developed and/ or revised for the MARGO 

exercise (e.g., Kucera et al. 2005a, b). It couples 

1007 points respectively distributed in the North 

Atlantic Ocean (Kucera et al. 2005b, which is 

mainly derived from the one used in Pflauman et 

al. 1996) and in its adjacent sea, namely the 

Mediterranean basin (Hayes et al. 2005) (Figure 1). 

The choice of this coupling was justified by 

the highest options it provides for the selection of 

modern analogues, especially for cores that are 

located in subtropical latitudes surrounding the 

Gibraltar strait. Ambiguous data points were 

excluded from the original MARGO databases by a 

mapping of the biogeographical distribution (under 

the ARCVIEW GIS) of the 38 selected species. 

Incoherent samples were deleted resulting in a final 

set of n=1007 data points. Modern hydrological 

parameters (exclusively sea-surface temperatures, 

namely SST for PF) were requested from the 

World Ocean Atlas (1998) using the “WOA 

sample tool” developed during the MARGO 

project, which allows the extraction at 10 m depths 

of annual SST and seasonal SST (average winter - 

January/February/March, spring - April/May/June, 

summer - July/August/September and fall - 

October/November/December) (Schäfer-Neth and 

Manschke 2002). Here again their coherency 

regarding the WOA ATLAS seasonal SST was 

tested by mapping their distribution with the 

ARCVIEW-GIS (see supplementary information 

online). 

 

 

Figure 1. Geographical distribution of the n=1007 

points (surface sediment samples) included in the North 

Atlantic database. The difference in this set of training 

when compared to the MARGO database (Kucera et al. 

2005b) is related to the inclusion of the Mediterranean 

basin samples (Hayes et al. 2005). On this map are also 

plotted the residual differences (°C) obtained by the 

mathematical difference between the values extracted 

from the WOA ATLAS (with the WOA sample tool, 

Schäfer-Neth and Manschke 2002, http://www.geo.uni-

bremen.de/geomod/staff/csn/woasample.html) and those 

obtained with the MATR_1007PF for the mean ANNUAL 

SST (autorun of the database with the exclusion of the 

tested sample). Contours were drawn with ARCVIEW. 
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The MATR_1007PF Protocol and Its 

Limitations 
 

The MAT, which was run on the basis of the 

North Atlantic PF n= 1007 database (further named 

MATR_1007PF), is a very intuitive tool. It relies on 

several statistical tests and different calculation 

steps (see Guiot & de Vernal 2007 for the complete 

explanation of the protocol) which, as a result of a 

necessity to homogenise and inter-calibrate transfer 

function sensu lato protocols, were lumped under 

the R software (http://www.r-project.org/) within 

the BIOINDIC package developed by J. Guiot 

(https://www.eccorev.fr/ spip.php?article389). The 

MATR_1007PF is run with the ReconstMAT script. 

Quantifications are based on the selection of the 

five best modern analogues existing in the 

database. The selection relies on the calculation of 

dissimilarity indexes directly from relative 

percentages for which no further mathematical 

transformations have been applied. In fact, the root 

square or logarithmic transformations are 

commonly used in MAT for instance for other 

bioindicators, notably when it concerns 

assemblages where the species diversity is higher 

than 50 (i.e. dinocysts, pollen…, e.g., Guiot & de 

Vernal 2007). We will see in section 3 that these 

modifications which contribute to equalize the 

diversity structure (they artificially increase the 

equitability) are not necessary useful for PF 

(except in cases of very low diversity indexes, but 

quantitative methods have no interest for such 

assemblages).  

Past hydrological parameter values are derived 

from a weighted average of the SST values of the 

five best analogues. The maximum weight is given 

for the closest analogue in terms of statistical 

distance / i.e. dissimilarity minimum (Guiot and de 

Vernal 2007). The ReconstMAT script furthermore 

includes the calculation of a threshold regarding 

the distance which prevents calculation in the case 

of poor- or no- analogous situations. The degree of 

confidence of this method allows reconstructing 

seasonal and annual SST with a root mean square 

error (RMSEP) of prediction of maximum 1.3°C 

(Table 1). These low RMSEP values mask internal 

disparity in the transfer function highly dependent 

on its geographical structure. This is illustrated in 

Figures 1 and 2, which compile differences 

obtained by comparing the “true”-ATLAS values 

to the “calculated” (i.e., MAT1007 derived) ones for 

the mean annual SST. This disparity is plotted as a 

mapping of the residual SST (mathematical 

difference) in Figure 1, whereas the Log ratio 

between true and calculated values is displayed in 

Figure 2 along the SSTannual and latitudinal ranges 

covered by the database.  

 

 

Hydro- 

graphical 

parameters 

Annual 

SST 

(°C) 

Winter 

JFM 

SST 

(°C) 

Spring 

AMJ 

SST 

(°C) 

Summer 

JAS 

SST 

(°C) 

Fall     

OND 

SST 

(°C) 

RMSEP 1.1 1.2 1.1 1.3 1.2 

 

Table 1. Prediction error (°C, RMSEP : root mean 

square error of prediction).  

Values are calculated from the residual differences obtained 

by the mathematical difference between the values 

extracted from the WOA ATLAS (with the WOA sample 

tool, Schäfer-Neth and Manschke 2002, 

http://www.geo.uni-

bremen.de/geomod/staff/csn/woasample.html) and those 

obtained with the MATR_1007PF (autorun of the database 

with the exclusion of the tested sample). See also Figure 1. 

 

 

These figures clearly underline the limitation 

of PF transfer functions (MAT in our case) for 

polar basins where is recorded the maximum 

disparity in the calculated (“modeled”) values, 

when compared to the WOA ATLAS ones. This is 

precisely where the diversity of the PF 

assemblages is significantly low, with the taxon 

Neogloboquadrina pachyderma sinistral 

representing between 90 and 100 % of the PF 

assemblage (Ericson 1959; Kucera et al. 2005b; de 

Vernal et al. 2006; Eynaud et al. 2009a, b, 2011). 

This represents one of the most important 

limitations for transfer functions deriving from PF 

and should be considered for further studies. The 

MATR_1007PF protocol has however successfully 

provided several paleoceanographical 

reconstructions that were used in a number of 

papers on this topic (Penaud et al. 2011; Matsuzaki 

et al. 2011; Sánchez Goñi et al. 2012, 2013). They 

document a large range in geographical and 
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temporal case studies, which will be extended and 

discussed in the following sections. 

 

 

 

 

Figure 2. Logarithmic distribution of the ratio between values 

extracted from the WOA ATLAS and those derived from 

MATR_1007PF for the mean ANNUAL SST plotted along the 

latitudinaland mean ANNUAL SST ranges covered by the 

n=1007 database. Values approaching one indicate that 

calculated values with the MATR_1007PF protocol are close to 

those extracted from the WOA ATLAS. The blue vertical 

bands underline the ranges where the samples scattering 

indicate a limited confidence interval. 

 

 

 

TESTING THE APPROACH OVER 

DIFFERENT TIME SCALES AND 

BASINS 
 

Some MATR_1007PF Reconstructions 

along the European Margin: A Focus on 

the Last Glacial Period 
 

Six compiled reconstructions obtained for the 

summer season (the most discussed parameter in 

the literature) from MATR_1007PF are shown in 

Figure 3. The selected cores have been chosen for 

their latitudinal and longitudinal distributions 

within the subtropical to temperate band (Table 2). 

They furthermore benefit from a robust age model 

and a high sedimentation rate for the considered 

time range, namely the last 20 ka (i.e., the last 

deglaciation). In Figure 3 are also plotted, when 

existing, the original reconstructions obtained with 

(comparable but not similar) transfer function 

sensu lato protocols applied to PF (from Sierro et 

al. 2005 on core MD95-2043, Voelker et al. 2006 

on core MD99-2339 and Eynaud et al. 2012 on 

core MD95-2002 respectively), allowing us to test 

the coherency of the results throughout different 

databases and protocols. For cores located close to 

or within the Mediterranean basin, the 

geographical origin of the modern analogues used 

for the calculation is here also indicated. For each 

reconstructed series the low dissimilarity values 

allowed the systematic selection of 5 modern 

analogues, implying that the fossil assemblages 

were “realistic” enough to avoid one of the most 

critical issues related to transfer functions: the 

existence of non-analogous situations.  

The obtained reconstructions provide a 

contrasted picture of the last glacial/interglacial 

transition with a high regional coherency. For 

instance, modern conditions are reached late in the 

Alboran sea, namely after 7.5 ka. This 

phenomenon occurred in this restricted basin with 

the installation of specific hydrological conditions, 

which were primarily forced by the sea-level rise 

and the associated inflow rate from the Atlantic 

waters (e.g., Rohling et al. 1995). This is also 

reflected in the localisation of the modern  
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MD95-2043 36.14 -2.62 1841 18.2 15.1 17.6 21.9 18.2 2 

ODP976 36.20 -4.30 1108 17.8 15.4 17.3 20.6 18.0 2 

MD99-2339 35.89 -7.53 1177 18.5 16.2 17.8 21.0 19.1 4 

SU81-18 37.77 -10.18 3155 17.7 15.4 16.7 20.0 18.6 3 

MD03-2697 42.15 -9.7 2164 15.4 13.2 14.7 17.7 16.0 4 

MD95-2002 47.45 -8.53 2174 13.9 11.4 12.8 17.2 14.0 4 

 

Table 2. Georeferences of the six selected cores including the mean annual and seasonal SST values (°C) over the respective sites 

as extracted from the WOA ATLAS (Schäfer-Neth and Manschke 2002). 

 

 

Figure 3. Latitudinal and basin scale 

compilation of summer SST 

reconstructions as derived from 

MATR_1007PF  during the last 20kyrs. 

Age scales of the selected cores conform 

to the original publications (MD95-2043 

as in Sierro et al. 2005 also compared 

with their original calculations; ODP 976 

as in Combourieu-Nebout et al. 2002; 

MD99-2339 as in Voelker et al. 2006 also 

compared with their original calculations; 

SU81-18 as in Turon et al. 2003; MD03-

2697 as in Sánchez Goñi et al. 2008; 

MD95-2002 as in Eynaud et al. 2012 

compared with their original 

calculations). The stars along the Y-axis 

indicate the modern SST values as 

extracted from WOA. Reconstructions are 

compared to the regional North-Atlantic 

stratotype (sensu Austin and Hibbert 

2012; Austin et al. 2012) of the NGRIP- 

d18O record (GICC05-1950 age scale after 

Svensson et al. 2008). The dotted vertical 

line limits the onset of modern SST stable 

conditions. 
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analogues that are selected in the Mediterranean 

basin only after this major hydrological change 

(during the last glacial and up to 7 ka, all the best 

analogues are found within the North Atlantic). As 

a corollary, it implies that before this change 

calculations done with a limited Mediterranean set 

provide wrong or at least biased values. This could 

justify some revisions regarding the 

reconstructions that were made before within this 

basin, during or even after the MARGO exercises 

(e.g., Kallel et al. 1997; Hayes et al. 2005; 

Essallami et al. 2007; Rouis-Zargouni et al. 2010). 

Along the subtropical to temperate European 

margin, modern conditions were first recorded with 

the Bölling-Allërod (BA) warm pulse, and became 

stabilized after the Younger Dryas (YD) event, 

namely between 11 to 10 ka BP. After this date the 

summer temperatures follow a linear trend with 

some small amplitude changes that are hardly 

connectable from one site to another. The values 

are very close from the modern ones and with, at 

least for the southern sites, a discrete and constant 

overestimation during the whole Holocene period 

that could not be reasonably related to a climatic 

signal considering the error bars in the 

quantifications of our study (±1.3 °C, see Table 1). 

The MD99-2339 site is the only one depicting a 

clear middle Holocene hypsithermal. 

 

Few temperature oscillations marked the 

Holocene period when compared to the late glacial 

during which marked excursions were recorded, 

especially during the Heinrich 1 (e.g., Heinrich 

1988) and Younger Dryas events (HE1 and YD 

respectively). Summer SST dropped with up to 15 

°C when compared to the modern values during 

HE1 for the whole North Atlantic Ocean. This is in 

accordance with the previous works that 

established that nearly freezing conditions, and 

even the development of sea-ice cover (Eynaud et 

al. 2012), characterized these major collapse 

episodes of boreal ice-sheets within the temperate 

North Atlantic Ocean (e.g., Bond et al. 1993; 

Chapman and Maslin 1999). By considering the 

coherency of the obtained reconstructions, the 

exercise made with the multi-core compilation 

demonstrates the robustness of the MATR_1007PF 

method. The confrontation of our results to the 

previous ones obtained on the same cores 

furthermore underlines the exceptional 

reproducibility of the transfer function method 

derived from PF. However, we should keep in 

mind that this response is restricted to one 

organism community (i.e., PF) and therefore it 

provides only a partial view of the ecological 

response to environmental changes. In fact multi-

proxy compilations derived from biogeochemistry 

and/or paleo-ecological techniques as well have 

often challenged the sea-surface character of the 

message empirically (and therefore restrictively) 

considered in Paleoceanography (e.g., Marchal et 

al. 2002; Penaud et al. 2011). This is especially 

true with PF as the representatives of this group are 

related to differential depth habitats (e.g., 

Hemleben et al. 1989). 

 

 

About Regionalism: A Test in the Gulf of 

Cadix  
 

Among the most severe criticisms recurrently 

addressed to MAT derived approaches is the 

question of regionalism (“spatial autocorrelation”, 

see Telford and Birks 2011 and the reply of Guiot 

and de Vernal 2011b). To test this issue with the 

MATR_1007PF method we have taken advantage 

from a regional database compiled by Salgueiro et 

al. (2008) off Iberia (n=131 points after removing 3 

points for which no WOA sampling extraction was 

possible) by recalculating SST reconstructions on 

the basis of our protocol. We therefore generate 

additional reconstructions for core MD99-2339 

(included in the geographical limits of the 

Salgueiro et al. database), calculating SST on the 

basis of their own dataset (data available at 

http://doi.pangaea.de/10.1594/ PANGAEA.743256) 

and also by merging the two databases (n= 1007+ 

131 = 1138 points). These calculations are 

compared with the initial results obtained with the 

MATR_1007PF method (Figure 4). 

The obtained reconstructions with the n=131 

database provide a non-continuous record as many 

fossil samples due to the too large dissimilarity do 
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not find correct analogues in the regional Iberian 

margin set. 

 

 

Figure 4. Illustration of the calculation tests done 

considering the Iberian margin regional database of 

Salgueiro et al (2008). (a): sample per sample “map” of the 

five best analogues selected with their geographical origin 

(color code). Star=modern summer SST as extracted from 

WOA. (b): comparison of the MATR derived results for the 

summer months obtained on core MD99-2339; in red are 

given the reconstructions with the n=1007 database; in 

black, are marked those reconstructed with the n=131 

restricted database of Salgueiro et al. (2008); in purple 

those realized with the enlarged database 

(n=1007+131=1138).  

 

As previously seen for the Mediterranean 

database, this demonstrates again that a too 

geographically restricted set limits the 

reconstructions, especially when hydrological 

conditions were drastically divergent from the 

modern ones (glacial extremes for instance). At the 

opposite pole, the test realized with the enlarged 

dataset (n=1007+13=1138 points) offers a very 

interesting result. In fact, as seen in Figure 4a, no 

marked differences are recorded in absolute SST 

values in comparison with those provided by the 

MATR_1007PF. 

However, when considering the list of the 

selected analogues, a very sharp difference is 

obvious (see Figure 4a) with an especially high 

degree of mixing between the original 1007 

database and the modern samples newly added 

with the Iberian margin dataset. In spite of this 

mixing the comparable SST values demonstrate the 

high stability of the MATR protocol. It specially 

underlines that the geographical structure of the 

database is not so critical if sufficient analogues are 

provided in the modern training set. The 

introduction of a very patchy set of data (Salgueiro 

et al. 2008) did not affect the final quantifications. 

The two reconstructions pointed out in the MD99-

2339 record the beginning of the BA/termination 

of HE1 as displaying highest similarity with the 

Mediterranean assemblages rather than in the 

North Atlantic or regional databases. It suggests a 

peculiar intense warming at this transition and/or 

the transiently installation of hydrological 

conditions in the Gulf of Cadiz, which were 

comparable to those of the modern Mediterranean 

basin. 

 

 

Some MATR_1007PF Reconstructions 

along the European Margin: What about 

Previous Time Windows? 
 

 

This section aims at challenging the 

robustness of the MATR_1007PF approach when 

applied to long term past windows for which 

uniformitarianism principles (e.g., Gould 1965) 

could be questioned (e.g., de Vargas et al. 2001). 

Some already published quantifications on the 

basis of this protocol and covering up to two last 

climatic cycles can be found in the recent papers of 
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Matsuzaki et al. (2011) and Sánchez Goñi et al. 

(2012, 2013). For the present paper we selected 

two cores that allowed a high resolution analysis 

(Figure 5) over the last interglacial complex 

(Marine Isotopic Stage -MIS- 5 and its substages), 

such as the core MD95-2001 (46.8° N, 8.67°E, at a 

3788 m water depth) and MD99-2331 (42.15°N, 

9.68°E, which is the twin core of MD03-2697). 

Core MD95-2001 was retrieved on the Trevelyan 

Escarpment off Brest and PF assemblages were 

analyzed by Morvan (2001, unpublished). The 

Core MD99-2331 PF data were partially published 

by Sánchez Goñi et al. (2008). The age models of 

these two cores conform to the previously 

published ones for the last interglacial interval 

(Eynaud et al. 2007; Sánchez Goñi et al. 2008). 

They were basically tied on the chronological 

framework of existing regional references for this 

period, such as the 
8
O stacks of SPECMAP 

(Martinson et al. 1987) and of LR04 (Lisiecki & 

Raymo 2005) and the high resolution NGRIP SS09 


18

O record (North Greenland Ice Core Project 

members, 2004), which are herein compared to the 

annual SST data obtained from off Iberia by 

Martrat et al. (2007). 

The quantifications obtained over MIS5 were 

all supported by a weighted average of 

systematically five best analogues, therefore with 

no occurrence of a too large dissimilarity between 

the modern and MIS5 assemblages. This indicates 

that at least for the last climatic cycle no major 

changes or innovations were observed in the PF 

biogeographical distribution and populations. The 

MATR_1007PF protocol can therefore been applied 

with no limitation up to 150 ka BP (and even up to 

220 ka after Matsuzaki et al. 2011). The results 

reveal that the summer hydrological conditions are 

comparable or slightly warmer to the present ones 

during the limited portion of the basal MIS5, such 

as the Eemian climatic optima (Sánchez Goñi et al. 

1999). The whole complex recorded mild 

conditions, very close to the modern ones, except 

during cold climatic excursions that progressively 

become more and more severe up to the definitive 

glacial inception of MIS 4 (also coinciding with 

HE 6 around 60 ka). 

 

 

 

Figure 5. (a) Chronostratigraphic references of the 

SPECMAP (Martinson et al. 1987) and LR04 (Lisiecki 

and Raymo 2005) marine 18O stacks plotted along the 

last interglacial complex (MIS 5) compared to: (b) core 

MD95-2001 (46.8° N, 8.67° E), (c) core MD99-2331 

(42.15° N, 9.68° E) summer SSTs obtained with 

MATR_1007PF (stars = modern summer SST as extracted 

from WOA) and (d) high resolution NGRIP SS09 18O 

versus annual SST data obtained by Martrat et al. (2007) 

off the Iberian margin for the same time interval. Grey 

vertical bands underline major cold episodes within MIS 

6 to 4. Blue squares define the high frequency cold events 

as defined by Sánchez Goñi et al. (2008). The ages 

models of the respective cores conform to the previously 

published ones (Eynaud et al. 2007 for core MD95-2001 

and Sánchez Goñi et al. 2008 for core MD99-2331). 

 

This observation is consistently seen also in the 

relative abundances of the polar taxon N. 

pachyderma sinistral, which progressively 

increases to reach monospecific values at the 
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transition with MIS4. The amplitude of the cold 

event detected within MIS5 varied from minus 5 

°C to 10°C. They reached up to 15 °C during 

MIS4/HE6 and the penultimate glacial MIS6. 

These high values are in accordance with those 

obtained for HE1 (Figure 3) and therefore 

typifying the characteristic conditions of these 

major climatic shifts. 

 

 

CONCLUSION 
 

This work compiles paleoceanographical 

(SST) reconstructions obtained with the Modern 

Analog Technique. It is based on the re-analysis of 

planktic foraminifera assemblages of several 

marine sequences covering up to 150 ka and 

distributed along the eastern North Atlantic 

(including the occidental Mediterranean basin) 

with the MATR_1007PF protocol. The obtained sets 

of  

 

SST data shows that the method offers a high 

degree of accuracy, with no major incidence of the 

internal database structure (i.e. geographical  

distribution of the modern analogues) as long as a 

reasonable number of analogues exists in the 

training set. Even if the absolute hydrological 

values derived from past archives are still 

disputable, regarding the arbitrary choice done on 

the variable to reconstruct (i.e., here limited to 

SST), and considering the complex ecology of PF, 

this work demonstrates that past quantifications 

derived from PF could be considered as probably 

“the best” existing ones up to date (at least for the 

investigated region, i.e. the North Atlantic). Taken 

solely, these data however do not represent a 

comprehensive picture of the past hydrology. 

Quantifications should be confronted 

systematically to other proxies on the same record 

whenever possible, or either to proximal or 

regional records, to be validated. With the 

emergence of new analytical techniques, especially 

deriving from geochemical approaches (which are 

often less time consuming than the determination 

of species in a complete assemblage), the recent 

literature often gives greatest credits (when it is not 

a priority) to this kind of innovative results. Our 

study demonstrates that, if not revolutionary, 

classical paleoecological and micropaleontological 

approaches still remain powerful enough to 

represent the backbone of Paleoceanographical 

reconstructions. 
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