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Abstract. Positron emission tomography (PET) respiratory motion correction has
been a subject of great interest for the last twenty years, prompted mainly by the
development of multimodality imaging devices such as PET/computed tomography
(CT) and PET/magnetic resonance imaging (MRI). PET respiratory motion correction
involves a number of steps including acquisition synchronization, motion estimation
and finally motion correction. The synchronization steps include the use of different
external device systems or data driven approaches which have been gaining ground
over the last few years. Patient specific or generic motion models using the respiratory
synchronized datasets can be subsequently derived and used for correction either in
the image space or within the image reconstruction process. Similar overall approaches
can be considered and have been proposed for both PET/CT and PET/MRI devices.
Certain variations in the case of PET/MRI include the use of MRI specific sequences
for the registration of respiratory motion information. The proposed review includes
a comprehensive coverage of all these areas of development in field of PET respiratory
motion for different multimodality imaging devices and approaches in terms of
synchronization, estimation and subsequent motion correction. Finally, a section on
perspectives including the potential clinical usage of these approaches is included.

Nomenclature

1-D one-dimensional

2-D two-dimensional
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3-D three-dimensional

4-D four-dimensional

[BF]FDG ['®F]fluorodeoxyglucose

AC attenuation-corrected

ACF attenuation correction factor

APD avalanche photo diode

CFR coronary flow reserve

CMRA coronary magnetic resonance angiography
CNN convolutional neural network

COD centroid of distribution

COM center of mass

CT computed tomography

DD data-driven

DR dimensionality reduction

ECG electrocardiogram

EM expectation-maximization

FBP filtered backprojection

FT Fourier transform

HM histogram-mode

IDIF image derived input function

JRM joint reconstruction and motion estimation
LE Laplacian eigenmaps

LM list-mode

LOR . line of response

MBIR model-based image reconstruction
MCBR motion correction before reconstruction
MCIR motion-corrected image reconstruction
MIP maximum intensity projection

MLAA maximum-likelihood attenuation and activity estimation
MLACF maximume-likelihood activity and attenuation correction factors estimation
MR magnetic resonance

MRI magnetic resonance imaging

NAC non-attenuation-corrected

PC principal component

PCA principal component analysis

PET positron emission tomography
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PRR post-reconstruction registration
PSF point spread function

ROI region of interest

RPM real-time position management
SAM spectral analysis method

SiPM silicon photomultipliers

SNR signal-to-noise ratio

SPECT single-photon emission computed tomography
SUV standardized uptake value

TAC time-activity curve

TMRI tagged magnetic resonance imaging
TOF time-of-flight

1. Introduction

PET imaging has seen important technical progress during the last decades, both
in hardware (scintillation crystals, photomultipliers, avalanche photo diodes (APDs),
silicon photomultipliers (SiPM), analog and digital signal processing electronics) and
software (scatter correction algorithms, image reconstruction algorithms, etc.). Newly
commercialized PET/CT systems offer a combination of improved spatial and temporal
resolution, a better accuracy in terms of measured radiotracer concentrations, associated
with reduced acquisition times and/or reduced injected dose to the patient.

In parallel to these technical advances, patient motion has been demonstrated as
one of the most prevalent cause of image artifact in PET (Beyer et al. 2003, Osman
et al. 2003, Hunter et al. 2016). Based on phantom acquisitions and simulated results,
Liu et al. (2009) observed a 28% reduction in standardized uptake value (SUV) and
a 130% increase in volume due to motion. PET is a quantitative imaging modality
by nature, offering the possibility to quantitatively assess the tracer concentrations,
both in static investigations with the SUVs, and also in dynamic studies aiming at
quantifying the tracer transport constants through the use of a kinetic model. Not
accounting for subject motion can lead to a potentially severe image quality degradation
and a reduced quantitative accuracy. The motion-induced artifacts, in turn, can lead to
misinterpretation of images and cause errors in subsequent image analysis or in image-
derived information such as PET tumoral volume derived from SUV-based thresholding,
which can be used for subsequent radiotherapy treatment planning, especially for focal
radiation therapy with dose escalation.

Many techniques for the correction of motion corrupted PET images have been
developed in parallel to the technical advances of PET/CT systems during the last
20 years. And yet the complexities of dynamic human anatomy, and the desire to
improve the trade-off between image quality, patient dose and scan time, mean that
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three decades later motion correction remains a topic of investigation. The developed
motion compensation strategies have not as such found widespread acceptance in clinical
practice, mainly due to the complexity of their implementation and the associated
computational burden.

Related reviews have been made on motion correction in PET. Visvikis et al.
(2006) covered the importance of motion compensation in PET/CT systems and
contrasted the correction techniques now often referred to as post-reconstruction
registration (PRR) and motion-corrected image reconstruction (MCIR). Rahmim et al.
(2007) offer a comprehensive review, covering motion measurement and acquisitions,
temporal modeling techniques considering a range of anatomical regions. Nehmeh
& Erdi (2008) provide a review of motion correction for PET, CT, and PET/CT,
covering a range of acquisition and temporal modeling techniques, and focusing on
motion artifacts introduced during attenuation correction. Bettinardi et al. (2010)
and (Bettinardi et al. 2012) review motion management for PET/CT for radiotherapy
planning. McClelland et al. (2013) present a review on respiratory motion models, and
include some applications for PET /magnetic resonance (MR) motion correction. More
recently, Gillman et al. (2017) wrote a review on PET motion correction dedicated to
PET/MR. A recent book chapter presented a general overview of any type of motion
compensation strategy for single photon or positron emission tomography (van den Hoff
et al. 2020). In addition, Kyme & Fulton (2021) review motion estimation and correction
methods in PET, single-photon emission computed tomography (SPECT) and CT.
Finally, Polycarpou et al. (2021) provides an up-to-date review on the synergistic use
of both PET and MR data for PET motion correction in simultaneous PET /MR.

The purpose of this review is to present the range of published methods developed
to address the issue of respiratory motion compensation in PET imaging. The detection
or estimation of the respiration signal will be addressed, as well as the management of
the motion information within the context of PET image reconstruction.

2. Respiratory Motion Management

Methodologies for respiratory motion correction in PET can be decomposed into four
successive stages: acquisition, gating, motion estimation and correction.

Acquisition involves the simultaneous acquisitions of the PET raw data (detected
events) and the patient respiratory signal (Figure 1). The respiratory signal may
be recorded using an external device for the entire PET acquisition duration (see
Section 3.1) or derived from the raw PET data themselves (see Section 3.2). PET
acquisitions are preferably acquired in list-mode (LM) format, or at least in discrete
temporal sinograms. The LM format offers the advantage of a high temporal resolution,
with specific time marks inserted within the raw PET detected events every 100 ms or so.
Moreover, when using an external device to track the patient respiration, the external
device also synchronizes the recorded continuous respiratory signal with the PET LM
acquisition using a simple trigger method. Once the recorded respiratory trace reaches
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a predefined threshold value, a specific trigger is inserted into the LM PET data to
mark this specific instant of the respiratory cycle. The process is repeated at each
respiratory cycle, i.e., each time the trigger threshold is reached. When the surrogate
signal for the respiratory motion is directly extracted from the PET measured data,
PET acquisition and derived respiratory signal are intrinsically synchronized. Such an
approach facilitates the identification of irregular respiratory cycles, either in amplitude
or in duration, and the rejection of the corresponding raw emission data.

Respiratory signal
recorded using an external device or derived from PET data

A

:

TIME

List-mode PET acquisition

Figure 1: Simultaneous acquisitions of the PET raw data in LM format and the patient

>

TIME

respiratory signal, either recorded using an external tracking system, or directly derived
from the PET data.

The gating process consists in the division of the respiratory motion signal into
a number of possible respiratory states. With an appropriate combination of the
number of states (usually between 6 and 10), and the division method, only a small
amount of respiratory motion (ideally negligible) remains present within each respiratory
state. Different division methods have been proposed (see Section 3.3). With the
synchronization of the PET acquisition and the continuous respiratory signal previously
described, the gating process not only consists in dividing the respiratory signal in
different states, but most importantly aims at labeling each PET detected event with
the corresponding respiratory state, by reading in parallel the respiratory signal and the
synchronized PET LM file (Figure 2). It becomes therefore possible to reconstruct a
PET images series synchronized with respiration, each gated PET image corresponding
to one respiratory state. It is evident that the resulting respiration-synchronized images
are less influenced by breathing, but are still not entirely free from these effects. The
second problem encountered is that the different reconstructed synchronized images are
of reduced quality, essentially because they only contain a fraction of the total number
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of events detected during the PET acquisition (Visvikis et al. 2006). As a result, the
benefits of motion compensation can be significantly reduced, as lower statistics in
images can reduce the accuracy of the activity concentration measurement, as well as
functional volume size. These detrimental effects can be compensated for, however, by
increasing the acquisition time by a factor equivalent to the number of reconstructed
synchronized images.

Gating (example of 5 respiratory gates in phase)

.[ TN /I
Y \ L

List-mode PET acquisition
assigned with corresponding respiratory states
and rebinned into 5 respiratory-gated sinograms

TIME

Figure 2: Gating process: division of the respiratory signal in different respiratory states,
and labeling of each PET detected event with the corresponding respiratory state

To overcome these limitations, respiratory motion compensation methods have been
developed, involving the determination of the respiratory motion, and its subsequent
implementation to the PET data.

Respiratory model formation estimates appropriate model parameters to correct
the PET acquisition for breathing (see Section 4). The chosen model can be a rigid,
affine or non-affine, the latter often parametrized in terms of B-spline warp parameters,
to move the current respiratory bin back to the reference state, or can be a simple
binary signal representing in-phase or out-of-phase (Figure 3). For respiratory motion,
the reference state is often selected as end-exhale because this is the quiescent part of
the respiratory cycle.

Finally, the correction phase appropriately applies the respiratory motion
parameters derived from the registration of the respiratory gated PET image series.
Motion correction may be performed before reconstruction, during reconstruction (on
the system matrix), or after reconstruction, as described in Sections 5.2, 5.3 and 5.4.
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Standard image reconstruction
algorithm

Motion estimation or modeling
(example of first respiratory state
used as reference)

Figure 3: Motion modeling and estimation

3. Motion Synchronization and Detection

In order to synchronize the PET acquisition with the respiration, it is necessary to
ensure that the respiratory signal covering the entire duration of the PET acquisition is
available. The respiratory trace of the patient can either be recorded using an external
device tracking the patient respiration (Section 3.1), or be directly derived from the
PET raw data (Section 3.2). Section 3.3 describes how the PET data can be gated into
different respiratory states based on the synchronous respiratory trace.

3.1. Motion Tracking Systems

This section describes the available technologies for tracking the patient respiratory
signal in PET, which can be grouped into two main categories. The first is based
on the use of an external detection system in contact with the patient’s body: a
sensor measuring the impedance of a belt placed around the rib cage which varies
according to its elongation (Livieratos et al. 2005a, van Elmpt et al. 2011), or respiratory
bellows (Lang et al. 2006), a thermistor measuring the temperature of the air circulating
during the patient’s breathing (Boucher et al. 2004, Wolthaus et al. 2005), a spirometer
measuring inhaled and exhaled air flows, measurements of air flux, for example
endotracheally (Chun, Reese, Ouyang, Guérin, Catana, Zhu, Alpert & El Fakhri 2012)
(this method is often used in animal studies, but rarely in human studies due to its
invasive nature). Optical motion tracking methods perform a quantitative measure of
external motion due to respiration, providing an accurate surrogate. For example, by
attaching fiducials to the patient’s chest, one-dimensional (1-D) chest movement can
be measured (Abdelnour et al. 2007, Biither et al. 2009, Dawood et al. 2007, Huang
et al. 2014, Nehmeh et al. 2002, Nehmeh et al. 2003, Nehmeh, Erdi, Pan, Yorke, Mageras,
Rosenzweig, Schoder, Mostafavi, Squire, Pevsner, Larson & Humm 2004, Nehmeh, Erdi,
Pan, Pevsner, Rosenzweig, Yorke, Mageras, Schoder, Vernon, Squire, Mostafavi, Larson
& Humm 2004). Such external devices are reliable, relatively cheap, and easy to use,
but they often measure a process indirectly related with respiration, such as air flow
rate, causing a time shift between the respiration related organs motion, and the device
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measurement, which is problematic for the synchronisation of the PET acquisition with
respiration.

In the second category, contact-less external systems track the patient’s body
contours and surface from a distance. Advanced methods are based on the use of
stereoscopic or time-of-flight (TOF) cameras (Alnowami et al. 2012, Gilles et al. 2016,
Kyme et al. 2014, Hef et al. 2015), or high-precision systems such as laser scanners which
derive surface models of the monitored object without the need for fiducials (Brahme
et al. 2008). Although optical devices require additional hardware and processing, they
remain relatively simple to implement.

A possible limitation of all external tracking systems is the additional hardware
setup, which may be uncomfortable for the patient, and require additional time
for the patient preparation, especially for patients with psychological (Toérnqvist
et al. 2006) or neurological (Gonzdlez et al. 1999) conditions, or in pediatrics (Edwards
& Arthurs 2011).

Bettinardi et al. (2013) have published an extensive review about motion-tracking
systems, including respiratory motion tracking systems, and their applications in
PET/CT imaging.

3.2. PET Data-Driven Methodologies

There is an increasing interest in methods that extract a surrogate signal for the
respiratory motion directly from the PET measured data (Kesner et al. 2014), often
called “data-driven” or “device-less” gating or also “self-gating”. This is motivated
by the extra cost and patient management associated to the additional device,
potential issues due to the capability of the external device (Lupi et al. 2009, Liu
et al. 2010, Didierlaurent et al. 2012), but also because of some evidence of hysteresis
between the internal movement and external device (Ozhasoglu & Murphy 2002, Gierga
et al. 2005). In the following few paragraphs, we review this work concentrating on
methods that have been applied to PET data.

3.2.1. Image-Based Methods Initial work used the sequence of images reconstructed
without attenuation, obtained for instance every 0.5 s. Many groups compute the
center of mass (COM) in an region of interest (ROI) and use this as an indicator
of motion (Klein et al. 2001, Bundschuh et al. 2007) and cardiac SPECT (Bruyant
et al. 2002). Filtering allows separation of a respiratory and cardiac signal in cardiac
PET (Biither et al. 2009). Visvikis et al. (2003) placed an ROI over edges of boundaries
(using non-attenuation corrected images) and studied the time-activity curve (TAC). A
characteristic frequency was derived via the Fourier transform (FT) which then allowed
finding amplitude and phase images. Blume et al. (2012) used cross-correlation between
low-resolution images reconstructed from 1 s time frames and optimized a cost-function
to maximize the cross-correlation between time frames in each gate. These image-based
methods are however computationally expensive and need a high contrast region, such
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as the myocardium in cardiac studies, that can be tracked over time.

3.2.2. Sinogram-Based Methods More recently, many authors developed methods that
work on the projection data. Although the PET raw data are very large, most methods
were developed for down-sampled data such that memory requirements are drastically
reduced. Schleyer et al. (2009) then Schleyer et al. (2011) used an analysis in frequency
space to attempt to find dominant respiratory frequencies but proceeds by automatically
finding masks where the movement occurs. A novel idea in this method was to convert
the mask to a signed template such that edges moving in and out of the mask do not
cancel each other. This spectral analysis method (SAM) method was later extended for
dynamic PET by using a sliding-window technique. It was tested for cardiac studies
(Schleyer et al. 2014). A further extension for continuous bed movement showed good
results in first evaluations (Schleyer et al. 2018, Biither et al. 2020). This method forms
the basis for the Siemens OncoFreeze AI™ method. Kesner & Kuntner (2010) classified
elements of (down-sampled) projection data based on the relative power in a respiratory
frequency band, and used this to iteratively construct a TAC of increasing power in the
respiratory band.

The previous methods were designed for quasi-periodic movement. A different class
of methods applies the generic techniques of dimensionality reduction (DR), also known
as “Manifold Learning”. DR techniques attempt to find a mapping between a low-
dimensional space and the original data such that the structure in the original data can
be more easily observed in the low-dimensional space (Van der Maaten et al. 2009). To
our knowledge, DR was first used in the context of respiratory and cardiac motion by
Zhang et al. (2006) where Isomap (Tenenbaum et al. 2000) was used to map a dynamic
sequences of MR images to a two-dimensional (2-D) space, roughly corresponding to
respiratory and cardiac movement. Laplacian eigenmaps (LE) (Belkin & Niyogi 2003),
a different DR technique, was used for respiratory gating of ultrasound and MRI data
(Wachinger et al. 2011). Thielemans, Rathore, Engbrant & Razifar (2011) applied
principal component analysis (PCA) (Pearson 1901) for respiratory gating of PET data
and four-dimensional (4-D) CT Data. The method selects the principal component
with the highest power in the respiratory frequency band. This method forms the basis
for the GE MOTIONFREE™ option and has been evaluated on large clinical data-sets
(Walker et al. 2019, Liberini et al. 2021).

Advantages of the DR methods include noise-suppression, automatic inclusion of
TOF (Bertolli et al. 2016), the fact that they do not rely on detection motion, but can
also pick up density changes (Bertolli, Cuplov, Arridge, Stearns, Wollenweber, Hutton
& Thielemans 2017), and that they can readily be generalized for other types of motion,
including non-periodic motion (see Section 6.3). However, the latter is also a weakness
as they can pick up the wrong signal such as kinetics or gross patient motion.

3.2.8. List-Mode-Based Methods The final class of methods works directly from the

LM data, without constructing intermediate dynamic sinograms.
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A method for respiratory gating specific to three-dimensional (3-D) PET (and which
does not need any ROIs) was developed by He et al. (2008). The approach relies on the
fact that axial motion will affect the total count rate, due to the axially non-uniform
sensitivity in 3-D PET. The count rate is therefore used as the respiratory signal. The
main advantage of this method is that it is very easy to implement. It can in principle
also give information about non-periodic movement. However, it relies on axial motion
and sufficient contrast.

The COM method can be implemented directly on the LM data, called centroid of
distribution (COD) by some authors. This benefits from the availability of TOF as it
allows concentrating on a ROI (Ren et al. 2017). Feng et al. (2017) developed a method
that optimised the ROI to get a better respiratory signal.

3.2.4. Sign and Scale Determination All of the above methods obtain a signal that
suffers from ambiguity in both scale and sign. This is even the case for the COM method,
see (Feng et al. 2017).

The sign ambiguity can be particularly detrimental in whole-body studies as it could
lead to amalgamation of end-of-inspiration and end-of-expiration data in the same gate.
Schleyer et al. (2011) estimate the sign from (rigid) registration of maximum intensity
projection (MIP) images reconstructed with filtered backprojection (FBP) (without
attenuation correction). Bertolli, Arridge, Wollenweber, Stearns, Hutton & Thielemans
(2017) developed two sinogram methods based on the approximation that the motion is
in axial direction only, and investigating the correlation between the data-driven (DD)
signal /principal component (PC) obtained from this approximation and actual data-
driven result. Feng et al. (2017) tested a simple method that detects asymmetry in
the DD signal. While the former methods aim to assign expiration and inspiration
correctly, the latter aims only for consistency between the different bed positions, which
is sufficient in nearly all cases.

For many applications, the scale of the signal can remain arbitrary, for instance
when phase gating is used. Even for displacement gating, the scale is irrelevant as long as
it remains constant over time. This is however not the case when comparing the signals
of different bed positions or when tracer kinetics are present. COM is less sensitive
to the latter, although still influenced by contrast changes (Feng et al. 2020). Current
methods to stabilize the scale include base-line correction with low-order polynomials or
splines (Bertolli, Arridge, Wollenweber, Stearns, Hutton & Thielemans 2017, Schleyer
et al. 2018), amplitude-normalization over long time scales (Schleyer et al. 2018) and
band-pass filters (Feng et al. 2020). This methods are somewhat ad hoc, see Section 3.3
for further discussion.

3.2.5. Comparison Studies All cited papers compare the DD signal with a hardware
tracker, or sometimes MR navigator, usually reporting correlation coefficients. However,
only a few papers have compared different DD methods against each other (Thielemans
et al. 2013, Ren et al. 2019). Such comparisons are not easy as even the hardware signal
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can be sub-optimal. Bertolli (2018) developed a metric for intra-gate movement to
compare methods, while Ren et al. (2019) used contrast in motion-corrected images.
However, in clinical practice, such comparisons between methods are possibly of lesser
interest nowadays as the state-of-the-art DD methods perform at least as well the
hardware methods (Biither et al. 2020, Walker et al. 2019, Liberini et al. 2021).

3.3. Gating Methodologies

With either external motion tracking system or data-driven approaches, a respiratory
signal over time can be obtained and synchronized with PET LM data. Subsequently,
various gating methods can be applied to generate respiratory gates to reduce motion
and facilitate motion vectors estimation for advanced motion correction as described in
Section 5. The most commonly used gating methods are phase gating and amplitude
gating (Kitamura et al. 2017) (Figure 4). In phase gating, LM data within each
respiratory cycle is divided into several equal phase gates, and corresponding gates
across cycles are combined to generate each phase gated image. Five to eight phase
gates are typically used in clinical studies. In amplitude gating, LM data with the
same displacement range is grouped together regardless of cycle and phase information.
Amplitude gating can be further categorized into equal counts and equal amplitude
gating (Jani et al. 2013). In “equal counts” gating, all gates contain the same amount
of detected events, leading to the same image noise across gated images. However, as
patients could spend more time during expiration than inspiration, such expiration gates
tend to contain less intra-gate motion while inspiration gates contain larger amounts of
intra-gate motion, leading to more blurred gated images. To address this gate-dependent
blurring issue, “equal amplitude” gating was proposed to keep the amount of intra-gate
motion the same across gates by grouping LM events within the same displacement
range. However, this strategy results in different counts/noise levels across gates, which
could lead to gate-dependent quantification variability and pose registration challenges
for motion estimation (Section 4). In some applications, gating is performed on both
displacement and its time-derivative (or phase), see Table 7 in (McClelland et al. 2013)
for references. However, due to the high noise level in the resulting gates, this is generally
only used in combination with motion correction techniques (see Section 5). As opposed
to generating many low count gates, since most patients spend more time breathing
at expiration, LM data only from the end-expiration gate, either defined by phase or
displacement, can be used to generate a single gated image (Liu et al. 2010, van Elmpt
et al. 2011), now available as commercial products GE Q.Static™and Siemens HD-
Chest™. Such image with better trade-off between image noise and intra-gate motion
can contain 30-50% counts with minimal intra-gate motion.

When the respiratory pattern is regular with consistent baseline and amplitude,
phase gating and amplitude gating as well as end-expiration gating can all provide
satisfactory gated images with minimal intra-gate motion. However, with significant
motion pattern change (Liu et al. 2009), all gating method encounter challenges.
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Figure 4: Different gating methodologies, involving a division of the respiratory signal
in either phase or amplitude, with a bin length either defined by phase or displacement.
The bin length can be fixed, based on an average value computed over the whole

acquisition or adapted to each respiratory cycle.

Both intra-cycle variation and inter-cycle variation contribute to intra-gate motion.
Larger motion amplitudes within cycles increase intra-cycle variation, while long-term
amplitude variation and baseline change contribute to inter-cycle variation (Chan
et al. 2013). When long-term amplitude variation and baseline change is observed, one
might attempt to normalize amplitude and/or correct baseline of the respiratory signal
first prior to gating. Such corrections are controversial. If a patient’s internal organ
movement correlates well with the motion signal, either by external device or data-driven
approaches, corrections of baseline and amplitude will cause errors and additional image
blurring in gated images as internal-external correlations are disrupted. On the other
hand, when patients’ internal organ movement does not correlate with motion signals,
such as muscle relaxation induced baseline shift, correction of baseline and amplitude is
expected to improve the quality of gated images. The optimal choices in such situations
are likely patient specific (Gaede et al. 2009, Tonascu et al. 2007, Beddar et al. 2007).
Therefore, advanced data-driven gating guided by motion information derived directly
from internal organs might have advantages, while external devices with high temporal
resolution also have unique advantages. Combination of data-driven and device-driven
gating could be a promising direction to address challenges of respiratory pattern change.
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4. Motion Estimation and Modeling

As previously discussed, respiratory gating produces gates that have low signal-to-noise
ratio (SNR) since each of the PET gates contains reduced statistics; these synchronized
PET gates (4-D PET) can be used for motion estimation. Alternatively, respiratory-
synchronized CT images (4-D CT or 4-D MR) can also be used. This is most commonly
done by image registration of the gated images (Section 4.1). However, this can lead
to limited temporal resolution of the correction process, which depends directly on the
number of produced dynamic volumes. In order to resolve such issues, motion modeling
is a potential solution (Section 4.2). These models provide continuous information about
the internal patient motion based on some surrogate.

4.1. Motion Estimation Using Registration

For several years, respiratory-gated CT seemed to be the only accurate way to accurately
pre-estimate a respiratory motion field. Using a “cine” protocol (Pan et al. 2004)
synchronized with the PET, it is possible to derive a sequence of high-resolution CT
synchronized with the respiratory-gated PET, such that the estimated motion obtained
from the registration of the CT images can be used for MCIR (Section 5.3) (Manjeshwar
et al. 2006, Qiao et al. 2006, Li et al. 2006, Lamare, Carbayo, Cresson, Kontaxakis,
Santos, Cheze-Le Rest, Reader & Visvikis 2007). However, respiratory-gated 4-D CT
involves much higher radiation dose and is not feasible in diagnostic PET imaging. In
addition, breathing pattern changes between PET and 4-D CT could introduce motion
vector mismatch.

In absence of gated CT for attenuation correction, Dawood et al. (2008) then Fayad
et al. (2013) proposed to pre-estimate the motion from gated non-attenuation-corrected
(NAC) reconstructed PET images. This approach has the advantage of requiring a
simple setup (gated PET for motion, conventional CT—or MRI—for attenuation),
but the motion estimation suffers from the poor contrast of the NAC single-gate
reconstructed PET images. GE’s Q.Freeze™ (first version: Wollenweber et al. (2012);
second version: Thiruvenkadam et al. (2015)) therefore registers the attenuation-
corrected (AC) images, ideally reconstructed with matched respiratory-gated CT to
avoid issues with attenuation mismatch. See Section 5.7 for methods to overcome this
issue.

PET/MR hybrid systems have opened new possibilities for motion correction in
PET. By simultaneously acquiring PET and MR, it is possible to derive a 4-D motion
field from the high spatial resolution and high-contrast 4-D MRI, without additional
radiation exposure. This motion field can be utilized for MCIR (cf. Section 5.3), either
on histogram-mode (HM) data (Tsoumpas et al. 2010, Grimm et al. 2013, Petibon
et al. 2014, Manber et al. 2015, Manber et al. 2016, Manber et al. 2018), with Grimm
et al. (2013) forming the basis for Siemens BodyCompass™, or LM data (Guérin
et al. 2011, Chun & Fessler 2012, Fayad, Schmidt, Wiirslin & Visvikis 2015, Fayad,
Odille, Schmidt, Wiirslin, Kiistner, Felblinger & Visvikis 2015, Kiistner et al. 2017). It
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has been shown to be advantageous to estimate the respiratory motion from both PET
and MRI data using a joint cost-function (Fieseler et al. 2014, Kolbitsch et al. 2018).

4.2. Motion Modeling

Motion models encode a relation between the internal deformation and another
measurement (“surrogate”) that can be obtained at high temporal sampling. Different
surrogates have been used, such as the respiratory phase, the value of a respiratory
signal (sometimes completed by its time derivative), or even 2-D MR navigators. Motion
models are used when it is not possible/practical to directly measure (or estimate) the
actual motion of interest with sufficient temporal resolution during image acquisition
(Kiistner et al. 2019, McClelland et al. 2013). Considering a 5 s mean respiratory cycle,
this temporal resolution is usually fixed to 833 ms in case six temporal frames are used
and in the best case to 500 ms for 10 used frames. Moreover, while motion estimation
from gated images assumes that respiratory motion is the same from cycle to cycle
(for phase gating) or the value of the respiratory signal (for amplitude gating), motion
models try to model the inter cycle (breathing difference from cycle to cycle) and intra-
cycle (breathing difference within once cycle) variation affected by the subject’s pose
(De Troyer & Estenne 1984) and the breathing pattern (Sharp et al. 1975). Knowing
that organ motion due to respiration is not repeatable (Benchetrit 2000), such modeling
could replace gated NAC-PET, MRI or CT motion estimation. Note however that there
is a close relation between using a motion model based on a surrogate and gating based
on the same surrogate, see also below. The obtained models can be used for motion
compensation in PET (PET/CT or PET/MRI), see Section 5.3. This has been done by
either evaluating the motion model at the time of every event in the LM data (Livieratos
et al. 2005b, Liu et al. 2011, Chan et al. 2013, Chan et al. 2018), or by gating the PET
data according to the surrogate and using the motion model to compute an approximate
motion field for each gate based on the average surrogate value for that gate (Manber
et al. 2016).

Respiratory motion models can be divided in two categories: patient specific and
population models.

4.2.1. Patient Specific  When no a-priori respiratory motion information can be found
and/or when no respiratory-based mathematical models are already built from an
existing population, a patient specific motion model can be built. Such model will
relates a surrogate (internal, external, data driven) to and internal motion extracted
from images and will be based on a correlation between internal and external structures
respiratory motion (Fayad et al. 2011).

In CT, 4-D volumes often contain artifacts due to inter-cycle variation and the need
to bin the data in a predefined number of gates. Many patient specific motion models
have been proposed in order to resolve these issues (McClelland et al. 2006, Ehrhardt
et al. 2007, McClelland et al. 2010, Fayad, Pan, Pradier & Visvikis 2012, Sun &



PET Respiratory Motion Correction: Quo Vadis? 15

Mok 2012, Zhang et al. 2013). These models relate the acquired external surrogate
motion (pressure belt, real-time position management (RPM), surface information, or
some markerless methods (Rostampour et al. 2018) to the internal structure motion
(registration of 4-D CT images as shown in the previous section) and include therefore
the possibility to model inter- and intra-cycle variations.

In MRI, motion can lead to blurring and respiratory motion compensation is
necessary especially for thoracic and abdominal regions. An accurate motion modeling
is required to make the necessary corrections (Gillman et al. 2017, Munoz et al. 2016).
These models are divided into two categories; based on a motion correction implemented
in a prospective way by scaling the magnetic field gradients during image acquisition
in order to compensate for the effects of the motion on the acquired k-space data
(Manke et al. 2003, Fischer et al. 2006, Baumgartner et al. 2017, Baumgartner
et al. 2014, Celicanin et al. 2014, Ginn et al. 2019, Stemkens et al. 2016) or alternatively
in a retrospective fashion from reconstructed dynamic MR or in combination with
image reconstruction (Odille et al. 2008, Odille et al. 2010). These models can
be used PET motion correction (Fayad, Schmidt, Wiirslin & Visvikis 2015, Manber
et al. 2016, Kiistner et al. 2017).

Motion models can also be estimated from the PET data. However, it is virtually
impossible to reconstruct dynamic PET images at the required temporal resolution while
still obtaining sufficient image quality for respiratory motion estimation. Moreover, the
associated computational cost would also be very high. An alternative approach is to
estimated the model parameters from gated NAC PET images. Such methods were
first developed to relate organ-specific rigid motion to a (1-D) surrogate (Livieratos
et al. 2005b, Liu et al. 2011, Chan et al. 2013) and later extended by fitting a voxel-
specific linear model to the motion fields of each voxel obtained from registering phase-
gated PET images (Chan et al. 2018). This approach was extended towards a 2D
surrogate (displacement and velocity) where the PET data was histogrammed based on
a 2D matrix, similar to dual-gating (Whitehead et al. 2020). As an alternative to using
NAC PET images, Lu et al. (2018) used maximum-likelihood activity and attenuation
correction factors estimation (MLACF) (Rezaei et al. 2014) to reconstructed gated AC
PET images for the motion model estimation, as well as reference phase that best
matches the CT image.

4.2.2.  Population (Atlas-Based) In order to create patient specific models for
diagnostic applications, there is an issue related to the increased dose associated with
4-D CT, which cannot be easily justified in all clinical scenarios. In 4-D MRI, the issue
associated with the use of 4-D CT is irrelevant, given the non-ionising nature of MRI
acquisitions. However, in MRI, the main concerns for motion modeling are the relatively
long acquisition times associated with 4-D MRI which is often incompatible with clinical
protocols and/or the MRI data collected with many of the advanced MRI techniques,
such as tagged magnetic resonance imaging (TMRI) (Moore et al. 2000), cannot be used
for clinical diagnosis. One of the possible solution to handle these issues is the creation
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of population based respiratory motion model. Until now, this category is still under
investigation and therefore is an active research area that have his direct Impact on
imaging (PET/CT and PET/MR) but on therapy too (radiotherapy).

In CT, many population models have been previously developed (McQuaid
et al. 2009, McClelland et al. 2017, Geimer et al. 2017, Fayad et al. 2018, Fayad,
Buerger, Tsoumpas, Cheze-Le-Rest & Visvikis 2012, Wilms et al. 2017). These models
have shown that motion estimation accuracy in the presence of inter-fraction motion
variations can be improved using correspondence models that incorporate motion
information from different patients. Surrogate information are either based on 1-D
respiratory signal acquisition (McClelland et al. 2017) or on external surfaces acquired
using time of flight based cameras (Fayad et al. 2018, Wentz et al. 2012) or internal
features such as the diaphragm (McQuaid et al. 2009). In the latter case, the motion
model was then fit to the PET data based on points in the diaphragm determined from
NAC-PET images (McQuaid et al. 2011).

In MRI, some of the models were recently developed (Peressutti et al. 2013, Fayad,
Buerger, Tsoumpas, Cheze-Le-Rest & Visvikis 2012). However, they still need further
development and validation in order to be accepted as potential solution.

5. Motion Correction Techniques

This section introduces the basics of motion correction in PET image reconstruction.
Motion correction techniques aim at using an estimation of the motion in order to
produce motion artifact-free images.

Section 5.1 describes the statistical model and derives the log-likelihood function.
Section 5.2 describes post-reconstruction registration (PRR) approaches, which consists
of correcting for the motion by registering a sequence of images reconstructed at each
time gate. Sections 5.3 and 5.4 respectfully describe MCIR approaches with pre-
estimated motion and with motion estimated during the reconstruction.

5.1. Statistical Model

The 3-D activity and attenuation images are represented by column vectors A € R
and p € R, n, being the number of voxels in the image. The activity image A is the
parameter to be reconstructed while the attenuation image p is assumed to be already
reconstructed, for example from CT or MRI.

We will use the following notations: [-]; denote the i-th entry of a vector and [-];

‘T is the matrix

denotes the entry at the i-th row and at the j-th column of a matrix;
transpose symbol; L£(¥ | x) denotes the log-likelihood of some parameter ¥ given a

random vector whose distribution is parametrized by ¥; Id is the identity map.

5.1.1. Static Model The PET system is modeled with a ng x n, matrix P, ngq being
the number of detector bins (which may include TOF information), which includes the
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geometry of the system and normalization factors; each entry P;; is the probability
that an annihilation that occurred at voxel j is detected in detector bin ¢ in absence of
attenuation. At each detector i = 1,...,nq, the detected events (counts) resulting from
radioactive decay are usually modeled as independent homogeneous Poisson processes
(i.e., time-independent) with rate A; (in (decay-corrected) number of events per unit of
time) defined by the activity and the attenuation as

Ai = a;(p)[PA]; + (1)
where a;(p) is the attenuation factor of the i-th line of response (LOR), i.e.,

ai(p) = exp (=[Lpl;) , (2)
L being a nq X n, matrix that evaluates the line integrals of p along the LORs defined
by each detector bin i (with incorporation of efficiency effects), and r; is the background
event (scatter and randoms) rate at bin i. The detections occurring during the time
interval [0, 7] are modeled by a collection of independent random variables y;, each of
which following a Poisson distribution of parameter 7A;. For each bin ¢ we have

yi ~ Poisson (g;(A, p)) (3)
where g;(A, p) is the expected number of detections at bin 1, i.e.,

Ui\, ) =7 (a;(p)[PA]; + 1) - (4)
Given the observed events y = [y1,...,¥n,] and omitting terms independent of X, the

HM log-likelihood of the activity image A is

nd
LA|y) = ZL(?Ju@z‘()\aH)) (5)
i=1
with L(z, z) = xlog z — z and with convention 0 - log 0 = 0.
The reconstructed AC activity image A is obtained from the observed data by
maximization of the penalized log-likelihood, i.e.,

A~

A= ar§r>%axﬁ()\ |y) —U(N) (6)

where U is an image regularization term. Optimization problem (6) can be solved with
standard model-based image reconstruction (MBIR) iterative techniques such as the
expectation-maximization (EM) algorithm (Shepp & Vardi 1982, Lange & Carson 1984)
(without regularization) or its modified version (De Pierro 1995, Qi & Huesman 2006)
(with regularization).

5.1.2. Model with Motion In this section we only consider HM-based motion-corrected
PET. We assume that the PET raw data have been regrouped into n, respiratory gates
Y1,-.-,Yn, With no intra-gate respiratory motion. At each gate m, the respiratory
motion from a reference state to the state at gate m is modeled by a 3-D spatial
transformation ¢,,: R® — R3, to which we associate an image-to-image warping
operator W, that maps the activity image A and the attenuation image p to their
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deformed versions W, A and W, u. This model assumes that there is no intra-
gate motion. The warping operator can be implemented by modeling the image as a
continuous object by interpolation (Blume et al. 2010) or using basis functions (Jacobson
& Fessler 2003a, Jacobson & Fessler 2006, Bousse et al. 2016b).

Given the binned data {y,,} at each gate m, the new HM log-likelihood of A and
{pm} is (Bousse et al. 2016b)

L {em} [H{ym}) =) Z L(Yims Yim (X 1oy Pm)) (7)
where
Yim(A, o, @) = Ton (ai(Wep,, 1) [PWo, Al + i) (8)

Yim = [Ym]i i the number of detections at bin i and gate m, 7, is the total duration
of the m-th gate, r;,, is the background event (scatter and randoms) rate at bin i
and gate m and a; was defined in Equation (2). The forward model (8) that accounts
for the deformation of the LORs and attenuation correction factors (ACFs) can be
computed through a “warp-and-project” approach, i.e., by first applying the motion to
the activity image A then by projecting, which does not require to store the motion-
corrected system matrix PW,,  (Jacobson 2006). Similarly, the ACF a;(W,,, 1)
accounts for the motion of the attenuation map p. Alternatively, the motion can be
directly incorporated in the system matrix (Lamare, Cresson, Savean, Cheze-Le Rest,
Reader & Visvikis 2007, Lamare, Carbayo, Cresson, Kontaxakis, Santos, Cheze-Le Rest,
Reader & Visvikis 2007).

The HM log-likelihood L is a measure of goodness of the fit between the observed
data y; ,, and the expected data with motion ; (X, i, ¢o,,) at each bin ¢ and each gate
m, that is to say £ is maximized if at each gate m the deformed images W, A and
W, p the expected number of detections match with the projection data y,,.

5.2. Post-Reconstruction Registration

PRR is achieved in a three-step process. Firstly, the reconstructed 3-D PET image
A, for each gate m is reconstructed from the gated data y,, using a static model
(Section 5.1.1).

Secondly the reconstructed images A, are either registered to a reference image
5\m0 or resampled using a predetermined motion estimate (see Section 4). The
registered /resampled image from gate m to gate mg is denoted S\m,mo.

Finally, the motion-corrected image Xprr (at gate myg) is defined as the weighted

sum or similar of the motion corrected images:
Ng
)\prr = g am)\m,mo- (9)
m=1

For optimal noise properties, the weights «,,, should be proportional to the gate durations
Tm (Chun & Fessler 2013).
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Possibly the first paper using PRR was by Klein et al. (1996) which used optical flow
registration on cardiac-gated PET. Dawood et al. (2006) used optical flow on respiratory
gated NAC images, but did not seem to specify how to handle attenuation. Kinahan
et al. (2006) proposed to use demons registration on gated CT. Thorndyke et al. (2006)
used B-spline registration on the reconstructed PET images. Since then, PRR has
been applied in many different contexts, with more recently using registration from MR
images (King et al. 2011, Dikaios et al. 2012, Wiirslin et al. 2013).

Various authors have suggested ways to cope with registration failures. Dikaios
& Fryer (2012) used a global facto