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Abstract 

A mercury-resistant bacterial strain has been isolated from a rock of the Idrija mercury 

mine in Slovenia. The rock had 19 g carbon and 2952 mg mercury (Hg) per kg. Mass 

spectrometry and DNA sequencing showed that the bacterium belongs to the Pseudomonas 

genus. It is called Pseudomonas idrijaensis. This bacterial strain is sensitive to methylmercury 

(MeHg) like the reference P. aeruginosa strain PAO1, and is resistant to divalent mercury 

(Hg(II)) in contrast to PAO1. This difference could be attributed to the presence of the mer 

operon yet deprived of the merB gene encoding the organomercurial lyase, on the basis of 

whole genome sequencing. The P. idrijaensis mer operon displays the RTPCADE 

organization and is contained in the Tn5041 transposon. This transposon identified here 

occurs in other Gram-negative Hg-resistant strains isolated from mercury ores, aquatic 

systems and soils, including Pseudomonas strains from 15,000 to 40,000 years old Siberian 

permafrost. When P. idrijaensis was exposed to mercury chloride, two intracellular Hg 

species were identified by high energy-resolution XANES spectroscopy, a dithiolate Hg(SR)2 

and a tetrathiolate Hg(SR)4 complex. P. idrijaensis had a much higher [Hg(SR)2]/[Hg(SR)4] 

molar ratio than bacteria lacking the mer operon when exposed to 4 µg Hg2+/L - resulting in 

an intracellular accumulation of 4.3 µg Hg/g dw. A higher amount of the Hg(SR)2 complex 

provides a chemical signature for the expression of the dicysteinate Mer proteins in response 

to mercury toxicity. 
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Highlights: 

1. Newly discovered bacterium Pseudomonas idrijaensis from a rock of the Idrija mine. 

2. The rock sample was rich in quartz and mica and contained 2952 mg of mercury per kg. 

3. Pseudomonas idrijaensis is resistant to 80 µM of mercury chloride (16 mg Hg/L). 

4. P. idrijaensis is endowed with the mer operon, contained in the transposon Tn5041. 

5. P. idrijaensis accumulates bis and tetrathiolate species: Hg(SR)2 and Hg(SR)4. 

 

 

 

 

 

Graphical abstract: 
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1. Introduction 

Although mercury deposits are globally distributed in 26 mercury mineral belts, nearly 

three quarters of the total world’s production has originated from just five mercury belts 

(Rytuba, 2003). Almadén, the most important mercury belt comprising 11 mercury deposits in 

central Spain, has produced over one-third of the world’s mercury. The second largest 

mercury mine in the world was Idrija, Slovenia. Idrija is located about 50 km west of the 

Slovenian capital Ljubljana. The mine is 1500 m long and 300 to 600 m wide and extends 

below the surface of the Idrija valley in the NW – SE direction. It has produced more than 

12.7 Mt of ore with 145,000 t Hg (average content of 1.13 % Hg) since 1490 (Mlakar, 1974). 

The production of mercury stopped in 1988 and the mine finally closed in 1995. Idrija still 

contains 10 % of the world’s known mercury reserves (Brinck and van Wambeke, 1975). 

Idrija was considered for centuries to be the center of scientific and technological progress in 

the region. Mining operations in more than 150 orebodies extended vertically over 360 m (+ 

330 to - 33 m) on fifteen levels (Lavrič and Spangenberg, 2003). Ore minerals are cinnabar, 

metacinnabar, native mercury, pyrite and scarce barite (Palinkaš et al., 2008). The host rocks 

and ore itself contain organic matter as disseminated kerogen, black solid hydrothermal 

bitumen, and greenish idrialite, a complex mixture of polycyclic aromatic hydrocarbons 

containing nitrogen and sulphur-bearing compounds (Lavrič and Spangenberg, 2001). Half a 

millennium of Hg production has resulted in elevated mercury content in all environmental 

compartments (Gosar et al., 2016). The Soca River (Isonzo River in Italy) and its tributary, 

the Idrija River, have drained for centuries the Hg-enriched deposits of the Idrija mine, 

resulting in trapping of Hg in the sediments of the Gulf of Trieste, that in turn constitute a net 

source of MeHg (Faganeli et al., 2003). On the banks of the Idrija River, the total Hg and 

MeHg concentrations in soils are ranging from 0.25 to 1650 mg/kg and not detected to 0.44 

mg/kg, respectively (Tomiyasu et al., 2017). Hg levels in foodstuffs from the Idrija mine area 
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were higher compared to those in food from non-contaminated areas (Miklavčič et al., 2013). 

Retired Idrija mine workers and Idrija residents occupationally unexposed contained much 

higher Hg concentrations in their tissues (sampled by autopsy) than control individuals 

(Falnoga et al., 2000). It was shown that the long-term occupational exposure to Hg endured 

by the Idrija mine workers caused renal dysfunction (Franko et al., 2005). In 2012, Almadén 

and Idrija were included to the Mercury World Heritage list of the UNESCO. Total Hg 

concentration in contaminated soils has been reported to vary between 8.4 and 415 mg/kg 

(Kocman et al., 2004) and between 0.3 to 973 mg/kg (Gosar et al., 2006). 

Hg reduces the diversity of bacterial communities in soil, and this decrease is directly 

proportional to the Hg concentration in soil (Rasmussen et al., 2000). To survive such a 

hostile environment bacteria are endowed with the mer operon. This operon provides bacterial 

resistance to inorganic and organic Hg through the action of the mercuric reductase encoding 

merA gene and the organomercurial lyase encoding merB gene (Barkay et al., 2003; Mathema 

et al., 2011). Genes of the mer operon (merA and merB) have been previously detected in 

water samples downstream of the mine, not upstream (Hines, 2000). The Hg-resistant 

bacterium Acinetobacter idrijaensis has been isolated from a soil on the Idrija site. It contains 

in its genome the merB, merA, merP, merT, and merR genes (Campos-Guillén et al., 2014). 

This strain is able to grow in the presence of high concentrations of HgCl2 (200 mg/L, 737 

µM) and catalyzes the volatilization of Hg (merA gene). 

Here, we document a new bacterial species named Pseudomonas idrijaensis. It has been 

recovered from a rock of the Idrija mine situated approximately 104 m below the surface and 

containing as much as 2952 mg Hg /kg. We show that this bacterial strain can thrive in such a 

toxic environment because it contains the mer operon in its genome. Another goal of the 

present study was to address the question related to the chemical forms of the Hg atoms 



6	
	

within the bacterial cells after exposure to inorganic Hg and the possible influence of the mer 

operon on these chemical forms. 

 

2. Materials and methods 

2.1. Sampling and characterization of the rock 

A piece of black shale/siltstone from the Upper Ladinian formation was sampled 

aseptically in April 2017 at the third mine level, 110 m below the entrance to Borba Shaft 

situated 226 m above sea level (Figure S1). The rock was put in a sterile glass bottle and 

transferred to the laboratory within 4 h. We chose this rock because it contained both native 

elemental mercury and organic matter. The air temperature in mine was 13 °C and the air 

humidity 84 % at the time of sampling. 

The chemical composition of the bulk sample was determined by the ACME Analytical 

Laboratory, Canada. Major oxides were determined by ICP-MS  after fusion in lithium borate 

and digestion in dilute nitric acid (Table 1). Aqua Regia digestion and ICP-ES/ICP-MS 

analysis were used for selected elements (As to Zn in Table 2).  Carbon and sulfur were 

determined using a LECO analyzer. The mineral composition was determined by X-ray 

powder diffraction (XRD) using a Philips diffractometer (graphite monochromator, CuKα 

radiation, proportional counter). The mineral phases were identified using the Powder 

Diffraction File (1996) data system and the Panalytical XPert HighScore (v. 1.0d) program 

package. Phyllosilicates were identified using published methods (Moore & Reynolds, 1989). 

Semi-quantitative estimates of minerals were obtained from measurements of the relative 

peak intensities. Relative abundances are presented with Xs (Table S1). The pH value of the 

rock sample was determined after dispersion of its powder (1:2.5) in distilled water.  

 

2.2. Isolation and characterization of Pseudomonas idrijaensis 
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Ten grams of rock from the Idrija mine were crushed in a mortar and the powder 

suspended in peptone water. The suspension was concentrated on sterile membrane filters 

with 0.45 µm pore size and placed on Nutrient Agar (Biolife). Plates were incubated 

aerobically at 22°C for 72h, after which the growth of colonies was checked. Only one 

morphological type of colony was grown. It was recultivated in pure culture. The isolate was 

characterized initially by routine bacteriological techniques. 

Before whole genome sequencing the isolated bacterium was identified by matrix-

assisted laser desorption ionization-time of flight mass spectrometry - MALDI-TOF MS, as 

described in the Supporting Information (SI, paragraph 1).   

 

2.3. Determination of mercury chloride minimum inhibitory concentration (MIC) and 

resistance tests 

The MICs values to mercury chloride exposure were determined for the P. idrijaensis and 

P. aeruginosa PAO1 strains. The PAO1 strain is a reference strain known to be sensitive to 

mercury. Bacterial cultures were grown overnight in Luria-Bertani (LB) medium and diluted 

to an OD600 of 0.01. Then 2 ml of the diluted overnight culture were dispensed in 10 ml 

plastic tubes containing 50 µl of a blend made up with water and a stock solution of HgCl2 in 

order to reach final concentrations between 0 and 100 µM HgCl2. The stock solution of HgCl2 

was prepared at a concentration of 20 mM (4 g/L). Each final concentration was assayed in 

triplicate for each bacterial species. After 16 h of incubation at 37 °C, cell growth was 

monitored by spectrometry (absorbance at 600 nm) and MICs values were registered. 

Resistance tests to HgCl2 and monomethylmercury chloride (MeHgCl) were carried out 

at the surface of agar-containing LB medium. 50 µl bacterial cultures in overnight LB 

medium were spread over plastic Petri dishes containing 15 ml agar-jellified LB medium. 15, 

30, 150, and 300 µg of Hg from 4 and 40 g/L HgCl2 and from 5 and 50 g/L MeHgCl stock 
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solutions were spiked at the center of the Petri dishes and the boxes incubated at 37°C for 20 

h. The same assay was repeated at 15°C for 48 h. The growth inhibition was read as the 

diameter of the zone of inhibition. 

 

2.4. Genomic DNA extraction 

From a fresh streak of P. idrijaensis on an agar-jellified LB medium, 6 ml of liquid LB 

medium were inoculated and grown overnight at 37°C. The bacterial genomic extraction 

followed a published recipe (Wilson, 2001). Briefly, the bacteria were lysed with SDS and 

proteinase K, and the genomic DNA treated with CTAB/NaCl, then extracted with 

chloroform/isoamylic alcohol (24:1) and afterward with phenol/chloroform/isoamylic alcohol 

(25:24:1). The genomic DNA was precipitated with 0.6 volume of isopropanol, and after 

centrifugation washed with 70 % ethanol, then dried. The genomic DNA was dissolved in 10 

mM Tris, 1 mM EDTA (TE buffer pH 8.0). After quantification of its concentration by UV 

spectrometry at 260 nm (NanoDrop 2000 apparatus, Thermo Fisher Scientific), the genomic 

DNA was diluted in TE to a concentration of 0.1 mg/mL. 

 

2.5. Whole genome sequencing 

The P. idrijaensis genome has been sequenced by the Genome Scan company (Leiden, 

The Netherlands) using Illumina next generation sequencing technology (Illumina Hiseq 

4000). Data were assembled with Spades v3.11.1. 

 

2.6. Exposure to HgCl2 for XANES spectroscopy 

From a fresh streak of P. idrijaensis on an agar-jellified LB medium, 3 ml of liquid LB 

medium were inoculated and grown overnight at 37°C. Then 50 ml of LB were inoculated 

with that culture and grown at 37°C for 8 h. With this starting culture, 2 L of LB were 
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inoculated and grown overnight at 37°C. The resulting turbidity was 0.96 at 600 nm, 

corresponding to 0.288 g biomass (one unit of OD600 corresponds to 0.3 g/L bacteria). The 2 

L culture was split in two 1 L bottles and centrifuged for 10 min at 5000 rpm in a JLA8.1 

rotor (Beckman-Coulter Avanti JXN-26 centrifuge). Each cell centrifugate was washed with 

250 ml of sterile minimally complexing medium (MCM buffer). The composition of the 

MCM buffer was slightly modified from Dahl et al. (2011): 20 mM 3-(N-morpholino)propane 

sulfonic acid (MOPS buffer), 0.41 mM MgCl2, 6 mM (NH4)2SO4, and 10 mM glucose. Each 

cell pellet was resuspended in 500 ml of MCM and spiked with HgCl2 from a 20 mg/L HgCl2 

stock solution. 100 µl were added to one cell batch and 1 ml to the other batch yielding 

nominal concentrations of 4 and 40 µg Hg/L, respectively (19.9 and 199 nM). The two 

cultures were incubated at 37°C for 195 min, then each culture was split in two and 

centrifuged for 10 min at 5000 rpm in a JLA8.1 rotor. Two cell pellets (one exposed to 4 and 

the other to 40 µg Hg/L) from split 1 were used to analyze mercury speciation in whole 

bacterial cells (Tot fraction). These cell pellets were washed with 45 ml of MCM and 

centrifuged in 50 ml Falcon tubes at 4500 rpm for 10 min (in swinging buckets n° 8172, using 

the centrifuge Heraeus Labofuge 400R, Thermo Scientific). The two remaining other cell 

pellets (one exposed to 4 and the other to 40 µg Hg/L) were used to analyze mercury 

speciation in the intracellular bacterial compartment (Intra fraction). To remove mercury from 

the cell membrane and cell wall without compromising the cytoplasmic membrane integrity, a 

two-step washing procedure was used (Thomas & Gaillard, 2017). Cell pellets were 

resuspended in 200 mL of 50 mM EDTA and 100 mM oxalate solution (pH = 7.5) and after 

10 min of reaction were centrifuged for 10 min at 5000 rpm in a JLA8.1 rotor. The 

centrifugates were resuspended in 50 mL of a 10 mM reduced glutathione and 3 mM 

ascorbate solution (pH = 7). After 5 min of reaction, the suspensions were centrifuged in 50 

ml Falcon tubes at 4500 rpm for 10 min, and the cells washed with 45 ml MCM then 
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centrifuged in 50 ml Falcon tubes at 4500 rpm for 10 min. The four cell preparations were 

lyophilized after 1 h of storage at -80°C. The four final bacterial biomasses weighed about 

250 mg.  

 

2.7. Measure of Hg concentration 

Mercury in the four prepartions was quantified with a DMA-80 mercury analyzer 

(Milestone Dual-cell). The detection limit was 0.003 ng Hg and accuracy was confirmed by 

analysis of the IAEA-436 reference from the International Atomic Energy Agency. The 

recommended value is 4.19 ± 0.36 mg kg-1 d.w. and the determined value was 3.98 ± 0.13 mg 

Hg kg-1 dry weight (n = 21). 

 
2.8. XANES identification of the mercury species in P. idrijaensis exposed to HgCl2 

Mercury L3-edge high energy-resolution XANES (HR-XANES) spectra were measured 

at 10-15 K with high-reflectivity analyzer crystals (Rovezzi et al., 2017) on beamline ID26 at 

the European Synchrotron Radiation Facility (ESRF). Data were analyzed against a large 

database of spectra for mercury minerals (α-HgS, β-HgS, β-HgSNP), Hg(II) complexes in 

natural organic matter, and Hg(II) and methylmercury (MeHg) model complexes with thiolate 

ligands (Manceau et al., 2015a, 2015b, 2016, 2018, 2019; Bourdineaud et al., 2019). All 

reference spectra were considered as a basis for identification, but only diagnostic spectra are 

discussed herein. 

The proportions of the Hg species were evaluated using least-squares fitting (LSF) of the 

experimental spectra with linear combinations of the component spectra. The regression 

analysis was performed by minimizing the normalized sum-squared residual NSS= Σ[(yexp-

yfit)2]/Σ(yexp
2). The precision of the percentage of a fit component was estimated to be equal to 

the variation of its optimal value when the fit was degraded by 20% (i.e., 20% increase of 

NSS). 
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3. Results 

3.1. Characterization of the rock 

The pH value of the rock powder was 3.67. Quartz and mica are the main constituents 

(Table S1), in agreement with chemical analysis (Tables 1 and 2). They are followed by 

kaolinite and gypsum. Pyrite, goethite and rozenite are minor (Table S1). Goethite, rozenite 

and gypsum are weathering products of pyrite. No mercury-bearing phases such as cinnabar 

and metacinnabar were identified in the sample. Yet, this rock contains a high level of 

mercury, 2952 mg/kg, and several other toxic metals and metalloids at a concentration above 

10 mg/kg: As, Mo, Pb, Sb, U, and V (Table 2). 

 

3.2. Characterization of P. idrijaensis 

The bacterial isolate recovered from the rock possesses the following characteristics: 

Gram-negative rod, oxidase and catalase positive, no reaction on the Kligler Iron Agar. The 

MALDI-TOF MS identification yielded 10 consecutive score values form 1.198 to 1.462 for 

Pseudomonas spp (Table S2). The findings indicate reliable identification of the genus 

Pseudomonas, but unsuccessful species identification. The isolate proved to be sensitive to all 

tested antibiotics (Table 3). 

Over the course of the search for the mer operon genes and before processing to the 

whole genome sequencing, a 2278 bp fragment was amplified using the R1 and A5 primers 

targeting the merR and merA genes, respectively (SI, paragraph 2). After cloning and 

sequencing, this fragment appeared to be unrelated to the mer operon because the R1 probe 

had hybridized to both extremities of the amplified fragment. The closest sequence retrieved 

from a blast inquiry of GenBank was that of the formate dehydrogenase α subunit of 

Pseudomonas alkylphenolica, strain KL28 (GenBank accession number CP009048) (Mulet et 
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al., 2015). The two DNA sequences were identical at 94 %.  After whole genome sequencing 

the P. idrijaensis fdoG2 gene proved to determine the synthesis of an 808 residues protein 

best matching with its P. alkylphenolica counterpart with a 97.6 % identity. These genetic 

data confirm the mass spectrometry identification of Pseudomonas spp. Due to highly 

repetitive sequences, part of the P. idrijaensis genome could not be sequenced and that part 

included the 16S rRNA genes. Therefore, the classical identification through 16S rRNA 

sequence comparisons could not be performed.  

 

3.3. Resistance of P. idrijaensis to mercury chloride and sensitivity to methylmercury chloride 

After 16 h of incubation in liquid LB medium at 37 °C, the highest concentrations of 

HgCl2 for which no impact on cell growth was observed were 5 µM for P. aeruginosa PAO1 

and 80 µM for P. idrijaensis. The MICs of HgCl2 were 10 µM for PAO1 and 90 µM for P. 

idrijaensis.  The growth surfaces were three- to six-times less inhibited than those of PAO1 

depending on the amount of Hg(II) (Table 4). Thus, P. idrijaensis is clearly resistant to 

Hg(II). However, the two strains featured the same sensitivity to methylmercury chloride 

(Table 4). Results were independent of the temperature of growth (37 and 15 °C). 

 

3.4. Identification of the mer operon genes in P. idrijaensis 

The resistance tests suggested that the P. idrijaensis strain harbored at least the merR, 

merP, merT and merA genes encoding the mercuric reductase in response to Hg(II) exposure, 

whereas merB encoding the organomercurial lyase was absent. Before processing to the 

whole genome sequencing we first obtained PCR evidences of the presence of the mer operon 

within the bacterium’s genome (SI, paragraph 3 and Figure S2). The amplified fragments 

revealed that the organization of the mer operon was RTPCA, with merR transcribed in 

opposite direction relative to merTPCA (Fig. S2). 
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The whole genome sequencing of P. idrijaensis confirmed the existence of a mer operon 

with the genes organization deduced from PCR analysis. However, it also contains the merD 

and merE genes (Fig. 1). The mer operon is contained within the Tn5041 transposon. A blast 

of scaffold 5 from P. idrijaensis matched the Tn5041 sequence from a Pseudomonas species 

isolated from the soil of the Khaidarkan mercury mine, Kirghizia, Central Asia (Kholodii et 

al., 1997). Out of 14907 nucleotides composing the transposon, only 7 did not co-occur in the 

two Pseudomonas species. Their locations in the Tn5041sequence are shown with asterisks in 

Fig. 1, along with some remarkable genomic characteristics of this sequence. The extended 

organization of the mer operon is RTPCAYDE with an open reading frame orfY intercalated 

between the merA and merD genes. The function of the hypothetical protein encoded by orfY 

is unknown. The transcriptional regulatory signals involved in the mer genes expression are 

present and intact. They lie within the intergenic region between merR and merT. There is a 

potential binding site for MerR repressor, ccgtacatgactacgg, with its inverted repeats 

(underlined), and there are – 35 and – 10 signals allowing transcription of merTPCAYDE in 

one direction and those for the merR gene transcription in the opposite direction. Noteworthy 

is the existence of a second merR gene, called merR2, located 51 nucleotides downstream 

from the right arm of the Tn5041 transposon materialized by the terminal inverted repeat 

(TIR) (Fig. 1). The encoded protein is 90 % identical to a MerR family of transcriptional 

regulators contained in the genome of Pseudomonas sp. ERMR1:2, a strain isolated in India, 

East Rathong glacier, West Sikkim (protein accession number: PAM82489; nucleotidic 

accession number: NKJI01000010). The MerR2 protein contains only one cysteine residue 

versus 4 for the genuine MerR regulator. The function of MerR2 as a metal regulator has not 

been proven yet. 

 

3.5. Mercury speciation after exposure to mercury chloride 
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The dry weight Hg concentrations of the bacterial masses analyzed by HR-XANES were 

[Pi-4-Tot] = 6.7 ± 0.2 µg Hg/g and [Pi-4-Intra] = 4.3 ± 0.2 µg Hg/g for the total and 

intracellular preparations exposed to 4 µg Hg/g, and [Pi-40-Tot] = 61 ± 1 µg Hg/g and [Pi-40-

Intra] = 42 ± 4 µg Hg/g for those exposed to 40 µg Hg/g. The four HR-XANES spectra 

feature a near-edge peak at 12279.3 eV (indicator region “A” in Fig. 2a) characteristic of 

linear dithiolate complex (Hg(SR)2) (Manceau et al., 2019). The straighter the RS-Hg-SR 

angle, the sharper is this peak. The trailing spectral edge of Pi-4-Intra is shifted to lower 

energy in the 12320-12340 eV interval (indicator region “B”). The shift is indicative of longer 

Hg-S bond distance and means that higher coordination complex, such as Hg(SR)3 and 

Hg(SR)4, coexists with the main Hg(SR)2 complex (Fig. 2b). This Hg coordination effect, 

described previously with a comparison of the Hg(Cys)2, Hg(D-penicillamin)3, and Hg(Cys)4 

HR-XANES spectra (Manceau et al., 2019), is explained physically by the Natoli rule 

(Bianconi et al., 1983). The distinctive difference of Pi-4-Intra is better seen in its comparison 

with Pi-4-Tot (Fig. 2c). The shift in energy observed in region B is accompanied by a 

decrease in intensity of the near-edge peak in region A. This is because the RS-Hg-SR angles 

of the three-coordinate or four-coordinate complexes present in Pi-4-Intra and detected in 

region B are not linear (Fig. 2b). The coordination structures of Hg in Pi-4-Tot and Pi-4-Intra 

are examined in more detail below. 

In Pi-4-Tot, Hg(II) is coordinated linearly to two thiolate ligands (Fig. 2c). The RS-Hg-SR 

bond axis from a Hg(SR)2 complex is perfectly straight only when the Hg coordination is 

strictly two. The proximity to Hg atoms of oxygen and nitrogen donors from typically 

carbonyl and amine groups bends the RS-Hg-SR angle (Fig. 3a). On the HR-XANES spectra, 

this is reflected phenomenologically in a decrease of the near-edge peak intensity or 

sharpness, similarly to the bonding of a third (Hg(SR)3) and fourth (Hg(SR)4) thiol, but the 

effect here is more subtle because oxygen and nitrogen are weaker ligands. Moreover, the 
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attenuation of the near edge peak occurs without modification of region B because the 

variation of the RS-Hg-SR angle caused by O/N donors does not change the Hg-S distance, in 

contrast to the addition of a third (Hg(SR)3) and fourth (Hg(SR)4) sulfur ligand (Fig. 2b). The 

effect of secondary Hg….O/N interactions on HR-XANES is illustrated in Fig. 3b-d with the 

Hg[SR]2, the Hg[SR+O]2, and the Hg[SR+N]2 coordinations from the Hg(Cys)2 pH 3, 

Hg(GSH)2 pH 7.5, and Hg(Cys)2 pH 11.5 references (Bourdineaud et al., 2019). Pi-4-Tot has 

a near-edge intensity intermediate between those of the Hg[SR]2 and the Hg[SR+O/N]2 

coordinations, which suggests that Hg is secondarily bonded to one O or N ligand on average. 

This bonding environment is a signature for biologic matter for it is not detected in natural 

organic matter (Manceau et al. 2015a).  

Regarding Pi-4-Intra, the shift in energy of region B (Fig. 2c) has been observed previously in 

fish exposed to Hg(II)-doped dissolved organic matter (DOM) (Fig. 2a) (Bourdineaud et al., 

2019): 84 ± 8% of the Hg in fish is two-coordinate (Hg(SR)2) and 16 ± 8% is four-coordinate 

(Hg(SR)4). A linear fit of Pi-4-Tot and Hg(Cys)4 to Pi-4-Intra shows that the tetrathiolate 

species amounts to 13 ± 6 at%, or 4.3 x 0.13 = 0.6 µg Hg/g, inside the bacteria (Fig. 4b). The 

bacterium and fish spectra differ, however, in region A, the Pi-4-Intra near-edge being more 

intense than the near-edge of the fish spectrum. This difference was examined further by 

measuring the spectra of Escherichia coli and Bacillus subtilis exposed to 4 µg Hg/L. The two 

spectra were statistically identical, therefore averaged to obtain one spectrum representing 

bacteria with no mer operon. This spectrum is also distinctive from Pi-4-Intra in region A 

(Fig. 4c). The Pi-4-Intra spectrum was best-fit as a linear combination of 43% of the E. coli-B. 

subtilis spectrum plus 56% of the Hg(Cys)2 spectrum (± 6 at%) (Fig. 4d). Thus, higher 

amounts of the mercury dithiolate species distinguishe P. idrijaensis equipped with the mer 

operon. The two Hg(SR)3 references from our database (Manceau et al., 2019) were both 

unsuitable models. 
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4. Discussion 

The rock sample contains four times less Hg (2952 mg/kg) than the Idrija deposit on 

average (Mlakar, 1974), and almost seventeen times less than the Almadén mine on average 

(5%, Higueras et al., 2011). The Hg content of 2952 mg/kg is, however, two times higher than 

the highest Hg content of 1650 mg/kg reported in soil near the Idrija mine (Tomiyasu et al., 

2017). 

Comparison of the amounts of Hg added to the living bacteria and measured in the biomass 

after 195 min exposure shows that bacteria took up almost all the added Hg and volatilized 

little Hg. In the 40 µg Hg/L experiment, 0.288 g biomass was exposed to 20 µg Hg(II) in 500 

ml giving an initial Hg concentration equal to 69 µg Hg/g bacteria dw. The initial Hg 

concentration was 6.9 µg Hg/g bacteria dw in the 4 µg Hg/L experiment. At the end of the 

experiment, [Pi-40-Tot] = 61 ± 1 µg Hg/g dw and [Pi-4-Tot] = 6.7 ± 0.2 µg Hg/g dw. Thus, 

bacteria sorbed and retained 89% and 97% of total Hg in the exposure medium. Furthermore, 

comparison of total and intracellular Hg concentrations shows that two thirds of the Hg 

diffused into the bacterial cell. Thus, P. idrijaensis efficiently uptakes Hg. 1012 dry bacteria 

weigh 0.3 g, corresponding to 3.33 x 1012 bacteria/g dw. After exposure to 40 µg Hg/L, 42 µg 

Hg/g inside the cells represent (42 x 10-6 x 6 x 1023) / (200.6 x 3.33 x 1012) = 37.8 x 103 atoms 

of Hg/bacterial cell. In turn, knowing the volume of a bacterial cell, 1.67 µm3 during the 

exponential phase of growth in a rich medium (Kubitschek and Friske, 1986), we can 

calculate an internal Hg concentration of (37.8 x 103) / (6 x 1023 x 1.67 x 10-15) = 37.7 µM, 

resulting in a bioaccumulation factor of 189. After exposure to 4 µg Hg/L, 4.3 µg Hg/g inside 

the cells represent 3.9 x 103 atoms of Hg/bacterial cell, making 3.9 µM Hg, therefore a 

bioaccumulation factor of 196. Such high bioaccumulation factors likely result from the 

intervening action of the three transporters MerC, MerE and MerT. 
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A sharper near-edge peak of the HR-XANES spectrum distinguishes P. idrijaensis 

equipped with the mer operon. This feature indicates a higher content of the linear 

coordination of the Hg atom. The three-coordinate Hg-MerR complex induces expression of 

genes encoding for a series of membrane-bound proteins (MerT, MerC, MerE, MerF, MerH) 

and the periplasmic protein MerP, which coordinate Hg(II) linearly (MerT, MerC, MerF, 

MerP; Nascimento and Chartone-Souza, 2003; Serre et al., 2004; Silver and Hobman, 2006; 

Steele and Opella, 1997; Wilson et al., 2000; Sahlman et al., 1997), or are assumed to do so 

(MerE and MerH; Kiyono et al., 2009; Schué et al., 2009). Therefore, the enhanced near-edge 

structure of P. idrijaensis, explained by a richer content in Hg dithiolate complex, is probably 

a signature for the mer operon. Consistent with this hypothesis, the least-squares fitting of Pi-

4-Intra with the E. coli + B. subtilis reference spectrum suggests that 57 % of the Hg is bound 

to a dicysteine Mer protein (Fig. 4d). This molecular form of mercury, induced by the mer 

operon, could be viewed as a detoxification mechanism of its own. 

Divalent mercury is reduced to gaseous Hg(0) by the action of the homodimeric mercuric 

reductase MerA (Fox and Walsch, 1982; Schiering et al., 1991; Hamlett et al., 1992). The 

coordination of Hg(II) in each monomer is two-coordinate, and its transfer to the catalytic 

active site occurs via a T-shape (SR2+1) intermediate complex (Lian et al., 2014). Figure 4e 

shows that Hg(0) has a distinct HR-XANES spectrum characterized by intense Hg-Hg 

oscillations in the top-edge region. This species is clearly absent in Pi-4-Intra. 

The nature of the intracellular four-coordinate species is uncertain. The sulfur ligand can 

be thiolate, as in metalloprotein Hg(SR)4 complex and in Hgx(SR)y metallothionein cluster 

(Manceau et al., 2019), or inorganic sulfide, as in β-HgS (Thomas and Gaillard, 2017; 

Thomas et al., 2018; Manceau et al., 2018). The second hypothesis was tested by exposing P. 

idrijaensis to 10 times as much Hg (i.e., 40 µg Hg/L) as Pi-4-Intra to see if more β-HgS 

precipitated. The Pi-40-Intra spectrum has a trailing edge shifted to higher energy relative to 
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Pi-4-Intra, which means less β-HgS, thus dismissing the β-HgS hypothesis (Fig. 4f). The four 

coordinate species may be linked to the bacterial metallothionein (MT) SmtA/BmtA. This 

MT, discovered in cyanobacteria, is also present in the Pseudomonas genus (Blindauer et al., 

2002; Blindauer 2011). The NMR structures give a Zn4Cys9His2 cluster for Synechococcus 

SmtA (Blindauer et al., 2001), and Zn3Cys9His and Cd4Cys9His clusters for P. fluorescens 

PflQ2 (Habjanič et al., 2018). High similarities of structure were observed between the 

Zn4SmtA and Cd4PflQ2 clusters and the [Cd4Cys11] cluster of the α-domain in rat MT2 

(Blindauer et al., 2001; Habjanič et al., 2018), and between the Zn3PflQ2 cluster and the 

[Cd3Cys9] cluster of the β-domain in human MT2 (Habjanič et al., 2018). 

The mer operon of P. idrijaensis is contained in the Tn5041 transposon discovered in a 

Pseudomonas strain (KHP41) from the Khaidarkan mercury mine in Kirghizia (Kholodii et 

al., 1997). Tn5041 most likely acquired the mer operon from a transposon belonging to the 

Tn21 subfamily of the Tn3 transposon family (Kholodii et al., 1997). A. idrijaensis, the other 

strain found in soil of the Idrija mine, does not possess the Tn5041 element. This bacterium is 

endowed with two mer operons simply separated by the gene of a hypothetical protein and 

possessing only one merR gene. The organization of the two mer operons is ED1BR and 

D2TPAG with the genes E, D1, B, D2 transcribed in one direction and the genes R, T, P, A, G 

transcribed in the opposite direction. Two merD genes are present, and the relative MerD1 

and MerD2 proteins display 61 % of identity. The MerD protein from P. idrijaensis is 53 % 

and 40 % identical to A. idrijaensis MerD1 and MerD2, respectively. 

The Tn5041-like elements can be divided in 12 types, based on the genetic sequences 

isolated from several strains originating from mercury mines (Khaidarkan, Caucasus, 

Carpathians), Russian and American soils, and Russian rivers (Kholodii et al., 2002). Since 

the Tn5041 transposons from P. idrijaensis and Pseudomonas KHP41 differ by only 7 

nucleotides over 14907, the new transposon identified here is assigned to the Tn5041A type 
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like to the one from the reference strain KHP41. P. putida DRA525 isolated from an artisanal 

gold mining camp in Mozambique also harbors a Tn5041-hosted mer operon (Drace et al., 

2018). It differs from the P. idrijaensis transposon by only one nucleotide and therefore also 

belongs to the Tn5041A type (indicated in Fig. 3). Hg-resistant bacteria endowed with 

Tn5041 were not always isolated from soils or sediments polluted by mercury. This 

transposon has also been found in Pseudomonas bacteria isolated from Edoma suite sediments 

of the Siberian permafrost of Kolyma Lowland (late Pleistocene icy complex). The lowland is 

formed of fluvio-lacustrine loamy sediments aged from 15,000 to 40,000 years (Petrova et al., 

2002; Mindlin et al., 2005). Some of the samples contained as little as 6 to 35 µg Hg/kg, 

therefore were uncontaminated. The Tn5041 transposon of one permafrost strain (P. 

fluorescens ED23-70) has been sequenced. Compared with Tn5041A from KHP41, it contains 

two substituted nucleotides at positions 2875 and 3773, and has one additional short 47 

nucleotides-long region (ρ) in the left arm at position 653-699 just after the putative 

attachment (att) site. This transposon was assigned to the B type Tn5041B (Mindlin et al., 

2005). Recently, another Hg-resistant bacterium endowed with Tn5041A, the Pseudomonas 

sp. strain 1239, has been isolated from a soil sampled in the Loire valley, a location that is not 

affected by mercurial pollution (Crovadore et al., 2018). The sequence of the strain 1239 

Tn5041A is identical to that of P. putida DRA525. In fact, the presence of the mer operon 

within a bacterial genome is not compulsory linked to a Hg-polluted environment: indeed, 

when seeking for bacteria sharing identical MerD, MerE and OrfY protein sequences with P. 

idrijaensis, the Blast search allowed retrieving 49 strains all belonging to the Pseudomonas 

genus. Among these 26 were clinical human isolates and 23 were environmental isolates. 

Among the latter, one had been isolated from a dairy product, 17 had been collected from 

sites unrelated to mercurial contamination, and only 5 had been sampled from Hg-polluted 

sites: one in the Khaidarkan mine (KHP41), one in a gold camp in Mozambique (DRA525), 

and 3 in the Oak Ridge Field Research Center (MPBC4-3, MPR-R5A and MPR-R5B) (Table 
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S3).  

Although the soil and rocks from the gold mining camp in Mozambique are devoid of 

antibiotics, as is also the case for those of the Idrija mine, P. putida DRA525 can resist to 

both Hg(II) and antibiotics. Resistance to antibiotics is conferred through the MexE-MexF-

OprN multidrug efflux system (Drace et al., 2018). Co-resistance to both heavy metals 

enzymatically and antibiotics through efflux pumps is common (Baker-Austin et al., 2006) 

and probably explains why so many clinical isolates are also endowed with Hg resistance 

(Table S3). P. idrijaensis contains in its genome the MeA-MexB-OprM multidrug efflux 

system (one mexA gene, two mexB genes, and four oprM genes), which should confer broad-

spectrum antibiotic resistance (Li et al., 2015). However, P. idrijaensis does not resist to 

known antibiotics, perhaps because it lacks the regulator gene mexR. The three genes mexA, 

mexB and oprM may not be expressed for they are not organized in an operon. 

 

5. Conclusion 

 While the Tn5041 element occurs most commonly on plasmids, it is inserted in the 

chromosome of P. idrijaensis like for the Pseudomonas strain KHP41, Pseudomonas sp. 

strain 1239 and P. putida DRA525 (Kholodii et al., 1997; Crovadore et al., 2018; Drace et al., 

2018). This mobile element is old since it has been found in P. fluorescens bacteria isolated 

from Siberian permafrost dated to the Pleistocene, about 15,000 to 40,000 BP (Petrova et al., 

2002; Mindlin et al., 2005). The permafrost soil contained trace amounts of Hg like the Loire 

valley soil (from which has been isolated the strain 1239), which indicates that mercury 

contamination pressure is not compulsory to select this mercury resistance transposon once 

inserted in the chromosome. The presence of the mer operon proved to influence the mass 

distribution of the mercurial chemical species accumulated within bacterial cells after a 

challenge with inorganic Hg, with a relative enrichment in the dithiolate Hg(SR)2 complex. 
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Table 2. Content of sulfur, carbon and selected trace elements in the rock. a   

 S C As Ba Bi Cd Co Cu Hg Mo Ni Pb Sb U V Zn 
2.61 1.91 24.6 258 3.1 <0.1 9.9 23.3 2 952.0 11.3 9.8 21.1 15.7 11.2 118 41 
a S and C in wt. %, As to Zn in mg/kg. 
 
 
 

 

Table 1. Chemical composition (in wt. %) of the rock  
 SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 LOI* Sum 
56.94 15.41 4.13 1.36 4.96 0.50 2.78 0.62 0.15 12.9 99.75 
* loss on ignition (1000°C). 

Table 3. MIC and zone diameter values of antibiotics against environmental isolate of P. 
idrijaensis. 
Antimicrobial 
category Antibiotic 

MIC 
(mg/L) 

Zone diameter 
(mm)* 

MEM - meropenem 1 27 carbapenems 
IMI - imipenem 1 32 

fluoroquinolones CIP - ciprofloxacin ≤ 0.25 30 
GEN - gentamicin ≤ 1 28 
AMK - amikacin ≤ 2 30 

aminoglycosides 

NET - netilmicin   27 
CAZ - ceftazidime  ≤ 1 18 cephalosporins 

 FEP - cefepime  ≤ 1 30 
penicillins TZP - piperacillin/tazobactam 8 26 
polymyxins CST - colistin ≤ 0.5 0.75 
* determined by E-test. Isolate was sensitive to all tested antibiotics according to EUCAST 
criteria. 
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Table 4. Compared sensitivity of P. idrijaensis to inorganic and organic mercury.  

Quantity of 
mercury (µg) a  Growth inhibition zone diameter (mm) 

 Ratio b 

  P. aeruginosa PAO1  P. idrijaensis   

       

HgCl2       

15  20 ± 1  8 ± 1 *  6.2 

30  23 ± 1  11.5 ± 1.5 *  4.0 

150  33 ± 2  17 ± 1 *  3.8 

300  40 ± 2  22 ± 1 *  3.3 

 
 

     

MeHgCl       

15  23 ± 2  26 ± 1  0.8 

30  28 ± 1  32 ± 4  0.8 

150  46 ± 2  48 ± 2  0.9 

300  59 ± 1  55 ± 3  1.1 
a A solution containing the indicated quantity of mercury was laid at the centre of the Petri 
dish. 
b Ratio of surfaces of growth inhibition between PAO1 and P. idrijaensis. 

* Asterisks indicate significant differences between PAO1 and P. idrijaensis growth 
inhibitions (P < 0.05, n = 3). 
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Legends to figures 

 

Figure 1. Organization of the mer operon of P. idrijaensis inside the Tn5041A transposon. 

The numbers above the arrows symbolizing the Tn5041 elements indicate the positions of the 

genes and open reading frames (orf, putative genes coding for hypothetical proteins), and 

some remarkable genetic elements in the 14907 bp-long transposon. The numbers below the 

arrows indicate the length in bp of the genetic elements. Arrows point in direction of the 

transcription. XerC2 is an integrase; KfrA is a DNA binding protein involved in the 

transposition process; OprD2 is an outer membrane porine; TnpC is a repressor of the tnpA 

gene; TnpA is a transposase of the Tn3-family transposon. The two uncoding TIR sequences 

are terminal inverted repeats that flank the transposon on its extremities. att5041 is the 

attachment site. INTΔ5041 is a 195 bp-long truncated group II intron. R’ is a truncated copy 

of merR. σλ and κγ are relics of mobile elements: σλ is a defective element showing some 

homology with the insertion sequences IS2 and ISRm1, and κγ is a defective minitransposon 

of the Tn3-family with terminal inverted repeats. The σλ, R’ and κγ elements overlap with 

orfs 15723 and 1573. The regulatory cis elements O/P are the promoter and operator of the 

mer operon. The locations of the 7 nucleotides distinguishing Tn5041A of P. idrijaensis and 

Pseudomonas sp. from the Khaidarkan mine are indicated with asterisks. The substitutions are 

811: A/G (A in P. idrijaensis and G in the Khaidarkan bacterium); 2557: T/A; 2558: T/A; 

4252: C/T; 8346: C/T; 13835: A/T; 13836: A/T. The symbol ^ indicates the location of the 

single nucleotide distinguishing Tn5041A of P. idrijaensis and both P. putida DRA525 and 

Pseudomonas sp. strain 1239. It is located at position 14729: G/C (P. idrijaensis/DRA525). 
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Figure 2. HR-XANES spectra of P. idrijaensis cultures exposed to 4 µg (Pi-4) and 40 µg (Pi-

40) Hg/L (a,c), and ball-and-stick representation of the Hg(SR)2, Hg(SR)3 and Hg(SR)4 

complexes (b). The Hg-S distances are from Manceau and Nagy (2008).  

 

Figure 3. Ball-and-stick representation (a) and HR-XANES spectra (b-d) of three dithiolate 

complexes differing in the second coordination shell compared to the spectrum of P. 

idrijaensis exposed to 4 µg Hg/L (Pi-4-Tot fraction). The ball-and-stick models are from 

Bourdineaud et al., 2019. Only the bonding environment of Hg is represented for 

Hg(glutathione)2. 

 

Figure 4. Comparison of the HR-XANES spectrum from the intracellular fraction of P. 

idrijaensis exposed to 4 µg Hg/L (Pi-4-Intra) with the spectrum from fish exposed to Hg-

doped DOM (a), with the average spectrum of the intracellular fractions of E. coli and B. 

subtilis exposed to 4 µg Hg/L (c), and with elemental Hg (e). Linear least-squares fit to the Pi-

4-Intra spectrum with 87 ± 6% Pi-4-Tot and 13 ± 6% Hg(Cys)4 at pH 11.9 (b), and with 43 ± 

6% E. coli + B. subtilis and 57 ± 6% Hg(Cys)2 at pH 7.5 (d). Comparison of the Pi-4-Intra 

spectrum with the intracellular spectrum from P. idrijaensis exposed to 40 µg Hg/L (Pi-40-

Intra) (f). 
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1. Characterization of Pseudomonas idrijaensis by mass spectrometry 

Before whole genome sequencing the isolated bacterium was identified by matrix-

assisted laser desorption ionization-time of flight mass spectrometry - MALDI-TOF MS 

(software version 3.0, Microflex LT, Bruker Daltonics) after extraction of biomass with 

formic acid (Singhal et al. 2015). A characteristic peptide mass fingerprint (mass-to-charge 

ratio (m/z) of 2-20 kDa) of the isolate was compared with the spectra of known microbial 

isolates contained in the MALDI Biotyper 3.0 software. The antibiotic susceptibility profile of 

the isolate was determined according to minimum inhibitory concentration (MIC) values 

obtained by the Vitek2 system (bioMérieux) and gradient dilution E-test (bioMérieux). Values 

were interpreted according to EUCAST criteria (2018) for clinical isolates of Pseudomonas 

sp. 

 

2. Cloning of a 2278 bp fragment from the chromosome  

A PCR using the R1 and A5 probes has been performed with 0.1 µg of P. idrijaensis genomic 

DNA as described below in the paragraph 3. The 2278 bp amplified mer fragment was 

excised from a band of a 1 % low-melting temperature agarose gel, and purified on a column 

containing a silica membrane (kit NucleoSpin Gel and PCR Clean-up, Macherey-Nagel, 

reference 740609.250). The concentration of the purified fragment was assessed by UV 

spectrometry at 260 nm. The fragment was ligated to the plasmid vector pCR4-TOPO 

(Invitrogen Thermo Fisher Scientific, reference 450030) as follows: 1 µl of plasmid (10 ng), 2 

µl of fragment (36 ng), 1 µl of salt solution (1.2 M NaCl, 60 mM MgCl2), and 2 µl of sterile 

milliQ water were mixed then let rested for 30 min at ambient temperature. Thereafter, 

Escherichia coli TOP10 cells (Invitrogen Thermo Fisher Scientific, reference C404010; 

genotype: mcrA, Δ(mrr-hsdRMS-mcrBC), Phi80lacZ(del)M15, ΔlacX74, deoR, recA1, 

araD139, Δ(ara-leu)7697, galU, galK, rpsL(SmR), endA1, nupG) rendered chemically 

competent for transformation through CaCl2 treatment were transformed with 2 µl of the 

ligation mixture. Transformants were selected on ampicillin-containing jellified LB medium 

(50 µg/ml). Positive recombinants were selected using PCR: 10 colonies were picked out 

from the Petri dish and each was suspended in a mixture made of 10 µl of sterile milliQ water, 

0.5 µl (50 ng) of M13 forward primer, 0.5 µl (50 ng) of M13 reverse primer, and 12.5 µl of 2 

x concentrated DreamTaq blend. The thermocycling program used was as follows: initial 

denaturation step at 94°C for 10 min, 36 cycles at 94°C for 60 s, 55°C for 60 s, and 72 °C for 

140 s, followed by a final extension step at 72°C for 10 min. Two transformants were positive 
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since they gave amplified fragments of about 2700 bp on 1 % agarose gel electrophoresis. 

These recombinants were cultured on LB medium containing ampicillin (50 µg/ml) and the 

harbored plasmids were purified after alkaline lysis on columns containing a silica membrane 

(kit NucleoSpin plasmid, Macherey-Nagel, reference 740588.250). The fragments contained 

in these two plasmids were sequenced using M13 forward and reverse primers (GATC 

Biotech, Eurofins Genomics Company). 

 

3. PCR detection of the mer operon genes 

Before processing to the whole genome sequencing, the mer genes were detected with the 

following mer oligonucleotide probes: R1, R2, T1, T2, P1, P2, C1, C2, F1, F2, A0, A1, A2, 

A5, A6, B1, B2, D1, D2, and D3 (Liebert et al., 1997). Letters correspond to the initial of the 

cognate mer gene (A: merA, B: merB; C: merC; D: merD; F: merF; P: merP; R: merR; T: 

merT). R1, T1, C1, C2, A1, A5 and A6 are sequences found in the plasmid NR1 from 

Shigella flexneri with the mer operon organization merRTPCAD (GenBank accession number: 

K03089). P2, F1, F2 and A2 are sequences found in the plasmid pMER327/419 from 

Pseudomonas fluorescens with the mer operon organization merRTPFAD (GenBank 

accession number: X73112). R2, T2, P1, A0, D2, and D3 are sequences found in the plasmid 

pVS1 from Pseudomonas aeruginosa with the mer operon organization merRTPAD 

(GenBank accession number: X03406). B1, B2, and D1 are sequences found in the plasmid 

pDU1358 from Serratia marcescens with the mer operon organization merRTPABD 

(GenBank accession number: M15049). Two new probes of the merA gene (A1s-nF and A5-

nR) were designed recently (Ní Chadhain et al., 2006). They are made of degenerated 

oligonucleotides in order to render them universal. They proved efficient in detecting the 

merA gene in Pseudomonas species (Ní Chadhain et al., 2006). 

The PCRs were performed in a final volume of 20 µl. The mixture contained 1 µl (0.1 µg) 

of P. idrijaensis genomic DNA, 7 µl of sterile milliQ water, 1 µl of each of the two 10 µM 

oligonucleotide probes (0.5 µM final concentration), and 10 µl of 2 x concentrated DreamTaq 

blend. This formulation contains the DreamTaq DNA polymerase in an optimized buffer, and 

dATP, dCTP, dGTP and dTTP, 0.4 mM each, and 4 mM MgCl2 (Thermo Scientific, reference 

MAN0012702). The thermocycling program used is called MER1: initial denaturation step at 

94°C for 1 min, 36 cycles at 95°C for 30 s, 56°C for 30 s, and 72 °C for 3 min, followed by a 

final extension step at 72°C for 10 min. Amplified DNA fragments were observed using 

agarose gel electrophoresis at a concentration in agarose of 1.0 or 1.2 %). 

Genetic proof to support the presence of the mer operon within the P. idrijaensis genome 
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was obtained with the amplification of the expected 285 bp amplicon using the A1s-nF and 

A5-nR primers targeting the merA gene (Fig. S2, lane 5). The presence of the merA gene was 

confirmed with the A1 and A5 primers resulting in the amplification of a fragment of about 

1200 bp (Fig. 2, lane 2). In contrast, primers B1 and B2 targeting merB failed to amplify a 

cognate fragment, in agreement with the lack of resistance to MeHgCl (Fig. S2, lane 4). The 

organization of the mer operon was decrypted with a set of primer couples (Liebert et al., 

1997). The R2-T2 primer couple amplified a fragment of about 250 bp (Fig. S2, lane 1), 

meaning that the merT gene is adjacent to the merR gene. The P1-A0 primer couple amplified 

a fragment of about 500 bp (Fig. S2, lane 3), meaning that between the genes mer P and merA 

was lying the gene merF or merC (in the case of the absence of one of these genes, a fragment 

of about 100 bp would have been expected). The C1-A5 primer couple amplified a 1750 bp-

long fragment, whereas no fragment was amplified with the F1-A5 primer (Fig. S2, lanes 9 

and 10). This means that the gene in between merP and merA is merC. The presence of the 

supplementary gene merC between merP and merA was further confirmed with the P1-A5, 

R1-A0, and R2-A0 couples. 2100, 1300, and 1300 bp-long fragments were amplified, 

respectively, instead of 1650, 850, and 850 bp-long fragments if merC were absent (Fig. S2, 

lanes 6 to 8). Thus, the organization of the mer operon is RTPCA, with merR transcribed in 

opposite direction relative to merTPCA (Fig. S2, operon scheme). 

 

4. Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

	

Figure S1. Photograph of the rock 

sample. It is an Upper Ladinian black 

shale/siltstone from the third level of 

the Idrija mine situated 104 m below 

the Borba Shaft entrance situated 226 

m above sea level. A pencil indicates 

the scale. 
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Figure S2. Detection of the mer genes in the P. idrijaensis genome. A: The agarose gels show 

the PCR amplification of the mer fragments from the purified genomic DNA. Lane M: 

molecular weight ladder. Lane 1: R2 and T2 primers; lane 2: A1 and A5 primers; lane 3: P1 

and A0 primers; lane 4: B1 and B2 primers; lane 5: A1snF and A5nR primers; lane 6: P1 and 

A5 primers (the arrow points out the amplified band); lane 7: R1 and A0 primers; lane 8: R2 

and A0 primers; lane 9: C1 and A5 primers; la	ne 10: F1 and A5 primers. B: Organization of 

the mer operon deduced from the PCR analysis. The locations of the probes’ hybridization 

sites are shown with truncated arrows. The direction of the arrows indicates the orientation 

the primer: right for forward and left for reverse.  
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5. Supplementary Tables 

 

Table S1. Semi-quantitative mineralogical composition of the rock Idrija. 

Quartz 
 

Micaceous minerals Kaolinite Gypsum Pyrite Goethite Rozenite 

XXXX XXX XX XX X X X 
X: relative abundance of minerals based on X-ray diffraction (no quantitative value is 
assigned to X). 

 

 

 

 

Table S2. The MALDI-TOF MS identification results for P. idrijaensis.	

Rank	 	 Matched	pattern	 	 Score	
value	

	 NCBI	
identifier	

1	 	 Pseudomonas	graminis	DSM	11363T	HAM	 	 1.46	 	 158627	

2	 	 Pseudomonas	chlororaphis	ssp	chlororaphis	DSM	
50083T	HAM	

	 1.40	 	 333	

3	 	 Pseudomonas	caricapapayae	LMG	2152T	HAM	 	 1.37	 	 46678	

4	 	 Pseudomonas	cichorii	DSM	50259T	HAM	 	 1.27	 	 36746	

5	 	 Pseudomonas	chlororaphis	ssp	aurantiaca	CIP	106718T	
HAM	

	 1.25	 	 333	

6	 	 Pseudomonas	syringae	ssp	syringae	DSM	6693	HAM	 	 1.22	 	 317	

7	 	 Pseudomonas	lutea	LMG	21974T	HAM	 	 1.21	 	 243924	

8	 	 Pseudomonas	savastanoi	ssp	savastanoi	LMG	2209T	
HAM	

	 1.20	 	 29438	

9	 	 Pseudomonas	fluorescens	DSM	50090T	HAM	 	 1.19	 	 294	

10	 	 Pseudomonas	abietaniphila	CIP	106708T	HAM	 	 1.37	 	 89065	
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Table S3. Pseudomonas strains sharing identical MerD, MerE and OrfY protein sequences 
with P. idrijaensis. 

Strain  Source or sampling location  Reference 

Pseudomonas sp. KHP41  
Soil of Khaidarkan mercury mine, 
Kirghizia, Central Asia. 

 Kholodii et al., 
1997. 
 

Pseudomonas sp. ABFPK.  

 

 

Clinical isolate, USA. 

 Segre and 
Mullikin, 2017 
(unpublished). 

 

Pseudomonas sp. NBRC 
111118.  

 

 
Human clinical strain resistant to 
various antibiotics (Japan). 

 Shimodaira et al., 
2017, 
(unpublished). 

 

Pseudomonas sp. NBRC 
111119.  

 

 
Isolated from human urine, resistant 
to various antibiotics (Takarazuka, 
Hyogo, Japan).  

 Shimodaira et al., 
2017, 
(unpublished). 

 

Pseudomonas sp. NBRC 
111127.  

 

 

 
Isolated from human urine, resistant 
to various antibiotics (Wakayama, 
Japan). 

 Shimodaira et al., 
2017, 
(unpublished). 

 

Pseudomonas sp.  NBRC 
111142.  

 

 

 

Isolated from human urine, Tochigi, 
Japan. 

 Shimodaira et al., 
2017, 
(unpublished). 

 

Pseudomonas sp. 
ANT_H4 and ANT_H14 

 Isolated from a petroleum-
contaminated soil collected near the 
petroleum pumping and storage 
warehouse at the Henryk Arctowski 
Polish Antarctic Station, King 
George Island, Admiralty Bay. 
 

 
Styczynski et al., 
2018 
(unpublished). 
 

Pseudomonas sp. 1239.  
 

 Isolated from soil samples from the 
lower Loire Valley, France. 

 Crovadore et al., 
2019. 
 

Pseudomonas sp. FSL 
W5-0299.  

 Isolate causing color defects in dairy 
products. Sampled on an agitator 
drain in a cheese-processing plant, 

 
Reichler et al., 
2019. 
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 USA. 

 

 

Pseudomonas sp. MB-
090624.  
 

 Isolation source: Lake Michigan 
freshwaters, Montrose Beach, 
Chicago, USA. 

 

 
Batrich et al., 
2019. 
 

Pseudomonas sp. 
MPBC4-3, MPR-R5A and 
MPR-R5B 

 
Groundwater from a contaminated 
watershed. Oak Ridge Field 
Research Center, Tennessee, USA. 

 Spencer et al., 
2019 
(unpublished); 
Marshall, 1983 

P. abietaniphila KF701 
and KF717 

 
Biphenyl-contaminated soil in 
Kitakyushu, Japan. 

 Furukawa et al., 
1989; Fujihara et 
al., 2015 

 

P. abietaniphila ATCC 
700689.  
 

 
Isolated from a lagoon, British 
Columbia, Canada. 

 Varghese et al., 
2019 
(unpublished). 
 

P. aeruginosa ATCC 
700888 (ERC1).  

 Isolated from an industrial water 
system, USA. 

 

 
Xu et al., 1998; 
Chugani et al., 
2012. 

P. aeruginosa AZPAE 
14381.  

 

 

 

 

 

 

Clinical isolate from an intra-
abdominal infection, Bilbao, Spain. 
Resistant to meropenem, 
levofloxacin, and amikacin. Does 
possess the β-lactamase genes 
blaOXA-46 and blaOXA101. 

 

Kos et al., 2015. 

 

P. aeruginosa AZPAE 
14404.  

 

 Clinical isolate from an intra-
abdominal infection, Shatin, China. 
Sensitive to meropenem, 
levofloxacin, and amikacin. Does not 
possess β-lactamase genes. 
 

 

Kos et al., 2015. 

P. aeruginosa AZPAE 
14816.  

 

 Clinical isolate from a reproductive 
tract infection, Besançon, France. 
Sensitive to meropenem, 
levofloxacin, amikacin and colistin. 
Does not possess β-lactamase genes. 

 
Kos et al., 
2015. 
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P. aeruginosa AZPAE 
14858. 

 

  Clinical isolate from an intra-
abdominal infection, Paris, France. 
Sensitive to meropenem, 
levofloxacin, amikacin and colistin. 
Does not possess β-lactamase genes. 
 

 

Kos et al., 2015. 

 

P. aeruginosa AZPAE 
14872.  

 

 Clinical isolate from a reproductive 
tract infection, Victoria, Argentina. 
Resistant to meropenem and 
levofloxacin. Sensitive to amikacin 
and colistin. Does possess the β-
lactamase genes blaOXA-2. 
 

 

Kos et al., 2015. 

 

P. aeruginosa AZPAE 
14921.  

 

 Clinical isolate from a reproductive 
tract infection, Paris, France. 
Sensitive to meropenem, 
levofloxacin, amikacin and colistin. 
Does not possess β-lactamase genes. 
 

 

Kos et al., 2015. 

P. aeruginosa AZPAE 
14941. 

  Clinical isolate from an intra-
abdominal infection, Hong-Kong, 
China. Sensitive to meropenem, 
levofloxacin, amikacin and colistin. 
Does not possess β-lactamase genes. 

 

 

Kos et al., 2015. 

 

P. aeruginosa AZPAE 
15002. 

 Clinical isolate from an intra-
abdominal infection, Bilbao, Spain. 
Resistant to meropenem, 
levofloxacin, and amikacin. Does 
possess the β-lactamase genes 
blaOXA-46 and blaOXA101. 
 

 

Kos et al., 2015. 

 

P. aeruginosa WH-SGI-
V-07167.  

 

 
Isolated from a human wound, 
France. 

 
van Belkum et al., 
2015. 

P. aeruginosa WH-SGI-
V-07371.  

 

 

Hospital isolate, France. 

 
van Belkum et al., 
2015. 

P. aeruginosa WH-SGI-
V-07415.  

 

 

Hospital isolate, France. 

 
van Belkum et al., 
2015. 

P. aeruginosa WH-SGI-
V-07709.  

 
Hospital isolate, USA. 

 van Belkum et al., 
2015. 
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P. aeruginosa 15.111b  
 

 P. aeruginosa 15.111b (Cardiff 
University, UK) is a preservative 
resistant isolate derivating from the 
strain PA14 which was originally 
isolated from a human burn wound.  

 Weiser et al., 2017 
(unpublished). 
Cullen et al., 2015 
for the description 
of the reference 
strain PA14. 
 

P. aeruginosa ENV-681.  
 

 

 
Isolated from manure, Tartu, Estonia. 

 
Laht et al., 2018 
(unpublished). 

P. aeruginosa FFUP-PS-
65.  
 
 

 Clinical isolate from human urine, 
Portugal. 

 Botelho et al., 
2018. 
 

 

P. aeruginosa AR_0440 
and AR_0355.  
 
 

 
Antibiotic resistant isolates, US Food 
and Drug Administration, 
USA. 

 
Benhamed et al., 
2018 and 2019 
(unpublished). 
 

P. aeruginosa AUS511 
and AUS527. 
  
 

 
Environmental isolates from an 
Australian River, and a home, 
respectively, Brisbane, Australia. 

 
Ref : Jeukens et 
al., 2019. 

P. aeruginosa PA3.  
 
 

 Clinical isolate from a bronchial 
aspirate, bacteriological ward of 
hospital Bichat, Paris, France. 
 

 
Mammeri H., 2019 
(unpublished). 

P. coronafaciens 
LMG5060.  

 Isolated from an oat leaf, Avena 
sativa, UK. 
 

 An et al., 2015. 
 

P. fluorescens AU11518.  

 

 Isolated from a cystic fibrosis 
patient, USA. 
 

 
Scales et al., 2015. 

P. mandelii NBRC 
103147 (CIP105273, 
DSM17967).  

 

 

Isolated from mineral water, France. 

 
Verhille et al., 
1999; Hosoyama et 
al., 2019. 

P. monteilii CD10-2.  
  

 Duodenal mucosa of celiac disease 
patient with type 1 diabete, India. 
 

 Kaur et al., 2017 
(unpublished). 

P. putida DLL-E4.  

 

 Paranitrophenol degrader. Isolated 
from methyl-parathion-polluted soil, 
China. 
 

 
Liu et al., 2003; 
Hu et al., 2014. 

P. putida ATH-43.  

 

 Isolated from soil sediments at a 
military base, Antarctica, Chile. 

 Rodriguez-Rojas et 
al., 2016. 
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Mercury and tellurite resistant 
bacterium. Resistant to Cd2+, Cu2+, 
CrO4

2-, and SeO3
2- , and several 

antibiotics including streptomycin, 
cefotaxime, kanamycin, and 
chloramphenicol. 
 

P. putida DRA525.  

 

 Isolated from an artisanal gold 
mining camp in Mozambique. 
 

 
Drace et al., 2018. 

P. putida 12917.  
  

 Clinical isolate from human stools, 
Paris, France. Resistant to 
carbapenem. 
 

 

Liapis et al., 2019. 

P. putida 142223.  
  
 

 Clinical isolate from human urine, 
France. Resistant to carbapenem. 

 
Liapis et al., 2019. 

P. syringae pv. 
coronafaciens Pcn3113.  
 

 
Isolated from an oat leaf, Avena 
sativa, England. 

 
Dillon et al., 2019. 

P. veronii 1YdBTEX2.  

 

 Isolated from soil highly 
contaminated with benzene, Czech 
Republic. 

 Junca and Pieper, 
2004; de Lima-
Morales et al., 
2013. 
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