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Abstract. Positron emission tomography (PET) respiratory motion correction has

been a subject of great interest for the last twenty years, prompted mainly by the

development of multimodality imaging devices such as PET/computed tomography

(CT) and PET/magnetic resonance imaging (MRI). PET respiratory motion correction

involves a number of steps including acquisition synchronization, motion estimation

and finally motion correction. The synchronization steps include the use of different

external device systems or data driven approaches which have been gaining ground

over the last few years. Patient specific or generic motion models using the respiratory

synchronized datasets can be subsequently derived and used for correction either in

the image space or within the image reconstruction process. Similar overall approaches

can be considered and have been proposed for both PET/CT and PET/MRI devices.

Certain variations in the case of PET/MRI include the use of MRI specific sequences

for the registration of respiratory motion information. The proposed review includes

a comprehensive coverage of all these areas of development in field of PET respiratory

motion for different multimodality imaging devices and approaches in terms of

synchronization, estimation and subsequent motion correction. Finally, a section on

perspectives including the potential clinical usage of these approaches is included.

Nomenclature

1-D one-dimensional

2-D two-dimensional
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3-D three-dimensional

4-D four-dimensional

[18F]FDG [18F]fluorodeoxyglucose

AC attenuation-corrected

ACF attenuation correction factor

APD avalanche photo diode

CFR coronary flow reserve

CMRA coronary magnetic resonance angiography

CNN convolutional neural network

COD centroid of distribution

COM center of mass

CT computed tomography

DD data-driven

DR dimensionality reduction

ECG electrocardiogram

EM expectation-maximization

FBP filtered backprojection

FT Fourier transform

HM histogram-mode

IDIF image derived input function

JRM joint reconstruction and motion estimation

LE Laplacian eigenmaps

LM list-mode

LOR line of response

MBIR model-based image reconstruction

MCBR motion correction before reconstruction

MCIR motion-corrected image reconstruction

MIP maximum intensity projection

MLAA maximum-likelihood attenuation and activity estimation

MLACF maximum-likelihood activity and attenuation correction factors estimation

MR magnetic resonance

MRI magnetic resonance imaging

NAC non-attenuation-corrected

PC principal component

PCA principal component analysis

PET positron emission tomography
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PRR post-reconstruction registration

PSF point spread function

ROI region of interest

RPM real-time position management

SAM spectral analysis method

SiPM silicon photomultipliers

SNR signal-to-noise ratio

SPECT single-photon emission computed tomography

SUV standardized uptake value

TAC time-activity curve

TMRI tagged magnetic resonance imaging

TOF time-of-flight

1. Introduction

PET imaging has seen important technical progress during the last decades, both

in hardware (scintillation crystals, photomultipliers, avalanche photo diodes (APDs),

silicon photomultipliers (SiPM), analog and digital signal processing electronics) and

software (scatter correction algorithms, image reconstruction algorithms, etc.). Newly

commercialized PET/CT systems offer a combination of improved spatial and temporal

resolution, a better accuracy in terms of measured radiotracer concentrations, associated

with reduced acquisition times and/or reduced injected dose to the patient.

In parallel to these technical advances, patient motion has been demonstrated as

one of the most prevalent cause of image artifact in PET (Beyer et al. 2003, Osman

et al. 2003, Hunter et al. 2016). Based on phantom acquisitions and simulated results,

Liu et al. (2009) observed a 28% reduction in standardized uptake value (SUV) and

a 130% increase in volume due to motion. PET is a quantitative imaging modality

by nature, offering the possibility to quantitatively assess the tracer concentrations,

both in static investigations with the SUVs, and also in dynamic studies aiming at

quantifying the tracer transport constants through the use of a kinetic model. Not

accounting for subject motion can lead to a potentially severe image quality degradation

and a reduced quantitative accuracy. The motion-induced artifacts, in turn, can lead to

misinterpretation of images and cause errors in subsequent image analysis or in image-

derived information such as PET tumoral volume derived from SUV-based thresholding,

which can be used for subsequent radiotherapy treatment planning, especially for focal

radiation therapy with dose escalation.

Many techniques for the correction of motion corrupted PET images have been

developed in parallel to the technical advances of PET/CT systems during the last

20 years. And yet the complexities of dynamic human anatomy, and the desire to

improve the trade-off between image quality, patient dose and scan time, mean that
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three decades later motion correction remains a topic of investigation. The developed

motion compensation strategies have not as such found widespread acceptance in clinical

practice, mainly due to the complexity of their implementation and the associated

computational burden.

Related reviews have been made on motion correction in PET. Visvikis et al.

(2006) covered the importance of motion compensation in PET/CT systems and

contrasted the correction techniques now often referred to as post-reconstruction

registration (PRR) and motion-corrected image reconstruction (MCIR). Rahmim et al.

(2007) offer a comprehensive review, covering motion measurement and acquisitions,

temporal modeling techniques considering a range of anatomical regions. Nehmeh

& Erdi (2008) provide a review of motion correction for PET, CT, and PET/CT,

covering a range of acquisition and temporal modeling techniques, and focusing on

motion artifacts introduced during attenuation correction. Bettinardi et al. (2010)

and (Bettinardi et al. 2012) review motion management for PET/CT for radiotherapy

planning. McClelland et al. (2013) present a review on respiratory motion models, and

include some applications for PET/magnetic resonance (MR) motion correction. More

recently, Gillman et al. (2017) wrote a review on PET motion correction dedicated to

PET/MR. A recent book chapter presented a general overview of any type of motion

compensation strategy for single photon or positron emission tomography (van den Hoff

et al. 2020). In addition, Kyme & Fulton (2021) review motion estimation and correction

methods in PET, single-photon emission computed tomography (SPECT) and CT.

Finally, Polycarpou et al. (2021) provides an up-to-date review on the synergistic use

of both PET and MR data for PET motion correction in simultaneous PET/MR.

The purpose of this review is to present the range of published methods developed

to address the issue of respiratory motion compensation in PET imaging. The detection

or estimation of the respiration signal will be addressed, as well as the management of

the motion information within the context of PET image reconstruction.

2. Respiratory Motion Management

Methodologies for respiratory motion correction in PET can be decomposed into four

successive stages: acquisition, gating, motion estimation and correction.

Acquisition involves the simultaneous acquisitions of the PET raw data (detected

events) and the patient respiratory signal (Figure 1). The respiratory signal may

be recorded using an external device for the entire PET acquisition duration (see

Section 3.1) or derived from the raw PET data themselves (see Section 3.2). PET

acquisitions are preferably acquired in list-mode (LM) format, or at least in discrete

temporal sinograms. The LM format offers the advantage of a high temporal resolution,

with specific time marks inserted within the raw PET detected events every 100 ms or so.

Moreover, when using an external device to track the patient respiration, the external

device also synchronizes the recorded continuous respiratory signal with the PET LM

acquisition using a simple trigger method. Once the recorded respiratory trace reaches
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a predefined threshold value, a specific trigger is inserted into the LM PET data to

mark this specific instant of the respiratory cycle. The process is repeated at each

respiratory cycle, i.e., each time the trigger threshold is reached. When the surrogate

signal for the respiratory motion is directly extracted from the PET measured data,

PET acquisition and derived respiratory signal are intrinsically synchronized. Such an

approach facilitates the identification of irregular respiratory cycles, either in amplitude

or in duration, and the rejection of the corresponding raw emission data.

Figure 1: Simultaneous acquisitions of the PET raw data in LM format and the patient

respiratory signal, either recorded using an external tracking system, or directly derived

from the PET data.

The gating process consists in the division of the respiratory motion signal into

a number of possible respiratory states. With an appropriate combination of the

number of states (usually between 6 and 10), and the division method, only a small

amount of respiratory motion (ideally negligible) remains present within each respiratory

state. Different division methods have been proposed (see Section 3.3). With the

synchronization of the PET acquisition and the continuous respiratory signal previously

described, the gating process not only consists in dividing the respiratory signal in

different states, but most importantly aims at labeling each PET detected event with

the corresponding respiratory state, by reading in parallel the respiratory signal and the

synchronized PET LM file (Figure 2). It becomes therefore possible to reconstruct a

PET images series synchronized with respiration, each gated PET image corresponding

to one respiratory state. It is evident that the resulting respiration-synchronized images

are less influenced by breathing, but are still not entirely free from these effects. The

second problem encountered is that the different reconstructed synchronized images are

of reduced quality, essentially because they only contain a fraction of the total number
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of events detected during the PET acquisition (Visvikis et al. 2006). As a result, the

benefits of motion compensation can be significantly reduced, as lower statistics in

images can reduce the accuracy of the activity concentration measurement, as well as

functional volume size. These detrimental effects can be compensated for, however, by

increasing the acquisition time by a factor equivalent to the number of reconstructed

synchronized images.

List-mode PET acquisition
assigned with corresponding respiratory states

and rebinned into 5 respiratory-gated sinograms

Gating (example of 5 respiratory gates in phase)

TIME

Figure 2: Gating process: division of the respiratory signal in different respiratory states,

and labeling of each PET detected event with the corresponding respiratory state

To overcome these limitations, respiratory motion compensation methods have been

developed, involving the determination of the respiratory motion, and its subsequent

implementation to the PET data.

Respiratory model formation estimates appropriate model parameters to correct

the PET acquisition for breathing (see Section 4). The chosen model can be a rigid,

affine or non-affine, the latter often parametrized in terms of B-spline warp parameters,

to move the current respiratory bin back to the reference state, or can be a simple

binary signal representing in-phase or out-of-phase (Figure 3). For respiratory motion,

the reference state is often selected as end-exhale because this is the quiescent part of

the respiratory cycle.

Finally, the correction phase appropriately applies the respiratory motion

parameters derived from the registration of the respiratory gated PET image series.

Motion correction may be performed before reconstruction, during reconstruction (on

the system matrix), or after reconstruction, as described in Sections 5.2, 5.3 and 5.4.
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Standard image reconstruction 
algorithm

Motion estimation or modeling
(example of first respiratory state

used as reference)

Figure 3: Motion modeling and estimation

3. Motion Synchronization and Detection

In order to synchronize the PET acquisition with the respiration, it is necessary to

ensure that the respiratory signal covering the entire duration of the PET acquisition is

available. The respiratory trace of the patient can either be recorded using an external

device tracking the patient respiration (Section 3.1), or be directly derived from the

PET raw data (Section 3.2). Section 3.3 describes how the PET data can be gated into

different respiratory states based on the synchronous respiratory trace.

3.1. Motion Tracking Systems

This section describes the available technologies for tracking the patient respiratory

signal in PET, which can be grouped into two main categories. The first is based

on the use of an external detection system in contact with the patient’s body: a

sensor measuring the impedance of a belt placed around the rib cage which varies

according to its elongation (Livieratos et al. 2005a, van Elmpt et al. 2011), or respiratory

bellows (Lang et al. 2006), a thermistor measuring the temperature of the air circulating

during the patient’s breathing (Boucher et al. 2004, Wolthaus et al. 2005), a spirometer

measuring inhaled and exhaled air flows, measurements of air flux, for example

endotracheally (Chun, Reese, Ouyang, Guérin, Catana, Zhu, Alpert & El Fakhri 2012)

(this method is often used in animal studies, but rarely in human studies due to its

invasive nature). Optical motion tracking methods perform a quantitative measure of

external motion due to respiration, providing an accurate surrogate. For example, by

attaching fiducials to the patient’s chest, one-dimensional (1-D) chest movement can

be measured (Abdelnour et al. 2007, Büther et al. 2009, Dawood et al. 2007, Huang

et al. 2014, Nehmeh et al. 2002, Nehmeh et al. 2003, Nehmeh, Erdi, Pan, Yorke, Mageras,

Rosenzweig, Schoder, Mostafavi, Squire, Pevsner, Larson & Humm 2004, Nehmeh, Erdi,

Pan, Pevsner, Rosenzweig, Yorke, Mageras, Schoder, Vernon, Squire, Mostafavi, Larson

& Humm 2004). Such external devices are reliable, relatively cheap, and easy to use,

but they often measure a process indirectly related with respiration, such as air flow

rate, causing a time shift between the respiration related organs motion, and the device
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measurement, which is problematic for the synchronisation of the PET acquisition with

respiration.

In the second category, contact-less external systems track the patient’s body

contours and surface from a distance. Advanced methods are based on the use of

stereoscopic or time-of-flight (TOF) cameras (Alnowami et al. 2012, Gilles et al. 2016,

Kyme et al. 2014, Heß et al. 2015), or high-precision systems such as laser scanners which

derive surface models of the monitored object without the need for fiducials (Brahme

et al. 2008). Although optical devices require additional hardware and processing, they

remain relatively simple to implement.

A possible limitation of all external tracking systems is the additional hardware

setup, which may be uncomfortable for the patient, and require additional time

for the patient preparation, especially for patients with psychological (Törnqvist

et al. 2006) or neurological (González et al. 1999) conditions, or in pediatrics (Edwards

& Arthurs 2011).

Bettinardi et al. (2013) have published an extensive review about motion-tracking

systems, including respiratory motion tracking systems, and their applications in

PET/CT imaging.

3.2. PET Data-Driven Methodologies

There is an increasing interest in methods that extract a surrogate signal for the

respiratory motion directly from the PET measured data (Kesner et al. 2014), often

called “data-driven” or “device-less” gating or also “self-gating”. This is motivated

by the extra cost and patient management associated to the additional device,

potential issues due to the capability of the external device (Lupi et al. 2009, Liu

et al. 2010, Didierlaurent et al. 2012), but also because of some evidence of hysteresis

between the internal movement and external device (Ozhasoglu & Murphy 2002, Gierga

et al. 2005). In the following few paragraphs, we review this work concentrating on

methods that have been applied to PET data.

3.2.1. Image-Based Methods Initial work used the sequence of images reconstructed

without attenuation, obtained for instance every 0.5 s. Many groups compute the

center of mass (COM) in an region of interest (ROI) and use this as an indicator

of motion (Klein et al. 2001, Bundschuh et al. 2007) and cardiac SPECT (Bruyant

et al. 2002). Filtering allows separation of a respiratory and cardiac signal in cardiac

PET (Büther et al. 2009). Visvikis et al. (2003) placed an ROI over edges of boundaries

(using non-attenuation corrected images) and studied the time-activity curve (TAC). A

characteristic frequency was derived via the Fourier transform (FT) which then allowed

finding amplitude and phase images. Blume et al. (2012) used cross-correlation between

low-resolution images reconstructed from 1 s time frames and optimized a cost-function

to maximize the cross-correlation between time frames in each gate. These image-based

methods are however computationally expensive and need a high contrast region, such
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as the myocardium in cardiac studies, that can be tracked over time.

3.2.2. Sinogram-Based Methods More recently, many authors developed methods that

work on the projection data. Although the PET raw data are very large, most methods

were developed for down-sampled data such that memory requirements are drastically

reduced. Schleyer et al. (2009) then Schleyer et al. (2011) used an analysis in frequency

space to attempt to find dominant respiratory frequencies but proceeds by automatically

finding masks where the movement occurs. A novel idea in this method was to convert

the mask to a signed template such that edges moving in and out of the mask do not

cancel each other. This spectral analysis method (SAM) method was later extended for

dynamic PET by using a sliding-window technique. It was tested for cardiac studies

(Schleyer et al. 2014). A further extension for continuous bed movement showed good

results in first evaluations (Schleyer et al. 2018, Büther et al. 2020). This method forms

the basis for the Siemens OncoFreeze AI� method. Kesner & Kuntner (2010) classified

elements of (down-sampled) projection data based on the relative power in a respiratory

frequency band, and used this to iteratively construct a TAC of increasing power in the

respiratory band.

The previous methods were designed for quasi-periodic movement. A different class

of methods applies the generic techniques of dimensionality reduction (DR), also known

as “Manifold Learning”. DR techniques attempt to find a mapping between a low-

dimensional space and the original data such that the structure in the original data can

be more easily observed in the low-dimensional space (Van der Maaten et al. 2009). To

our knowledge, DR was first used in the context of respiratory and cardiac motion by

Zhang et al. (2006) where Isomap (Tenenbaum et al. 2000) was used to map a dynamic

sequences of MR images to a two-dimensional (2-D) space, roughly corresponding to

respiratory and cardiac movement. Laplacian eigenmaps (LE) (Belkin & Niyogi 2003),

a different DR technique, was used for respiratory gating of ultrasound and MRI data

(Wachinger et al. 2011). Thielemans, Rathore, Engbrant & Razifar (2011) applied

principal component analysis (PCA) (Pearson 1901) for respiratory gating of PET data

and four-dimensional (4-D) CT Data. The method selects the principal component

with the highest power in the respiratory frequency band. This method forms the basis

for the GE MOTIONFREE� option and has been evaluated on large clinical data-sets

(Walker et al. 2019, Liberini et al. 2021).

Advantages of the DR methods include noise-suppression, automatic inclusion of

TOF (Bertolli et al. 2016), the fact that they do not rely on detection motion, but can

also pick up density changes (Bertolli, Cuplov, Arridge, Stearns, Wollenweber, Hutton

& Thielemans 2017), and that they can readily be generalized for other types of motion,

including non-periodic motion (see Section 6.3). However, the latter is also a weakness

as they can pick up the wrong signal such as kinetics or gross patient motion.

3.2.3. List-Mode-Based Methods The final class of methods works directly from the

LM data, without constructing intermediate dynamic sinograms.
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A method for respiratory gating specific to three-dimensional (3-D) PET (and which

does not need any ROIs) was developed by He et al. (2008). The approach relies on the

fact that axial motion will affect the total count rate, due to the axially non-uniform

sensitivity in 3-D PET. The count rate is therefore used as the respiratory signal.The

main advantage of this method is that it is very easy to implement. It can in principle

also give information about non-periodic movement. However, it relies on axial motion

and sufficient contrast.

The COM method can be implemented directly on the LM data, called centroid of

distribution (COD) by some authors. This benefits from the availability of TOF as it

allows concentrating on a ROI (Ren et al. 2017). Feng et al. (2017) developed a method

that optimised the ROI to get a better respiratory signal.

3.2.4. Sign and Scale Determination All of the above methods obtain a signal that

suffers from ambiguity in both scale and sign. This is even the case for the COM method,

see (Feng et al. 2017).

The sign ambiguity can be particularly detrimental in whole-body studies as it could

lead to amalgamation of end-of-inspiration and end-of-expiration data in the same gate.

Schleyer et al. (2011) estimate the sign from (rigid) registration of maximum intensity

projection (MIP) images reconstructed with filtered backprojection (FBP) (without

attenuation correction). Bertolli, Arridge, Wollenweber, Stearns, Hutton & Thielemans

(2017) developed two sinogram methods based on the approximation that the motion is

in axial direction only, and investigating the correlation between the data-driven (DD)

signal/principal component (PC) obtained from this approximation and actual data-

driven result. Feng et al. (2017) tested a simple method that detects asymmetry in

the DD signal. While the former methods aim to assign expiration and inspiration

correctly, the latter aims only for consistency between the different bed positions, which

is sufficient in nearly all cases.

For many applications, the scale of the signal can remain arbitrary, for instance

when phase gating is used. Even for displacement gating, the scale is irrelevant as long as

it remains constant over time. This is however not the case when comparing the signals

of different bed positions or when tracer kinetics are present. COM is less sensitive

to the latter, although still influenced by contrast changes (Feng et al. 2020). Current

methods to stabilize the scale include base-line correction with low-order polynomials or

splines (Bertolli, Arridge, Wollenweber, Stearns, Hutton & Thielemans 2017, Schleyer

et al. 2018), amplitude-normalization over long time scales (Schleyer et al. 2018) and

band-pass filters (Feng et al. 2020). This methods are somewhat ad hoc, see Section 3.3

for further discussion.

3.2.5. Comparison Studies All cited papers compare the DD signal with a hardware

tracker, or sometimes MR navigator, usually reporting correlation coefficients. However,

only a few papers have compared different DD methods against each other (Thielemans

et al. 2013, Ren et al. 2019). Such comparisons are not easy as even the hardware signal
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can be sub-optimal. Bertolli (2018) developed a metric for intra-gate movement to

compare methods, while Ren et al. (2019) used contrast in motion-corrected images.

However, in clinical practice, such comparisons between methods are possibly of lesser

interest nowadays as the state-of-the-art DD methods perform at least as well the

hardware methods (Büther et al. 2020, Walker et al. 2019, Liberini et al. 2021).

3.3. Gating Methodologies

With either external motion tracking system or data-driven approaches, a respiratory

signal over time can be obtained and synchronized with PET LM data. Subsequently,

various gating methods can be applied to generate respiratory gates to reduce motion

and facilitate motion vectors estimation for advanced motion correction as described in

Section 5. The most commonly used gating methods are phase gating and amplitude

gating (Kitamura et al. 2017) (Figure 4). In phase gating, LM data within each

respiratory cycle is divided into several equal phase gates, and corresponding gates

across cycles are combined to generate each phase gated image. Five to eight phase

gates are typically used in clinical studies. In amplitude gating, LM data with the

same displacement range is grouped together regardless of cycle and phase information.

Amplitude gating can be further categorized into equal counts and equal amplitude

gating (Jani et al. 2013). In “equal counts” gating, all gates contain the same amount

of detected events, leading to the same image noise across gated images. However, as

patients could spend more time during expiration than inspiration, such expiration gates

tend to contain less intra-gate motion while inspiration gates contain larger amounts of

intra-gate motion, leading to more blurred gated images. To address this gate-dependent

blurring issue, “equal amplitude” gating was proposed to keep the amount of intra-gate

motion the same across gates by grouping LM events within the same displacement

range. However, this strategy results in different counts/noise levels across gates, which

could lead to gate-dependent quantification variability and pose registration challenges

for motion estimation (Section 4). In some applications, gating is performed on both

displacement and its time-derivative (or phase), see Table 7 in (McClelland et al. 2013)

for references. However, due to the high noise level in the resulting gates, this is generally

only used in combination with motion correction techniques (see Section 5). As opposed

to generating many low count gates, since most patients spend more time breathing

at expiration, LM data only from the end-expiration gate, either defined by phase or

displacement, can be used to generate a single gated image (Liu et al. 2010, van Elmpt

et al. 2011), now available as commercial products GE Q.Static� and Siemens HD-

Chest�. Such image with better trade-off between image noise and intra-gate motion

can contain 30-50% counts with minimal intra-gate motion.

When the respiratory pattern is regular with consistent baseline and amplitude,

phase gating and amplitude gating as well as end-expiration gating can all provide

satisfactory gated images with minimal intra-gate motion. However, with significant

motion pattern change (Liu et al. 2009), all gating method encounter challenges.
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Figure 4: Different gating methodologies, involving a division of the respiratory signal

in either phase or amplitude, with a bin length either defined by phase or displacement.

The bin length can be fixed, based on an average value computed over the whole

acquisition or adapted to each respiratory cycle.

Both intra-cycle variation and inter-cycle variation contribute to intra-gate motion.

Larger motion amplitudes within cycles increase intra-cycle variation, while long-term

amplitude variation and baseline change contribute to inter-cycle variation (Chan

et al. 2013). When long-term amplitude variation and baseline change is observed, one

might attempt to normalize amplitude and/or correct baseline of the respiratory signal

first prior to gating. Such corrections are controversial. If a patient’s internal organ

movement correlates well with the motion signal, either by external device or data-driven

approaches, corrections of baseline and amplitude will cause errors and additional image

blurring in gated images as internal-external correlations are disrupted. On the other

hand, when patients’ internal organ movement does not correlate with motion signals,

such as muscle relaxation induced baseline shift, correction of baseline and amplitude is

expected to improve the quality of gated images. The optimal choices in such situations

are likely patient specific (Gaede et al. 2009, Ionascu et al. 2007, Beddar et al. 2007).

Therefore, advanced data-driven gating guided by motion information derived directly

from internal organs might have advantages, while external devices with high temporal

resolution also have unique advantages. Combination of data-driven and device-driven

gating could be a promising direction to address challenges of respiratory pattern change.
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4. Motion Estimation and Modeling

As previously discussed, respiratory gating produces gates that have low signal-to-noise

ratio (SNR) since each of the PET gates contains reduced statistics; these synchronized

PET gates (4-D PET) can be used for motion estimation. Alternatively, respiratory-

synchronized CT images (4-D CT or 4-D MR) can also be used. This is most commonly

done by image registration of the gated images (Section 4.1). However, this can lead

to limited temporal resolution of the correction process, which depends directly on the

number of produced dynamic volumes. In order to resolve such issues, motion modeling

is a potential solution (Section 4.2). These models provide continuous information about

the internal patient motion based on some surrogate.

4.1. Motion Estimation Using Registration

For several years, respiratory-gated CT seemed to be the only accurate way to accurately

pre-estimate a respiratory motion field. Using a “cine” protocol (Pan et al. 2004)

synchronized with the PET, it is possible to derive a sequence of high-resolution CT

synchronized with the respiratory-gated PET, such that the estimated motion obtained

from the registration of the CT images can be used for MCIR (Section 5.3) (Manjeshwar

et al. 2006, Qiao et al. 2006, Li et al. 2006, Lamare, Carbayo, Cresson, Kontaxakis,

Santos, Cheze-Le Rest, Reader & Visvikis 2007). However, respiratory-gated 4-D CT

involves much higher radiation dose and is not feasible in diagnostic PET imaging. In

addition, breathing pattern changes between PET and 4-D CT could introduce motion

vector mismatch.

In absence of gated CT for attenuation correction, Dawood et al. (2008) then Fayad

et al. (2013) proposed to pre-estimate the motion from gated non-attenuation-corrected

(NAC) reconstructed PET images. This approach has the advantage of requiring a

simple setup (gated PET for motion, conventional CT—or MRI—for attenuation),

but the motion estimation suffers from the poor contrast of the NAC single-gate

reconstructed PET images. GE’s Q.Freeze� (first version: Wollenweber et al. (2012);

second version: Thiruvenkadam et al. (2015)) therefore registers the attenuation-

corrected (AC) images, ideally reconstructed with matched respiratory-gated CT to

avoid issues with attenuation mismatch. See Section 5.7 for methods to overcome this

issue.

PET/MR hybrid systems have opened new possibilities for motion correction in

PET. By simultaneously acquiring PET and MR, it is possible to derive a 4-D motion

field from the high spatial resolution and high-contrast 4-D MRI, without additional

radiation exposure. This motion field can be utilized for MCIR (cf. Section 5.3), either

on histogram-mode (HM) data (Tsoumpas et al. 2010, Grimm et al. 2013, Petibon

et al. 2014, Manber et al. 2015, Manber et al. 2016, Manber et al. 2018), with Grimm

et al. (2013) forming the basis for Siemens BodyCompass�, or LM data (Guérin

et al. 2011, Chun & Fessler 2012, Fayad, Schmidt, Würslin & Visvikis 2015, Fayad,

Odille, Schmidt, Würslin, Küstner, Felblinger & Visvikis 2015, Küstner et al. 2017). It
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has been shown to be advantageous to estimate the respiratory motion from both PET

and MRI data using a joint cost-function (Fieseler et al. 2014, Kolbitsch et al. 2018).

4.2. Motion Modeling

Motion models encode a relation between the internal deformation and another

measurement (“surrogate”) that can be obtained at high temporal sampling. Different

surrogates have been used, such as the respiratory phase, the value of a respiratory

signal (sometimes completed by its time derivative), or even 2-D MR navigators. Motion

models are used when it is not possible/practical to directly measure (or estimate) the

actual motion of interest with sufficient temporal resolution during image acquisition

(Küstner et al. 2019, McClelland et al. 2013). Considering a 5 s mean respiratory cycle,

this temporal resolution is usually fixed to 833 ms in case six temporal frames are used

and in the best case to 500 ms for 10 used frames. Moreover, while motion estimation

from gated images assumes that respiratory motion is the same from cycle to cycle

(for phase gating) or the value of the respiratory signal (for amplitude gating), motion

models try to model the inter cycle (breathing difference from cycle to cycle) and intra-

cycle (breathing difference within once cycle) variation affected by the subject’s pose

(De Troyer & Estenne 1984) and the breathing pattern (Sharp et al. 1975). Knowing

that organ motion due to respiration is not repeatable (Benchetrit 2000), such modeling

could replace gated NAC-PET, MRI or CT motion estimation. Note however that there

is a close relation between using a motion model based on a surrogate and gating based

on the same surrogate, see also below. The obtained models can be used for motion

compensation in PET (PET/CT or PET/MRI), see Section 5.3. This has been done by

either evaluating the motion model at the time of every event in the LM data (Livieratos

et al. 2005b, Liu et al. 2011, Chan et al. 2013, Chan et al. 2018), or by gating the PET

data according to the surrogate and using the motion model to compute an approximate

motion field for each gate based on the average surrogate value for that gate (Manber

et al. 2016).

Respiratory motion models can be divided in two categories: patient specific and

population models.

4.2.1. Patient Specific When no a-priori respiratory motion information can be found

and/or when no respiratory-based mathematical models are already built from an

existing population, a patient specific motion model can be built. Such model will

relates a surrogate (internal, external, data driven) to and internal motion extracted

from images and will be based on a correlation between internal and external structures

respiratory motion (Fayad et al. 2011).

In CT, 4-D volumes often contain artifacts due to inter-cycle variation and the need

to bin the data in a predefined number of gates. Many patient specific motion models

have been proposed in order to resolve these issues (McClelland et al. 2006, Ehrhardt

et al. 2007, McClelland et al. 2010, Fayad, Pan, Pradier & Visvikis 2012, Sun &
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Mok 2012, Zhang et al. 2013). These models relate the acquired external surrogate

motion (pressure belt, real-time position management (RPM), surface information, or

some markerless methods (Rostampour et al. 2018) to the internal structure motion

(registration of 4-D CT images as shown in the previous section) and include therefore

the possibility to model inter- and intra-cycle variations.

In MRI, motion can lead to blurring and respiratory motion compensation is

necessary especially for thoracic and abdominal regions. An accurate motion modeling

is required to make the necessary corrections (Gillman et al. 2017, Munoz et al. 2016).

These models are divided into two categories; based on a motion correction implemented

in a prospective way by scaling the magnetic field gradients during image acquisition

in order to compensate for the effects of the motion on the acquired k-space data

(Manke et al. 2003, Fischer et al. 2006, Baumgartner et al. 2017, Baumgartner

et al. 2014, Celicanin et al. 2014, Ginn et al. 2019, Stemkens et al. 2016) or alternatively

in a retrospective fashion from reconstructed dynamic MR or in combination with

image reconstruction (Odille et al. 2008, Odille et al. 2010). These models can

be used PET motion correction (Fayad, Schmidt, Würslin & Visvikis 2015, Manber

et al. 2016, Küstner et al. 2017).

Motion models can also be estimated from the PET data. However, it is virtually

impossible to reconstruct dynamic PET images at the required temporal resolution while

still obtaining sufficient image quality for respiratory motion estimation. Moreover, the

associated computational cost would also be very high. An alternative approach is to

estimated the model parameters from gated NAC PET images. Such methods were

first developed to relate organ-specific rigid motion to a (1-D) surrogate (Livieratos

et al. 2005b, Liu et al. 2011, Chan et al. 2013) and later extended by fitting a voxel-

specific linear model to the motion fields of each voxel obtained from registering phase-

gated PET images (Chan et al. 2018). This approach was extended towards a 2D

surrogate (displacement and velocity) where the PET data was histogrammed based on

a 2D matrix, similar to dual-gating (Whitehead et al. 2020). As an alternative to using

NAC PET images, Lu et al. (2018) used maximum-likelihood activity and attenuation

correction factors estimation (MLACF) (Rezaei et al. 2014) to reconstructed gated AC

PET images for the motion model estimation, as well as reference phase that best

matches the CT image.

4.2.2. Population (Atlas-Based) In order to create patient specific models for

diagnostic applications, there is an issue related to the increased dose associated with

4-D CT, which cannot be easily justified in all clinical scenarios. In 4-D MRI, the issue

associated with the use of 4-D CT is irrelevant, given the non-ionising nature of MRI

acquisitions. However, in MRI, the main concerns for motion modeling are the relatively

long acquisition times associated with 4-D MRI which is often incompatible with clinical

protocols and/or the MRI data collected with many of the advanced MRI techniques,

such as tagged magnetic resonance imaging (TMRI) (Moore et al. 2000), cannot be used

for clinical diagnosis. One of the possible solution to handle these issues is the creation
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of population based respiratory motion model. Until now, this category is still under

investigation and therefore is an active research area that have his direct Impact on

imaging (PET/CT and PET/MR) but on therapy too (radiotherapy).

In CT, many population models have been previously developed (McQuaid

et al. 2009, McClelland et al. 2017, Geimer et al. 2017, Fayad et al. 2018, Fayad,

Buerger, Tsoumpas, Cheze-Le-Rest & Visvikis 2012, Wilms et al. 2017). These models

have shown that motion estimation accuracy in the presence of inter-fraction motion

variations can be improved using correspondence models that incorporate motion

information from different patients. Surrogate information are either based on 1-D

respiratory signal acquisition (McClelland et al. 2017) or on external surfaces acquired

using time of flight based cameras (Fayad et al. 2018, Wentz et al. 2012) or internal

features such as the diaphragm (McQuaid et al. 2009). In the latter case, the motion

model was then fit to the PET data based on points in the diaphragm determined from

NAC-PET images (McQuaid et al. 2011).

In MRI, some of the models were recently developed (Peressutti et al. 2013, Fayad,

Buerger, Tsoumpas, Cheze-Le-Rest & Visvikis 2012). However, they still need further

development and validation in order to be accepted as potential solution.

5. Motion Correction Techniques

This section introduces the basics of motion correction in PET image reconstruction.

Motion correction techniques aim at using an estimation of the motion in order to

produce motion artifact-free images.

Section 5.1 describes the statistical model and derives the log-likelihood function.

Section 5.2 describes post-reconstruction registration (PRR) approaches, which consists

of correcting for the motion by registering a sequence of images reconstructed at each

time gate. Sections 5.3 and 5.4 respectfully describe MCIR approaches with pre-

estimated motion and with motion estimated during the reconstruction.

5.1. Statistical Model

The 3-D activity and attenuation images are represented by column vectors λ ∈ Rnv
+

and µ ∈ Rnv
+ , nv being the number of voxels in the image. The activity image λ is the

parameter to be reconstructed while the attenuation image µ is assumed to be already

reconstructed, for example from CT or MRI.

We will use the following notations: [·]i denote the i-th entry of a vector and [·]i,j
denotes the entry at the i-th row and at the j-th column of a matrix; ‘>’ is the matrix

transpose symbol; L(ϑ | x) denotes the log-likelihood of some parameter ϑ given a

random vector whose distribution is parametrized by ϑ; Id is the identity map.

5.1.1. Static Model The PET system is modeled with a nd × nv matrix P , nd being

the number of detector bins (which may include TOF information), which includes the
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geometry of the system and normalization factors; each entry Pi,j is the probability

that an annihilation that occurred at voxel j is detected in detector bin i in absence of

attenuation. At each detector i = 1, . . . , nd, the detected events (counts) resulting from

radioactive decay are usually modeled as independent homogeneous Poisson processes

(i.e., time-independent) with rate Λi (in (decay-corrected) number of events per unit of

time) defined by the activity and the attenuation as

Λi = ai(µ)[Pλ]i + ri (1)

where ai(µ) is the attenuation factor of the i-th line of response (LOR), i.e.,

ai(µ) = exp (−[Lµ]i) , (2)

L being a nd × nv matrix that evaluates the line integrals of µ along the LORs defined

by each detector bin i (with incorporation of efficiency effects), and ri is the background

event (scatter and randoms) rate at bin i. The detections occurring during the time

interval [0, τ ] are modeled by a collection of independent random variables yi, each of

which following a Poisson distribution of parameter τΛi. For each bin i we have

yi ∼ Poisson (ȳi(λ,µ)) (3)

where ȳi(λ,µ) is the expected number of detections at bin i, i.e.,

ȳi(λ,µ) = τ (ai(µ)[Pλ]i + ri) . (4)

Given the observed events y = [y1, . . . , ynd
]> and omitting terms independent of λ, the

HM log-likelihood of the activity image λ is

L(λ | y) =

nd∑
i=1

L(yi, ȳi(λ,µ)) (5)

with L(x, z) = x log z − z and with convention 0 · log 0 = 0.

The reconstructed AC activity image λ̂ is obtained from the observed data by

maximization of the penalized log-likelihood, i.e.,

λ̂ = argmax
λ≥0

L(λ | y)− U(λ) (6)

where U is an image regularization term. Optimization problem (6) can be solved with

standard model-based image reconstruction (MBIR) iterative techniques such as the

expectation-maximization (EM) algorithm (Shepp & Vardi 1982, Lange & Carson 1984)

(without regularization) or its modified version (De Pierro 1995, Qi & Huesman 2006)

(with regularization).

5.1.2. Model with Motion In this section we only consider HM-based motion-corrected

PET. We assume that the PET raw data have been regrouped into ng respiratory gates

y1, . . . ,yng with no intra-gate respiratory motion. At each gate m, the respiratory

motion from a reference state to the state at gate m is modeled by a 3-D spatial

transformation ϕm: R3 → R3, to which we associate an image-to-image warping

operator Wϕm that maps the activity image λ and the attenuation image µ to their
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deformed versions Wϕmλ and Wϕmµ. This model assumes that there is no intra-

gate motion. The warping operator can be implemented by modeling the image as a

continuous object by interpolation (Blume et al. 2010) or using basis functions (Jacobson

& Fessler 2003a, Jacobson & Fessler 2006, Bousse et al. 2016b).

Given the binned data {ym} at each gate m, the new HM log-likelihood of λ and

{ϕm} is (Bousse et al. 2016b)

L(λ, {ϕm} | {ym}) =

ng∑
m=1

nd∑
i=1

L(yi,m, ȳi,m(λ,µ,ϕm)) (7)

where

ȳi,m(λ,µ,ϕm) = τm (ai(Wϕmµ)[PWϕmλ]i + ri,m) , (8)

yi,m = [ym]i is the number of detections at bin i and gate m, τm is the total duration

of the m-th gate, ri,m is the background event (scatter and randoms) rate at bin i

and gate m and ai was defined in Equation (2). The forward model (8) that accounts

for the deformation of the LORs and attenuation correction factors (ACFs) can be

computed through a “warp-and-project” approach, i.e., by first applying the motion to

the activity image λ then by projecting, which does not require to store the motion-

corrected system matrix PWϕm (Jacobson 2006). Similarly, the ACF ai(Wϕmµ)

accounts for the motion of the attenuation map µ. Alternatively, the motion can be

directly incorporated in the system matrix (Lamare, Cresson, Savean, Cheze-Le Rest,

Reader & Visvikis 2007, Lamare, Carbayo, Cresson, Kontaxakis, Santos, Cheze-Le Rest,

Reader & Visvikis 2007).

The HM log-likelihood L is a measure of goodness of the fit between the observed

data yi,m and the expected data with motion ȳi,m(λ,µ,ϕm) at each bin i and each gate

m, that is to say L is maximized if at each gate m the deformed images Wϕmλ and

Wϕmµ the expected number of detections match with the projection data ym.

5.2. Post-Reconstruction Registration

PRR is achieved in a three-step process. Firstly, the reconstructed 3-D PET image

λ̂m for each gate m is reconstructed from the gated data ym using a static model

(Section 5.1.1).

Secondly the reconstructed images λ̂m are either registered to a reference image

λ̂m0 or resampled using a predetermined motion estimate (see Section 4). The

registered/resampled image from gate m to gate m0 is denoted λ̂m,m0 .

Finally, the motion-corrected image λ̂prr (at gate m0) is defined as the weighted

sum or similar of the motion corrected images:

λ̂prr =

ng∑
m=1

αmλ̂m,m0 . (9)

For optimal noise properties, the weights αm should be proportional to the gate durations

τm (Chun & Fessler 2013).
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Possibly the first paper using PRR was by Klein et al. (1996) which used optical flow

registration on cardiac-gated PET. Dawood et al. (2006) used optical flow on respiratory

gated NAC images, but did not seem to specify how to handle attenuation. Kinahan

et al. (2006) proposed to use demons registration on gated CT. Thorndyke et al. (2006)

used B-spline registration on the reconstructed PET images. Since then, PRR has

been applied in many different contexts, with more recently using registration from MR

images (King et al. 2011, Dikaios et al. 2012, Würslin et al. 2013).

Various authors have suggested ways to cope with registration failures. Dikaios

& Fryer (2012) used a global factor per gate based on mutual-information metrics.

Thielemans, Gopalakrishnan, Roy, Srikrishnan, Thiruvenkadam, Wollenweber &

Manjeshwar (2011) used local weights based on the deformation fields. The first version

of Q.Freeze, the commercial product of GE Healthcare, used a median of the registered

images as opposed to a sum.

PRR approaches are relatively simple to implement. However, they have several

potential drawbacks. The single-gate reconstructed images suffer from attenuation

correction artifacts as the attenuation map is not aligned with all the PET gates, unless

matched attenuation (e.g., from cine CT, gated MR or warping via the determined

motion) are available, see Section 5.7. In addition, the post-registration interpolation

induces smoothing. On the other hand, the smoothing acts as (possibly unexpected)

noise reduction (Polycarpou et al. 2012, Tsoumpas et al. 2013). The smoothing can be

resolved by using super-resolution techniques (Wallach et al. 2012). Another drawback of

PRR is that the gated images can suffer from bias due to the low-count data (Polycarpou

et al. 2012, Tsoumpas et al. 2013).

5.3. Motion Correction Incorporated Reconstruction: Pre-estimated Motion

MCIR consists in reconstructing the activity image by maximization of the (penalized)

log-likelihood (Equation (7)) with respect to λ using an estimate of the motion {ϕ̂m}.
This section describes MCIR techniques in which motion estimation and motion-

corrected reconstruction are performed in two different steps.

In a first step, an estimate ϕ̂m of the true respiratory motion ϕm at each gate m is

obtained, either by registering the gated reconstructed PET images in the same way as

for PRR techniques, or with a motion model obtained from separate measurement (cf.

Section 4).

In a second step, the image is reconstructed from the gated data {ym} with

incorporation of the estimated motion {ϕ̂m}. This is generally achieved by maximization

of the maximized log-likelihood with respect to λ and using the estimated motion ϕ̂m,

i.e.,

λ̂mcir = arg max
λ

L(λ, {ϕ̂m} | {ym})− U(λ) . (10)

When a reference gate m0 is chosen for reconstruction then ϕm0 = Id. Solving (10)

can be achieved with the same iterative algorithms as for the static case (6) with the

motion-corrected system matrices PWϕm and ACFs ai(Wϕmµ).
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Early research on MCIR did not address the estimation of the motion but rather

investigate the possibility of correcting for motion within an EM-like algorithm from HM

or LM data (Qi & Huesman 2002, Rahmim et al. 2004, Livieratos et al. 2005a, Lamare,

Cresson, Savean, Cheze-Le Rest, Reader & Visvikis 2007).

MCIR methods are in principle straightforward to implement, provided that

the motion warps Wϕm and W>
ϕm

can be computed. Chun & Fessler (2013) have

demonstrated when using exact motion {ϕm} MCIR always outperforms PRR in terms

of variance, and the gap between the two approaches increases when the gates have

significantly different duration. This suggest that MCIR is preferable to PRR. However,

motion estimation errors may introduce further bias and/or variance into MCIR images

and would reduce the gap between MCIR and PRR. To the best of our knowledge, the

United Imaging Healthcare (UIH) HYPER FOCUS�product is the only commercial

implementation of an MCIR algorithm in PET. It uses motion estimates obtained by

registering gated PET images to the single CT.

While MCIR is typically implemented in a HM-based reconstruction framework,

it can also be implemented in LM-based reconstruction framework (Lamare, Cresson,

Savean, Cheze-Le Rest, Reader & Visvikis 2007) using the same motion estimation.

One advantage of LM-based correction is the potential of correcting intra-gate motion.

Using the correlation between external motion signal acquired with high temporal

resolution and internal organ movements, continuous motion information also with high

temporal resolution can be derived in both rigid and non-rigid fashion. Subsequently,

LM-based correction can be applied for event-by-event correction to eliminate intra-

gate motion (Carson et al. 2003, Lamare, Cresson, Savean, Cheze-Le Rest, Reader &

Visvikis 2007, Chan et al. 2013, Chan et al. 2018). Another advantage is that event-

by-event correction provides unique opportunities for motion correction in dynamic

PET (parametric imaging), while HM-based MCIR is more suitable for static PET

(Yu et al. 2016). Note that for LM-based MCIR the warp-and-project approach does

not suffice as the entries of the motion-compensated system matrix need to be computed

individually for each event.

For rigid or affine motion, an alternative to the approach described above, i.e.,

adapting the system matrix for the motion, is to precorrect the LM or HM data

usually after normalising for detection efficiencies (Fulton 2001, Bloomfield et al. 2003).

This approach, sometimes called “LOR-repositioning”, has been used to correct for

respiratory motion of (almost) rigid organs such as the myocardium (Livieratos

et al. 2005c) and kidney (Chan et al. 2013), but is not further described here as it cannot

handle the complex internal deformations due to respiration. See (Rahmim 2005) for

a review of such methods related to brain imaging. For non-rigid respiratory motion

, “curve-of-response” instead of “line-of-response” can be implemented in LM-based

reconstruction for correction (Chan et al. 2018).
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5.4. Motion Correction Incorporated Reconstruction: Joint Reconstruction and Motion

Estimation

Instead of using a pre-estimated motion from a separate measurement, MCIR can

estimate the motion from the gated PET projection data {ym} within a joint estimation

of λ and {ϕm} by maximization of the penalized log-likelihood:

(λ̂mcir, {ϕ̂m}) = arg max
λ≥0, {ϕm}

L(λ, {ϕm} | {ym})− V ({ϕm})− U(λ) (11)

where we assumed a parametric model for ϕm and V is a regularization term for

{ϕm}—which can incorporate temporal regularization. In other words, this approach

estimates a deformation field such that the activity and attenuation images match the

PET projection data. We refer to this approach as joint reconstruction and motion

estimation (JRM). The main advantage of JRM compared to other MCIR is that it

does not require additional hardware to measure the motion.

A reference gate m0 can be chosen for the reconstruction, in which case ϕm0 = Id;

this assumes that the attenuation map µ is aligned with the PET data at gate m0.

Contrary to the previous methods where the motion is estimated separately, imposing

a reference gate is not a requirement as reconstructed activity λ̂mcir is warped alongside

µ with the estimated motion {ϕ̂m}.
Solving (11) can be achieved by iteratively alternating between maximization in λ̂

and {ϕm} until convergence. More precisely, given the current estimate of the activity

λ(q) and of the motion {ϕ(q)
m } at iteration q, the new estimates at iteration q + 1 are

{ϕ(q+1)
m } = arg max

{ϕm}
L(λ(q), {ϕm} | {ym})− V ({ϕm}) , (12)

λ(q+1) = arg max
λ≥0

L(λ, {ϕ(q+1)
m } | {ym})− U(λ) . (13)

While the maximization in λ (Equation (13)) was addressed in Section 5.3, solving

Equation (12) is more challenging as it corresponds to a registration task in the PET

projection space.

In a simple 2-D setting without attenuation correction, Jacobson & Fessler proposed

a joint estimation approach where Equation (12) is solved by optimization transfer

techniques (Jacobson & Fessler 2003b, Jacobson 2006). These techniques are designed

such that motion estimation is carried out in the image space with “temporary” images,

similarly to an image registration task at each gate, thus avoiding successive projections

with the system matrix P . In a similar setting but with 3-D images, Blume et al. (2010)

then Blume et al. (2012) utilized a gradient ascent technique to directly solve (12).

Accounting for the simultaneous deformation of the activity and the attenuation is

more challenging. Bousse et al. proposed a joint estimation framework for PET/CT that

accounts both deformed images using a quasi-Newton algorithm to solve (12), where the

estimated motion jointly warps the activity λ and the attenuation µ such that they both

match to the data {ym} (Bousse et al. 2016b, Bousse et al. 2016a). This framework does

not require a reference gate m0 as the reconstructed activity and the attenuation are

automatically aligned and deformed simultaneously—the attenuation is not required
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to be aligned with any of the PET gates. In principle, this framework requires an

attenuation map with accurate attenuation values. However, they observed in a more

recent paper that motion estimation is robust to localized errors in the attenuation

image and that it could be applied to PET/MRI using an MRI-derived attenuation

map (Bousse et al. 2017).

The motion model can also include the Jacobian of the motion for mass preservation

for the activity and the attenuation. It was reported in Émond et al. (2020) the

quantification in compressible areas such as the lungs can be improved with a mass-

preserving motion model.

5.5. Motion Correction via (De)convolution

The above approaches use transformations between several gates to either motion correct

(Section 5.2) or model the motion (Section 5.3). A less common approach is to model

the blurring caused by the motion via convolution. This was first proposed by Menke

et al. (1996) in the context of rigid head motion. Local blurring kernel were derived

from a motion tracker and then used to (locally) deconvolve the motion-corrupted

image. However, this can increase noise. Siemens’s OncoFreeze� chooses a reference

gate, typically the HD-Chest� gate (see Section 3.3), and estimates motion blurring

between the reference gate and the ungated (and hence blurred) reconstruction using

optical flow. This motion blurring is then used in reconstruction similar to a point

spread function (PSF) implementation (Hong et al. 2014). Karakatsanis et al. (2017)

developed a similar method but accelerated convergence by using a nested EM Lucy-

Richardson deconvolution algorithm for motion compensation. The PSF approach is

less sensitive to noise amplification than deconvolution, and allows using all detected

events. However, the effect of attenuation mismatch (see Section 5.7) is currently less

understood.

5.6. Examples of Motion-Corrected PET Images Obtained using MCIR Techniques

Figure 5 and Figure 6 show examples on motion-corrected reconstructed PET images

from Bousse et al. (2017). These images show that MCIR can significantly reduce the

motion blur as well as revealing a lesion that was invisible in the uncorrected image.

Figure 7 shows another example of the effect of motion correction, this time from

Manber et al. (2015). Uncorrected PET images suffers from attenuation correction

artifacts due to the misalignment of the attenuation map with the respiratory-gated

PET data, while the motion correction realigns the attenuation map to each of the

respiratory gates, resulting in artifact-free images.

JRM techniques have the advantage of operating on raw gated PET only, thus

removing the need of additional measurements. Blume et al. (2010) and Bousse et al.

reported that JRM delivers images with a better bias/variance than with PRR. This

is due to the fact that PRR performs registration on individually reconstructed images
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(a) (b)

Figure 5: PET coronal slice images reconstructed from Siemens Biograph mMR

PET/MRI data: (a) without motion correction and (b) with motion correction. In

absence of motion correction, the reconstructed image suffers from motion blur, while

the motion blur is significantly reduced in the motion-corrected image. Reprint from

Bousse et al. (2017).

(a) (b)

Figure 6: PET trans-axial slice images reconstructed from Siemens Biograph mMR

PET/MRI data: (a) without motion correction and (b) with motion correction. The

green circle indicates the location of a hot lesion. Reprint from Bousse et al. (2017).

Figure 7: Comparison between uncorrected (top row with purple line profile) and

motion-corrected (bottom raw with dotted green line profile) reconstructed PET images.

Reprint from Manber et al. (2015).

where the noise is amplified by the reconstruction, while JRM operates in the projection

space.

Despite these advantages, JRM techniques are computationally expensive as the

motion update step (12) require to compute H and H> at each gate, while other

methods estimate the motion in the image space.
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5.7. Attenuation correction issues

PET data are typically acquired over a few minutes, while state-of-the-art CT scan

takes only a few seconds, usually with patients holding breath. Even if CT data are

acquired during free-breathing, the mismatch between time-averaged PET and snapshot

CT data could still be significant. Not only affecting ungated static PET, such CT-PET

mismatch also affects respiratory motion correction techniques described above as the

reconstruction of gated PET images also suffers from mismatched attenuation correction,

depending upon respiratory location where CT data are acquired (cf. Figure 7). Lu et al.

(2018) showed that mismatched attenuation correction for each gated image results

in errors in motion vector estimations among gates, subsequently degrading the final

LM-based motion compensated image reconstruction results as the motion vectors are

incorporated into motion correction. While gated images without attenuation correction

could be used for motion estimation without the impact of mismatched attenuation

correction (see Section 4.1), Lu et al. showed that motion vectors in region in the

center of the human body, such as the spine, are not accurate for some tracers, due to

the low apparent tracer concentration in those regions without attenuation correction.

Therefore, ideally, matched attenuation correction should be performed for each gated

image to ensure accurate motion vectors for motion compensation in the subsequent

steps.

Facilitated by TOF information, it is now feasible to reconstruct both PET activity

images and attenuation maps or ACFs directly from PET raw data without CT (Defrise

et al. 2012, Panin et al. 2013, Rezaei et al. 2012), leading to perfectly matched

attenuation correction. Though the quantitative accuracy of such approaches still

requires further improvement, maximum-likelihood attenuation and activity estimation

(MLAA) or MLACF could be used to generate gated images without mismatch artifacts

to estimate accurate motion vectors. In Lu et al. (2018), the gated PET emission images

generated by MLACF provided the most accurate motion vectors and subsequently led

to superior final motion correction as compared to using motion vectors derived from

NAC or CT-AC gated images. Although MLAA and MLACF framework theoretically

do not require CT information, the majority of PET scanners nowadays are hybrid

PET/CT with CT data readily available. To take advantage of the available CT

information, Rezaei et al. (2016) developed an approach to simultaneously reconstruct

the activity image and the transformation that warps the acquired CT attenuation map

to match the activity image for matched attenuation correction. Such process can be

applied to each gated image to achieve phase-matched attenuation correction for each

gate. This approach is similar to that of Bousse et al. (2016b) and Bousse et al. (2016a),

although it does not apply the deformation field to the activity image.

MLAA approaches are capable of generating attenuation maps. However such

attenuation maps are noisy as they are derived from emission data. The noise in

attenuation maps could be propagated into attenuation correction, in particular if

MLAA is performed for each gate with only a fraction of detected events. Hwang et al.
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(2018) recently developed a deep learning based approach. The inputs of convolutional

neural network (CNN) are both activity and attenuation images from MLAA, while

the label is CT-based attenuation map. Such a deep learning network is shown to be

successful in generating low-noise attenuation maps that is consistent with CT-based

attenuation map. Following these developments, Shi et al. (2019) further incorporated

the line-integral of attenuation coefficients as additional loss function terms. Such

implementation with PET physics information provided synthetic attenuation maps

that is more consistent with CT-based attenuation maps. These deep learning based

approaches can be directly applied to MLAA outputs of each individual gate to generate

phase-matched attenuation maps, leading to phase-matched attenuation correction and

subsequently more accurate motion vector estimations for motion compensation.

Although PET and CT have intrinsic respiratory mismatch due to different scan

durations, there are efforts to make them match. Pan et al. (2006) proposed an approach

to acquire time-averaged CT through cine CT acquisition. The resulting CT data are a

motion blurred CT that matches with the respiratory blurriness of PET. Although this

approach can not be used for diagnostic purposes, such CT is able to provide phase-

matched attenuation correction for the gated PET.

Several authors have suggested methods to select part of the PET data where the

patient is in the same respiratory state as during the CT (Chang et al. 2010, Meier

et al. 2019, Hamill et al. 2020). However, in the context of motion correction, such an

approach can not be used to generate phase-matched gated PET. Nevertheless, these

methods could achieve a good reference image that can be used for other approaches,

e.g., OncoFreeze (see Section 5.5) was used by Hamill et al. (2020).

5.8. Issues with Other Data Corrections

For accurate quantification in PET, accidental coincidences and scatter need to be taken

into account, either via precorrection for analytic algorithms or by incorporating them

into the acquisition model.

It is generally accepted in the literature that the distribution of the accidental

coincidences does not depend on the motion state. This can be understood by the fact

that it is determined by the underlying distribution of the singles, which will be very

insensitive to motion as in present day PET septa are no longer used.

The effect of motion on the scatter distribution has not been well-studied in

the literature to the best of our knowledge. As the scatter distribution in PET

is very smooth, many authors assume that it is independent of motion (Manber

et al. 2015, Chun, Reese, Ouyang, Guerin, Catana, Zhu, Alpert & Fakhri 2012). This

was confirmed for head movement up to ∼2 cm for non-TOF PET (Thielemans 2005).

Arm movement was studied in (Lodge et al. 2011).

If the scatter is independent of motion, it can be found from the ungated data and

simply scaled for every gate. As an alternative, it is possible to find the scatter estimate

for every gate independently. However, this makes the scatter estimate sensitive to noise.
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In addition, model-based scatter estimation methods that scale the scatter estimate

to “tails” without scatter can be sensitivity to motion, see e.g. (Anton-Rodriguez

et al. 2010) for the head and (Callahan et al. 2012) for the arms. However, this is

unlikely to be a problem for respiratory motion due to the small expansion of the chest.

We are not aware of any studies investigating the impact of misaligned attenuation due

to respiratory motion on model-based scatter.

In summary, respiratory motion is unlikely to affect scatter estimation in clinical

practice. Nevertheless, further investigation is warranted, especially for systems with

with increased TOF resolution.

6. Combining Respiratory Motion Correction with other Physiological

Aspects

6.1. Dual Respiratory and Cardiac Gating and Motion Correction

In cardiac PET, the images are not only affected by respiratory motion, but also cardiac

motion due to myocardium contraction. Therefore, simultaneously correcting both

respiratory and cardiac motion is needed. Typical clinical cardiac SPECT and PET

studies routinely use electrocardiogram (ECG) signals to bin data into 8 or 16 cardiac

phase gates. Such cardiac gating trigger information can be directly combined with

above-mentioned respiratory signals, either detected by external device or data-driven

techniques, to facilitate corrections of both respiratory and cardiac motion.

With both a respiratory signal and cardiac triggers, PET LM data can be rebinned

into “dual gates”, each corresponding to a unique combination of respiratory phase

and cardiac phase. Similar to motion estimation among respiratory gates, motion

vectors mapping all dual respiratory-cardiac gates to a reference gate can be obtained

using non-rigid image registration. Since cardiac contraction changes the myocardium

thickness, the brightness of the images across cardiac gates are different, though the

total tracer activity in the total myocardium stays the same. Therefore, registration

methods based on the assumption of consistent brightness no longer apply to cardiac

gated images. Gigengack et al. (2012) proposed an approach of image registration

with mass-preserving to address this issue and applied to [18F]fluorodeoxyglucose

([18F]FDG) dual-gated images. All the dual-gated images registered to a reference gate

were averaged to generate a motion correction cardiac PET image using all the data

(PRR), thus the noise levels stay the same as the ungated motion blurred images. In

addition to the PRR approach, Feng et al. (2016) compared three motion correction

approaches for dual-gated PET, including motion corrections after reconstruction (i.e.,

PRR) similar to the implementation by Gigengack et al., by incorporating motion

vectors in the system matrix (i.e., MCIR), and before (i.e., motion correction before

reconstruction (MCBR)) image reconstructions using simulated [18F]FDG PET data

with phase-matched attenuation correction. The results showed that PRR and MCIR

are both superior to MCBR, while MCIR is slightly better than PRR. Lamare et al.
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(2014) reached the same conclusions with simulated dataset of the NCAT phantom

and a clinical evaluation on 7 patients, by comparing four different schemes of

combining dual-gated PET data, with additionally comparing an affine and a non-

rigid elastic registration algorithm for the MCIR or PRR. The motion blurring between

a reference gate, which could be one cardiac gate or dual gate, and the static motion

blurred image can also be estimated to form motion blurring kernels. Similar to the

OncoFreeze approach (Section 5.5), such motion kernels are incorporated into iterative

reconstruction in the Siemens CardioFreeze� package for motion deblurring of cardiac

PET images using all detected events (Bendriem et al. 2018). In addition to [18F]FDG

studies, dual-gated PET methods were also applied to [18F]Flurpiridaz, a promising

perfusion tracer with high extraction fraction. Slomka et al. (2015) demonstrated that

dual-gating provided the highest contrast and thinnest myocardium wall thickness as

compared to either cardiac gating only or end-expiration gating only.

Each respiratory gate only includes a fraction of detected events, resulting in

increased image noise. Each dual-gated image includes a further reduced fraction of

counts. For example, a dual gating strategy with 5 respiratory gates and 5 cardiac

gates would generate 25 dual gates, each with only 4% of counts. The high image noise

could affect the accuracy of motion vector estimation, subsequently degrades motion

correction. In the above mentioned paper by Gigengack et al., all patients underwent

a hyperinsulinemic euglycemic clamp technique before and during the scan to enhance

[18F]FDG uptake in the heart, which is not a common practice. In certain patient

populations, such as sarcoidosis, the myocardium [18F]FDG update could be low thus

making it hard to estimate motion vectors from PET data. If cardiac gated CT is

available, cardiac motion can be derived from that, while respiratory motion can be

found from respiratory gated PET data (Klén et al. 2016). Another way to address this

challenge is to take advantage of MRI data in the simultaneously acquired PET/MRI

cardiac PET studies. For example, Robson et al. (2018) described approaches to register

respiratory and cardiac gated data to a reference gate and average them to achieve

motion correction using the PRR approrach. The motion vector fields were derived from

respiratory and cardiac gated MRI data, which were acquired during free breathing over

several minutes and k-space lines were binned accordingly. The results showed robustly

improved myocardium [18F]FDG contrast for a cohort of patients with various [18F]FDG

patterns. In addition averaging transformed images, motion information derived from

free-breathing MRI data can also be incorporated into the MCIR framework (Kolbitsch

et al. 2017). While several studies used gradient-echo MRI sequences to generate gated

MRI data, Munoz et al. (2019) presented an approach to use dual-phase coronary

magnetic resonance angiography (CMRA) data to derived motion vectors to deform the

attenuation maps for attenuation correction and estimate motion vectors to facilitate

final motion correction, allowing visualization of the coronary arteries from CMRA

data, which simultaneously provided motion correction information. While PET motion

correction using motion information from MRI data has been investigated by many

groups, Kolbitsch et al. (2018) presented an approach to take advantage of both
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dual gated 4-D MRI and 4-D PET data through joint image registration. As shown

in Figure 8, the joint PET-MRI motion estimation provided more accurate motion

estimation than using either modality separately, which were incorporated into MCIR

for final motion correction with phase-matched attenuation correction. In addition to

applying MR-based dual motion correction to static PET, Petibon et al. (2019) also

applied such approaches to dynamic [18F]FDG PET and demonstrated 18% increase in

Ki values in the septum as compared to without motion correction.

Figure 8: Long-axis slices of two patients comparing PET images without motion

correction (Uncorr) and with cardiac and respiratory motion correction using motion

fields obtained using only PET images (PET only), using only MR images (MRI only)

and the proposed joint PET-MRI motion estimation (PET & MR). Artefacts (black

arrows) and residual motion blurring is visible for motion correction based on PET only

and MRI only images. (Phys. Med. Biol. 64 (2019) 015007)

Although much progress has been made in simultaneous respiratory-cardiac

corrections for cardiac PET and PET/MR, most work has been done for 18F labeled

tracers, such as [18F]FDG, Flurpiridaz, and NaF. One of the most widely used cardiac

PET procedures is quantification of myocardial blood flow using flow tracers with high

extraction fraction such as 82Rb. Due to its short half life of 75 seconds, 82Rb studies can

only be performed with an on-site generator next to the scanner and images are typically

noisy, posing unique challenges for motion correction. Because the 82Rb generator can

not be operated in a PET/MRI scanner room, the above mentioned MRI guided motion

correction methods are not applicable as no 82Rb PET studies can be performed using a

PET/MRI scanner. In addition, due to the short half life and high image noise, motion

vector estimation from dual-gated 82Rb images could be very challenging. Therefore,

further studies are urgently needed to develop dual motion correction methods for

cardiac PET with short half-life perfusion tracers like 82Rb.
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6.2. Motion Correction and Kinetic Modeling

Kinetic modeling consists of applying a kinetic model to a dynamic sequence of PET

images or time frames, either during the reconstruction of the dynamic data or on the

reconstructed images as an image-based analysis. This process allows to extract kinetic

parameters for specific regions, or parametric images, in order to derive more meaningful

physiological information than with standard static imaging. Numerous linear or non-

linear models exists for different radiotracers and have been discussed in multiple reviews

(Rahmim et al. 2009, Reader & Verhaeghe 2014, Gallezot et al. 2018, Wang et al. 2020).

As the calculations of kinetic parameters are based on the frame time-activity curves

and respiratory motion quantitatively impacts the estimated activity in the images, the

correction of respiratory motion can be crucial for various kinetic modeling applications.

The most immediate consequence of respiratory motion is that the activity under-

estimation in the regions or voxel of interest due to the blurring effect of respiratory

motion will result in the under-estimation or over-estimation of kinetic parameters.

These effects can be important if the area of interest is located in the torso-abdominal

region, which is the most affected by respiratory motion. For example in dynamic

cardiac acquisitions, respiratory motion generally increases apparent wall thickness and

decrease contrast to noise ratio and net influx rate estimation.

Another hindrance due to the long acquisitions usually required in dynamic studies,

it is more likely to observe changes of patient breathing pattern and amplitude along

the acquisition. This increases the probability of voxels misalignments outside/inside

a specific region, resulting in a mismatch in the time-activity curve baseline. As

example for the estimation of myocardium parametric images, motion can result in over-

estimation of kinetic parameters in the regions of interest as voxels are relocated outside

the myocardium region, leading to underestimation and overestimation of Ki and volume

of distribution maps respectively (Gallezot et al. 2018). For the assessment of coronary

flow reserve (CFR), when vasodilators are administered, the breathing pattern of the

patients can change significantly, with higher amplitude during the stress scan. This

can lead to errors in myocardial blood flow estimation and lead to a wrong assessment

of CFR as observed in (Yu et al. 2016).

Additionally, most kinetic models require the knowledge of the input function,

corresponding to the activity concentration in plasma, which is usually extracted from

arterial or blood samples, estimated with a population-based approach, or estimated

directly from the images following regions of interest such as the aorta, left ventricle

or carotid artery. Through it is not available for all radiotracers dynamic studies, the

last approach has the advantages of not being invasive and removing the need of pre-

recorded data required for a population approach. However, respiratory motion will also

affect the shape of image-derived input function the same way it affects time-activity

curves. Irregular motion pattern could also cause mismatch between the input function

ROIs in the early and late frames, requiring scaling or correction of the extracted image

derived input function (IDIF) (Gallezot et al. 2018).
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For direct parametric image reconstruction, several works explored the use of

multiple kinetic/dynamic models order to avoid bias propagation from areas which

doesn’t fit the primary kinetic model (Kotasidis et al. 2011). These approaches aim to

apply the kinetic model to a specific area or specific voxels through the use of adaptive

(Kotasidis et al. 2014) or hybrid (Germino et al. 2014) strategies. The correction of

respiratory motion can be crucial in this context as a voxel could overlap areas which

fit or not the kinetic model depending on the motion.

Respiratory motion correction methods must address an additional challenge in the

context of dynamic acquisition. As the available statistics for the reconstruction of each

frame is often limited by the high temporal resolution restriction, in particular for early

frames, the reconstructed frames often suffer from poor SNR. The use of pure gating

methods which uses a fraction of the acquired data would further decrease it. It is

therefore required to use methods which makes use of most of the statistics available in

the acquisition, such as post-reconstruction registration or motion compensated image

reconstruction techniques which make use of all events to reconstruct the data with

gating approaches. Nevertheless, these methods do not deal with intra-gate motion,

nor with the cases of irregular breathing patterns along the dynamic acquisition which

can penalize any motion correction methods without proper handling of inter-cycle

variations. This is however taken into account by event-driven gating methods which

have been used for the reconstruction of dynamic acquisitions using the internal-external

motion correlation method (INTEX) (Chan et al. 2013, Chan et al. 2018, Yu et al. 2016)

(see Section 4.2). The correlation can be determined based on respiratory gated images

of longer duration, starting after the initial bolus (Emond et al. 2019).

For the methods that use a data-driven method for extraction of the respiratory

signal (Section 3.1), the quick tracer distribution in the early frames changes can

significantly affect the respiratory traces. For PCA, the principal components of

the tracer dynamics could dominate the respiratory motion in the beginning of the

acquisition which makes the use of this technique unreliable for modeling studies which

require early data (Ren et al. 2019). For COD, the mean tracer distribution change

can be removed from the signal, however in the context of low activity and quick tracer

kinetics, the respiratory information estimated with COD method can be unreliable as

well (Ren et al. 2017). Therefore, while the data-driven approaches are promising as

they prevent the requirement of an external surrogate device, further investigations are

required to study methods to account for the high and low frequency changes (tracer

arrival and washout) introduced by the tracer kinetics and affecting the event-driven

signal.

For all those methods, it is also worthy to note that motion correction can also lead

to erroneous kinetic parameters estimation due to local errors in the motion correction

field (Petibon et al. 2019).
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6.3. Gross body motion

Gross body motion, or bulk motion, is different in nature from respiratory motion as its

timing is unpredictable. The movement can be an abrupt change of position, either due

to a physiological cause such as coughing, or if the patient voluntary or involuntarily

adjusts their position, or manifests as a gradual and progressive drift during the

acquisition. Generally, longer acquisition increases the probability of higher amplitude

of patient body motion. As for respiratory motion, body motion can be problematic

for dynamic studies, causing under and over-estimation of kinetic parameters as a same

voxel may represent different anatomical location of the patient along the scan, as shown

for example for [18F]FDG net influx rate (Ki) study (Gallezot et al. 2018, Lu et al. 2019)

or myocardial blood flow (Hunter et al. 2016, Piccinelli et al. 2018).

Patient motion correction has been primarily investigated for SPECT studies, in

particular for head and cardiac acquisitions. Lee & Barber (1999) initially proposed

an iterative algorithm which estimates tangential/axial translations by registering

forward projection of initial estimated images to the measured data. This approach

was expanded in later studies (Kyme et al. 2003, Röhl et al. 2007, Schumacher

et al. 2009, Bai et al. 2009). In order to detect rigid discrete motion, it has also been

suggested to use cross-correlation or similar metrics between sinogram data acquired at

different time points for SPECT (Pellot-Barakat et al. 2001) and CT (Ens et al. 2010).

In brain PET, many groups proposed to apply rigid transformation with various

techniques such as LOR rebinning (see for example (Menke et al. 1996, Bloomfield

et al. 2003, Buhler et al. 2004)), Multi Acquisition Frame methods (e.g. (Picard &

Thompson 1997, Fulton 2001, Mourik et al. 2009)) or joint-estimation approaches (e.g.,

(Jiao et al. 2017)).

Patient body motion correction has been less extensively studied than head motion,

and differs from the latter as being mostly elastic. The correction methods generally

used for head motion are therefore not applicable for an accurate correction of body

motion, due to being restricted to rigid motion correction. As for respiratory motion

correction, patient body motion can be detected using either external devices or high

temporal resolution MR images for PET/MRI systems (Gillman et al. 2017), or data-

driven approaches. For the latter, COD method has been used to correct for body motion

in multiple human and monkey analysis in Lu et al. (2019). If for respiratory motion

detection, the anterior-posterior (CODy) and superior-inferior (CODz) components of

the COD signal were primary used, the lateral trace (CODx) proved to be more efficient

for the detection of body motion. Additionally, lower frequency (1 s by frame) was

used to compute the COD signal. PCA may also be able to detect body motion,

although assessing the magnitude of body motion should be less straightforward than

with COD (Ren et al. 2019). Data-driven approaches have the advantage of not requiring

any devices to estimate the motion and can be used to detect both respiratory and

body motion. Further work is required on the optimal parameters for the data-driven

approaches, in particular in the early frames of dynamic acquisitions in which the quick
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kinetic changes might disrupt the motion detection from the signal.

A first approach to correct for body motion is frame-based image registration,

which consists in separating the acquired data into multiple temporal frames in which

the data is assumed to be motionless. Each frame is registered to a reference position

during reconstruction. A major issue of this approach is that it does not correct for

motion occurring within the predefined frames which can be problematic, in particular

in the presence of a progressive drift. Its combination with respiratory motion correction

using gating techniques is also complicated as gating techniques require a rebinning of

the data into respiratory gates. Unless the gating could be performed within each body

motion frames, the association of these methods for dual body and respiratory motion

correction is challenging.

Gross-body movement has also been corrected using the convolution approach

(Section 5.5) handling both respiratory and body motion (Karakatsanis et al. 2017),

which led to improvement in Ki estimation for whole-body dynamic acquisitions. Lucy-

Richardson deconvolution algorithms are known to reduce the signal to noise ratio and

generate ring artifacts with deconvolution iterations so this approach require fine tuning

of the deconvolution parameters along with potential denoising techniques for a practical

use.

As several works explored event by event motion correction for respiratory motion

correction, the same approach was studied for body motion correction (Lu et al. 2019).

This method uses a data-driven approach (COD) for the detection of body motion,

estimate the motion parameters through elastic image registration to generate motion

vector fields, which are then applied in a non-rigid motion compensation ordered-subsets

EM LM algorithm. This approach has the advantage to correct for body inter-frame

and intra-frame body motion in a non-rigid manner, and allows a straightforward

combination with respiratory motion correction. However, as mentioned previously

for dynamic acquisitions, if the data-driven approach is retained for motion estimation

instead of external devices or internal-external motion correlation methods, further work

is required to improve the estimation of motion in the early frames of the dynamic

acquisition.

7. Perspectives

Respiratory motion compensation in multimodality imaging has seen numerous advances

over the past couple of decades motivated by the advent of multimodality imaging

with PET/CT to start with, followed by PET/MR imaging. A large majority of the

developments around respiratory motion compensation realized during the PET/CT

era were subsequently transposed in the PET/MR multimodality imaging field. More

specifically the developments during the last few years have concentrated on rendering

the implemented methodologies transparent and more user friendly within the clinical

acquisition framework in order to enable their implementation and acceptance in routine

clinical practice.
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The development of increasing axial field of view PET devices has recently led

to a renewed interest in dynamic whole body quantitative parametric imaging (Slart

et al. 2021). Within this context the integration of multiple physiological motion sources

(respiratory, cardiac, radiotracer) during the reconstruction process will be undoubtedly

a field that will receive extra attention in the future. These devices are also associated

with an improved sensitivity and therefore the potential to improve temporal sampling

and image quality for short time frames. As a consequence, adapting the already

available respiratory compensation approaches will be part of the future developments

in the field. One could imagine that in the future we could perhaps also revisit the initial

idea of breath-holding PET acquisitions (Nehmeh et al. 2007) if the imaging systems’

performance continues their impressive improvements of the past few years.

The inconveniences, in terms of a smooth clinical workflow, associated with the use

of direct measuring devices of respiratory motion in combination with the magnetic field

incompatibility issues (of interest in combined PET/MR devices) has led to an increased

interest in the generic patient model based approaches. In most of these, a surrogate

measure of respiratory motion is used in combination with a 3-D acquisition in order

to obtain a 4-D image series or directly the corresponding 4-D displacement matrices

used in the implementation of motion compensation strategies (see Section 4.2). This is

clearly a field where artificial intelligence can play a role in the future in order to allow an

improvement in both the precision and computational efficiency of existing model based

solutions (Li et al. 2020). Beyond this specific application, artificial intelligence may

be also employed at different stages of the respiratory motion compensation strategies,

including denoising (in image or raw data space) of low dose respiratory gated frames,

cross-modality 4-D image generation, as well as in 4-D image reconstruction.

Finally, what is still greatly missing is a rigorous assessment of clinical impact for

the use of respiratory compensation approaches in multimodality imaging. This has been

hampered in the past by the complexity of the proposed solutions and the fact that the

vast majority of clinical PET applications concern tumor detection where respiratory

motion management may play a role but not significant enough to justify the additional

effort. The combination of mainstream data driven motion compensation approaches

and the increase of therapy assessment studies in PET imaging may provide in the future

the necessary framework for demonstrating the clinical interest of respiratory motion

management.

References

Abdelnour, A. F., Nehmeh, S. A., Pan, T., Humm, J. L., Vernon, P., Schöder, H., Rosenzweig, K. E.,
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Dawood, M., Büther, F., Lang, N., Schober, O. & Schäfers, K. P. (2007). Respiratory gating in positron

emission tomography: a quantitative comparison of different gating schemes, Medical Physics

34(7): 3067–3076.

Dawood, M., Buether, F., Stegger, L., Jiang, X., Schober, O., Schaefers, M. & Schaefers, K. P. (2009).

Optimal number of respiratory gates in positron emission tomography: A cardiac patient study,

Medical Physics 36(5): 1775–1784.

URL: http://dx.doi.org/10.1118/1.3112422
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