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Abstract: Olfaction has a direct influence on behavior and cognitive processes. There are different
neuromodulatory systems in olfactory circuits that control the sensory information flowing through
the rest of the brain. The presence of the cannabinoid type-1 (CB1) receptor, (the main cannabinoid
receptor in the brain), has been shown for more than 20 years in different brain olfactory areas.
However, only over the last decade have we started to know the specific cellular mechanisms that
link cannabinoid signaling to olfactory processing and the control of behavior. In this review, we
aim to summarize and discuss our current knowledge about the presence of CB1 receptors, and the
function of the endocannabinoid system in the regulation of different olfactory brain circuits and
related behaviors.

Keywords: olfaction; endocannabinoids; olfactory epithelium; olfactory bulb; piriform cortex;
CB1 receptor

1. The Endocannabinoid System: A General Overview

Cannabis sativa, also known as marijuana or cannabis, has been used for thousands of years
for its therapeutic and recreational properties. Nowadays, after tobacco and alcohol, cannabis is the
most commonly consumed drug of abuse, with 188 million cannabis users estimated worldwide
in 2017 [1]. The cannabinoid receptors type-1 (CB1) and type-2 (CB2), their endogenous ligands
(endocannabinoids), and the synthetic and degradative enzymes that regulate endocannabinoid
levels support the concept of the endocannabinoid system (ECS) as participating in the regulation of
physiological processes [2]. CB1 and CB2 receptors belong to the superfamily of G-protein-coupled
receptors (GPCRs) that consist of seven transmembrane domains with an extracellular N-terminal and
an intracellular C-terminal tail [3]. At the synaptic level, endocannabinoids can be synthesized, but
not exclusively [4], by post-synaptic intracellular calcium elevations, which can be caused by various
stimuli, including depolarization, the activation of metabotropic acetylcholine, and glutamate receptors,
particularly Gq-coupled receptors (i.e., M1/M3 and mGluR 1/5) [3]. Once produced, endocannabinoids
act on CB1 receptors that are mainly described at pre-synaptic terminals [2,3,5], and other cellular
locations [6].

In neurons, the main effect of CB1 receptor activation is a decrease in neurotransmitter release,
inducing different forms of endocannabinoid-mediated plasticity [3], such as the depolarization-
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induced suppression of inhibition/excitation (DSI/DSE; [7–9]), or the long-term depression of inhibitory/

excitatory synapses [10–14]. CB1 receptors are widely expressed in the central nervous system and
likely represent the most abundant GPCR in the brain [15]. Given its ubiquitous expression in multiple
brain areas, CB1 receptors modulate a variety of functions, from sensory perception to more complex
cognitive processes such as learning and memory [16–18].

2. Role of the Endocannabinoid System in Olfactory Circuits

Known for a long time, one of the predominant subjective effects of cannabis intoxication is the
alteration of sensory perception, including olfactory processes [19]. However, although relatively high
levels of CB1 receptors were described in the 1990s in many olfactory brain areas of rodents [20–23], their
olfactory-related functions only started to be studied during the last decade. Notably, the involvement
of CB1 receptors in specific odor-related processes has been reported in specialized olfactory structures
such as the olfactory epithelium (OE; [24–27]), the main olfactory bulb (MOB; [18,28–34]), and the
piriform cortex (PC; [35–40]), but also in other brain areas processing olfactory information [41–44].
For the sake of clarity in this review, we will focus on describing the role of the ECS, particularly CB1
receptor signaling, in specific main olfactory areas (i.e., OE, MOB, and PC).

3. The Endocannabinoid System in the Olfactory Epithelium

The first hypothesis for the physiological involvement of endocannabinoids in olfactory processes
came from three observations: (1) The olfactory perception was shown to be changed depending on the
feeding state of individuals [45,46], (2) the ECS were proposed to be involved in food intake [18,47], and
(3) the anatomical and functional connectivity between peripheral organs regulating energy balance
and olfactory structures [18,48]. Czesnik, Breunig, and colleagues [24,25] provided the first evidence
that cannabinoids could modulate olfaction. These studies revealed the presence of CB1 receptors
in the olfactory sensory neurons (OSN) of Xenopus laevis and demonstrated that endocannabinoids
modulate odor-evoked responses. Additionally, they found that the production of endocannabinoids
depends on the hunger state of the animal, which is responsible for changes in odor sensitivity activity.
Similarly, CB1 receptors were also found in the OSN of rodents [27]. The CB1 receptor agonists
changed odorant-induced cellular activity, but the authors did not observe olfactory consequences in
the behavior of mutant mice lacking CB1 receptors (CB1-KO; [27]). Despite the species differences,
several divergences appear between these studies. For instance, the first two studies evaluated the
impact of cannabinoids on odor sensitivity by recording the cellular activity of the OSN with calcium
imaging and electrophysiological methods [24,25]. Instead, Hutch and colleagues [27] investigated the
involvement of CB1 receptors in olfactory-mediated learning and memory tasks such as the buried
food test and a habituation/dishabituation paradigm. In addition, CB1-KO mice lack brain specificity
and might be confounded by compensatory mechanisms [49]. Thus, the physiological role of CB1
receptors in the mammalian OE still remains unclear and will need further investigation.

4. The Endocannabinoid System in the Olfactory Bulb

In the mammalian MOB, the ECS was first described as a modulator of GABAergic transmission [28,33].
Pharmacological approaches, combined with in vitro patch-clamp experiments, highlighted that
CB1 receptors modulate the firing pattern of periglomerular (PG) and external tufted cells (eTCs).
Considering that PG cells form synapses with mitral and tufted cells [50], CB1 signaling may indirectly
regulate the main output activity of the MOB neurons. Indeed, the inhibitory inputs of eTCs display
spontaneous DSI [33], and the pharmacological manipulation of CB1 receptor signaling modulates
mitral cell activity, likely through indirect control of inhibitory transmission [34]. These results suggest
that endocannabinoids are capable of controlling mitral/tufted cell activity through the CB1 receptors
on PG cells. Although the authors did not investigate the behavioral impact of these effects, the CB1
receptors’ activation may increase the signal-to-noise ratio and, thus, the overall sensitivity of the
glomerulus to sensory inputs. Moreover, CB1 receptors are present in glutamatergic corticofugal
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fibers (CFF) coming from projection neurons from anterior cortical olfactory areas (including the
anterior olfactory nucleus, AON, and the anterior piriform cortex), and targeting granule cells (GCs)
of the MOB [32]. Consistent with the idea that cannabinoid signaling in the olfactory system might
control the feeding state of the organism, the hypophagic phenotype observed in mice lacking CB1
receptors in their glutamatergic neurons is associated with an increased activity of CFF onto GCs.
Notably, endocannabinoid levels increase in the MOB during fasting, allowing for the dampening of
the excitation of GCs. Given that GCs control mitral cell activity, CB1 receptor activation of CFF induces
the disinhibition of mitral cells. This effect is followed by a fasting-related enhancement in olfactory
sensitivity, which correlates with the amount of food ingested upon refeeding. These results suggest
that the endocannabinoid-mediated regulation of olfactory output information controls olfactory
perception and food intake [32]. Since CB1 receptors have been described as being expressed on CFF
fibers, they may thus regulate all of the downstream synapses of these fibers. This hypothesis was
recently verified in the synapse between the CFF and the so-called deep short axon cells (dSAs; [31]).
Indeed, depolarization of dSAs in the MOB of mice elicits pre-synaptic CB1 receptors’ transient
suppression of excitatory CFF inputs (DSE). In addition, the authors demonstrated that dSAs could
inhibit GCs, thereby suppressing GC to mitral cells inhibition. Interestingly, depending on the CFF
synaptic strength, the CB1 receptor signaling can either control the synapses from dSAs to GCs, or
directly from GCs to mitral cells, suggesting a double dissociation in the control of olfactory bulb
output neurons [31]. However, the behavioral consequences of this bidirectional effect remain to
be elucidated.

5. The Endocannabinoid System in the Piriform Cortex

The PC is a brain area capable of generating epileptiform activity [51]. In other brain structures
such as the hippocampus, CB1 receptors have been shown to protect against seizures [52,53]. Thus,
the anticonvulsant effects of cannabinoids were assessed in PC slices [36]. The authors demonstrated
that CB1 receptor agonists reduce seizures, indicating that CB1 receptor activation is able to control
PC activity [36]. However, there is currently no functional evidence about how the ECS could affect
olfactory processes under pathological conditions such as epilepsy. Furthermore, the ECS in the PC
indirectly affects social behavior [38]. Although it does not affect social interactions per se, local
injections of a CB1 receptor antagonist into the posterior PC (pPC) reversed the impairment of social
sniffing time induced by an activation of dopamine receptors, suggesting that the ECS in the pPC has a
deleterious effect on social behavior when coupled with dopamine activation [38]. Moreover, the PC
is an important area involved in olfactory memory [54]. Considering that the ECS is highly studied
in learning and memory functions [16], other studies investigated its role in PC-dependent olfactory
learning and memory. In the pPC, odor-discrimination training leads to the endocannabinoid-mediated
modification of inhibitory synapses [35]. Indeed, the learning of a complex olfactory rule induces
the activation of CB1 receptors, which in turn enhances GABAergic conductance in post-synaptic
pPC pyramidal neurons, indicating a postsynaptic effect [35]. Despite the possible post-synaptic
CB1 receptors’ localization, or that endocannabinoids can modulate directly postsynaptic GABAergic
receptors [55], further experiments will determine how CB1 receptor activation allows for controlling
GABAergic conductance in the pPC. In the anterior PC (aPC), CB1 receptors were mainly described at
GABAergic synapses, where they modulate inhibitory transmission and plasticity [37,40]. Moreover,
depending on CB1 receptors in the aPC, the retrieval of appetitive, but not aversive, olfactory memory
is associated with a modulation of local inhibitory transmission onto specific principal cells in the
aPC [37]. These data indicate that CB1 receptors in the aPC selectively control olfactory memory
retrieval related to positively motivated behaviors. Thus, it will be crucial to determine if cannabinoid
signaling controls functional connection between the PC and brain regions controlling affective states
such as the orbitofrontal cortex, the nucleus accumbens or amygdala. In fact, there is compelling
literature demonstrating the participation of these brain areas in olfactory processes [56–58]. In line
with this idea, recent observations in humans highlight that the state-dependent enhancement of
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endocannabinoid levels changes dietary choices toward high-energy food items. Interestingly, this
phenomenon was related to an increase in odor responses in the PC [39].

6. Conclusions

Growing evidence has revealed that the ECS modulates direct olfactory processes such as odor
sensitivity or olfactory learning and memory. Across different brain olfactory areas, the ECS appears to
play an essential role in the control of synaptic transmission and plasticity, but also in the regulation of
vital behaviors that depend on olfaction, such as the feeding state of the individual (Figure 1; [59]).
However, the physiological impact of the endocannabinoid-mediated plasticity, the contribution of
CB1 receptors during other olfactory-dependent behaviors, and the contribution of each olfactory brain
region (e.g., OE, MOB, PC) during specific behaviors remain to be elucidated. Furthermore, the role
of other components of the ECS in olfactory processes is less clear, such as the role of CB2 receptors,
which are described to be present in the OE [27]. This highlights the importance of continuing with this
exciting line of research. To the same extent, there is a lack of direct evidence about the participation of
other olfactory-related structures in cannabinoid-mediated effects, for example, the olfactory tubercle
(OT). In fact, the OT is a target of different hormones and local modulators regulating feeding behavior
and motivation [48]. Thus, it is reasonable to think about a potential cross-link between cannabinoid
signaling and hormonal regulation in olfactory related behaviors taking place in the OT.

Besides the studies regarding the functions of the ECS in primary olfactory structures, it is
important to take into account that CB1 receptors are present and modulate associated olfactory areas
(i.e., amygdala, orbitofrontal cortex, hippocampus or periaqueductal gray; [41–44]), suggesting that
olfactory processing that involves the control of different brain structures might also be modulated by
the ECS. In humans, the main psychoactive compound of cannabis has been shown to induce an increase
in olfactory perception and disturbs odor discrimination and pleasantness [60–62]. Furthermore,
a recent study shows that cannabis consumption could also affect other neurotransmitter systems in
olfactory structures [63]. One of the main characteristics of the CB1 receptor’s activity is its bimodal
activity: the cell-type of where it is expressed can lead to opposite effects (e.g., CB1 in GABAergic cells
promotes satiety while in glutamatergic cells it induces hunger) [64]. This bimodal action could also be
present in olfactory processes considering the pattern of expression of the CB1 receptors, but future
research is needed to clarify this crucial point.

The interconnectivity between olfactory areas, together with the tight ECS-control of various types
of cells and subcellular locations, makes the determination of the different roles of CB1 receptors in
the olfactory system very complex and challenging. A better understanding of such interactions will
result not only in a significant advance for neuroscience, but could also lead to novel human-based
studies targeting specific populations. Interestingly, alterations of ECS functioning have been shown to
contribute to the development of neurological and neuropsychiatric disorders in which loss of smell
represents the early stages of the disease [65–68]. All of this information could provide the rationale to
propose a combined use of olfactory manipulations with ECS-based pharmacotherapy to potentially
treat pathological conditions.
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