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Abstract: The spatial distribution of water storage capacity has always been the critical content of the
study of saturation-excess runoff. Xin’anjiang model uses the water storage capacity curve (WSCC)
to characterize the distribution of water storage capacity for runoff yield calculation. However,
the mathematical and physical foundations of WSCC are unclear, which is impossible to simulate
runoff generation with complex basins accurately. To fill this gap, we considered the dominant
role of basin physical characteristics in water storage capacity and developed a new integrated
approach to solve the spatial distribution of water storage capacity (L-WSCC) to account for the
spatiotemporal dynamics of their impact on runoff generation. The main contribution of L-WSCC
was to confer WSCC more physical meaning and the spatial distribution of water storage capacity
was explicitly represented more accurately, so as to better express the runoff generation and provide
a new approach for runoff yield calculation in non-data basin. L-WSCC was applied to Misai basin
in China and promising results had been achieved, which verified the rationality of the method
(the mean Nash–Sutcliffe efficiency (NSE):0.86 and 0.82 in daily and hourly scale, respectively).
Compared with WSCC, the performance of L-WSCC was improved (mean NSE: 0.82 > 0.78, mean
absolute value of flood peak error (PE): 12.74% < 21.66%). Moreover, the results of local sensitivity
analyses demonstrated that land-use and land cover was the major driving factor of runoff yield (the
change of mean absolute error (∆MAE): 131.38%). This work was significant for understanding the
mechanisms of runoff generation, which can be used for hydrological environmental management and
land-use planning.

Keywords: land-use; land cover; hydrological simulation; runoff generation; water storage capacity
curve (wscc); hydrological environmental management

1. Introduction

Floods are the most common and highly destructive natural disaster in the world [1–4].
According to relevant research, the annual casualties caused by floods over the world
exceed 50% of the total natural disasters, and the economic losses exceed 30% [5,6]. With
the population surging and the acceleration of urbanization, the frequency of extreme
rainfall events has become higher and higher, and the frequency, intensity, loss and the
ranges of impact of flood disasters have shown a significant upward trend [7,8]. China is
one of the countries with the most serious flood disasters in the world, and the flooding
issues have become a comprehensive problem that cannot be ignored in the sustainable
development [9]. Therefore, it is urgent to implement reasonable and scientific flood
management measures to minimize the damage caused by floods.

Accurate runoff simulation is essential for flood management and plays a vital
role in sustainable water resources management in reducing losses caused by flood
disasters [2,10–13]. Water storage capacity curve (WSCC) is the key to the calculation

Water 2022, 14, 2854. https://doi.org/10.3390/w14182854 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14182854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-8053-2263
https://doi.org/10.3390/w14182854
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14182854?type=check_update&version=2


Water 2022, 14, 2854 2 of 18

of saturation-excess runoff and is applied to describe the distribution of basin water storage
capacity for runoff simulation [14]. WSCC is represented by empirical Generalized Pareto
Distribution, which has been extensively applied worldwide for a wide range of watershed
scales, hydrology environmental conditions, flood simulation, and provides a scientific
way to analyze the process of rainfall-runoff [15–18].

Although the WSCC method performs well in humid and subhumid regions for nature
basins, it cannot characterize its connection to the internal characteristics of the basin due
to its empirical origins [19–22]. This limitation causes that it performs only fairly even
poorly in complex basins: the findings of Jayawardena et al. suggested that WSCC is less
effective for runoff simulation in wet and dry transition seasons [23]; Zhuo et al. found
that the soil moisture schemes of WSCC are generally not realistic in comparison with
the reality [24]. Bartlett et al. pointed out that WSCC does not describe the spatial and
temporal variability of runoff, which limited its application [25,26]. In addition, studies
also showed that WSCC may fail to capture the vertical partial runoff [27]. These poor
performances may be due to the WSCC method assuming a uniform basin with spatially
uniform runoff processes [28]. Moreover, the WSCC method also lacks a description of the
spatial variability of runoff and the physical meaning of WSCC is not clear enough, which
is a generalized model [29,30]. This generalization ignores the influence of underlying
surface changes on runoff yield [31–33]. Hence, when WSCC is applied to complex basins,
significant errors can and do occur when calculating runoff yield.

To move beyond the limitations of the WSCC method, the related research have been
done to study the relationship between the WSCC and related physical factors based on the
sufficient remote sensing data [19,27]. Among them, water storage capacity and land-use
types were strongly correlated because landscape had significant impacts on soil physical
properties [34,35]. In vegetation region, many studies had been undertaken and the results
showed that vegetation structures such as leaf area index, vegetation rooting depth, root
depth, vegetation coverage and canopy density would profoundly affect water storage
capacity [36–40]. Additionally, the effects of topography and terrain on water storage
capacity were of great concern [25,30,41–44]. A significant number of studies had tried to
calculate the water storage capacity using topographic index [22,45,46], slope [19,47,48],
and elevation [30]. Furthermore, many studies evaluated the soil characteristics such as
soil type [25], soil texture [30], soil wetness index [49], soil layer depth [29], soil hydraulic
characteristics [19], soil moisture [50], soil humidity, and soil wetness [51], on water storage
capacity to represent the soil water availability [30,52–54]. The effect of watershed area on
water storage capacity was also studied [19,55].

As can be seen from the above studies, the WSCC is most closely associated with
land-use, topography, soil, and vegetation. Consequently, many scholars have described
the spatial distribution of water storage capacity based on these factors to produce a
more reasonable runoff generation response: the results of Yao et al. showed that the
water storage capacity of a basin can be derived by the soil texture and vegetation type [30].
Wang et al. solved the spatial distribution of water storage capacity through the relationship
between the soil wetting ratio and the storage index, and achieved good outcome [56].
Guo et al. studied the water storage capacity based on topographic index and incomplete
beta distribution and the results showed the new method produced a more reasonable
runoff simulation [57]. Moreover, Gao et al.’s research in 404 watersheds showed that the
spatial distribution of water storage capacity is the result of the combined effect of remote
sensing factors such as slope, land-use, soil, and topography [19].

Although there have been many studies on the spatial distribution of water storage
capacity, these studies have only conducted research from a certain aspect. No method has
been proposed to solve the spatial distribution of water storage capacity by integrating
various remote sensing factors to date. Moreover, no report quantified the influence of
each factor on the runoff yield. To fill this gap, a comprehensive method considering
various factors for spatial distribution of water storage capacity based on abundant remote
sensed data was proposed in our study, called L-WSCC. The L-WSCC has physical basis
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in a spatial distribution of water storage capacity that is derived from distributions of
spatially heterogeneous variables such as land-use, terrain geomorphology, and soil. The
object of the paper is to construct a physics-based water storage capacity method through
various remote sensing factors to improve the physical basis of the original empirical
WSCC. L-WSCC can provide a new representation of the runoff generation, so as to extend
the traditional WSCC with a spatial characterization of runoff variability. In addition, this
paper also quantitatively assessed which factors dominated the impact on runoff yield and
how much it accounted for. It was expected that the proposed method could enhance the
physical meaning of WSCC to improve its runoff simulation capability.

2. Materials and Methods
2.1. Study Area and Data Collection

In this study, Misai watershed was employed as study area. It is a complex forest
watershed located in Quzhou city, Zhejiang Province, China, with an area of 797 km2

(29.1◦–30.0◦ N, 118.0◦–119.0◦ E) (Figure 1a). Its altitude varies between 105 m and 1253 m,
and the overall terrain decreases from northwest to southeast (Figure 1b). The watershed
has one major tributary, Majinxi, one of the sources of the Qiantang River (Figure 1b). Misai
watershed belongs to the mid-subtropical zone and has frequent monsoon activities. This
region has a mean annual temperature of 17 ◦C, with average minimum and maximum
temperatures of 12.9 ◦C and 21.3 ◦C, respectively [58]. The climate is humid with an
average annual rainfall from 1500 mm to 2000 mm. 60% of the rainfall occurs during
short heavy rainfall in summer. The humic acrisols (FAO soil classification, ACu) soil
is the main soil type and the soil moisture within 200 cm is about 352.80 kg/m2 (https:
//ldas.gsfc.nasa.gov/gldas/, accessed on 9 November 2021). The watershed is rich in
forest resources, accounting for 86.3% of the area, including woodland, shrub forest, and
sparse woodland.
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Figure 1. Location of Misai watershed and relevant hydrological information ((a) Location of Misai
watershed; (b) Hydrological information of Misai watershed).

Flood disasters have occurred frequently in this region. According to statistics, flood
disasters of varying degrees occurred in the region (big floods in 1955, 1969, and 1999)
and the flood disasters of 2006 and 2017 were highly devastating, which caused heavy
loss on property and society [59,60]. It is, therefore, of great importance to investigate
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the hydrological regime in this region. The study area is chosen because of the threat of
flooding and its compliance with the saturation-excess runoff.

The hydrological data used in this paper mainly come from 6 hydrological observation
stations (included 6 rainfall stations, 1 runoff observation station and 1 evaporation station)
(Figure 1b), including rainfall, evaporation, and runoff data (daily data) and 17 floods data
(hourly data) (Table S1).

The remote sensing data used in this paper mainly include DEM data, Landsat
data (land cover data), soil data, and vegetation type map. The DEM data set is pro-
vided by Geospatial Data Cloud site, Computer Network Information Center, Chinese
Academy of Sciences (http://www.gscloud.cn, accessed on 9 November 2021). Five dif-
ferent resolutions are obtained through resampling: 30 m, 100 m, 200 m, and 500 m to
study the change of sub-grid so as to weaken the scale influence as much as possible (see
Section 2.3). The corresponding terrain information (relief, slope, and aspect) are shown in
Figure S1. Landsat satellite data are taken from NASA website (https://earthexplorer.usgs.
gov, accessed on 9 November 2021). Seven phases of TM/MSS satellite images with less
than 10% cloud cover were obtained. The synthesis time of the image is about June of
1982–1988. Based on remote sensing images, the land-use classification of the study area is
obtained through supervised classification. The land-use map is shown in Supplementary
Materials (Figure S2). The results are shown in Table S2. The data of soil types comes
from the global soil data released by FAO, which is in accordance with the FAO/UNESCO
System of Soil Classification. The distribution of soil types is shown in Figure S3a. The
vegetation data are from the vegetation map of the people’s Republic of China (1:1,000,000).
The vegetation area of the study area accounts for a large proportion, mainly conifer and
broadleaved mixed forests, which are mainly located in the northern mountainous area
(Figure S3b).

2.2. WSCC and L-WSCC

The WSCC is the main form of calculating runoff yield in saturation-excess runoff. It
is the cumulative frequency curve of part of the area varying with the storage capacity and
represents the surface distribution of water storage capacity of the basin [14]. Rainfall-runoff
relationships can be obtained through WSCC. According to experience and experimental
data, the WSCC is parabolic usually. Please see Text S1 for more details.

In this paper, the distribution of water storage capacity is calculated based on different
land-use combined with relevant soil, terrain, vegetation, and other data, aiming to generate
a WSCC with obvious physical meaning in entire watershed. On the basis of land-use
and combined with the similarity of water storage capacity of different land-use types, the
watershed is divided into five sub-regions: vegetation region (Figure 2a), bare land region
(Figure 2b), reservoir region (Figure 2b), impervious surface region (hardened surface and
buildings) (Figure 2d), and another region (Figure 2e).

Vegetation processes are often ignored in conceptual runoff [61]; however, for the
watershed with good vegetation, the vegetation has a great influence on the runoff. Rel-
evant studies have shown that the water storage capacity of vegetation mainly includes
the canopy interception layer, the litter interception layer, and the water storage of soil
and roots [24,27,62,63]. Therefore, the water storage capacity of the vegetation region is
calculated as follows (more details in the Text S2 of Supplementary Material):

Wi = fi × LAIi × hi + li + Ni ×
Di − Hi

100
, (1)

where Wi is the storage capacity of the i-th grid located in the vegetation area (mm); fi is
the vegetation coverage of the i-th grid (0~1); LAIi is the vegetation leaf area index of
the i-th grid; hi is the maximum water holding capacity of vegetation leaves in the i-th
grid (mm); li is litter interception (mm), obtained by remote sensing techniques or related
research [64–67]; Ni is non-capillary porosity (%), obtained by soil type; Di is thickness
of aeration zone (mm), will be described later; Hi is the depth of litter layer, generally is

http://www.gscloud.cn
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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50 mm. fi, LAIi, and hi can be determined by remote sensing data, and their physical
meaning is clear.
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layers in the watershed (a–e represent different land-use areas, h is the depth of litter layer, D is the
thickness of aeration zone, and P is rainfall).

For bare land, soil water storage capacity is the storage capacity between the field
capacity and the wilting coefficient [14], which can be solved by soil and topographic
index [68,69]:

Wi = (θf,i − θw,i)× Di, (2)

where Wi is the tension water storage capacity of the i-th grid in bare land area, θf,i is the
field capacity (%), θw,i is the wilting coefficient (%), Di is thickness of aeration zone (mm).
θf,i and θw,i can be determined according to the soil type and can be obtained by soil water
characteristics in soil-plant-atmosphere-water [70].

However, there is a difference between the WSCC and the real full storage state of the
basin [24,71]. The modified calculation way of the water storage capacity in bare land area
is as follows, which should be added:

Wmod−i = Ni ×
Di

100
× 1

10
, (3)

where Wmod−i is the modified water storage capacity of the i-th grid in bare land
area (mm).

For reservoir region and impervious surface region, if many small reservoirs or dams
exist in the basin, the storage needs to be considered separately [72,73]. The hardened
surface and other buildings have no or extremely small water storage capacity because the
thickness of the aeration zone is 0 [74], so the water storage capacity is 0, Wi = 0.

Finally, for other regions, such as wetlands, lakes, and swamps, their water storage
needs to be considered additionally if there are a large number of lakes, swamps, and
wetlands in the basin. When calculating the water storage capacity of the basin, it can be
adjusted according to the water storage data of swamps and lakes (interannual, monthly
and seasonal). The change of wetland water storage capacity is small for a rainfall secondary



Water 2022, 14, 2854 6 of 18

flood, but its annual runoff changes greatly, which needs to be analyzed based on the
wetland data over the years.

The thickness of aeration zone is critical for solving water storage capacity in
Equations (1)–(3). At present, the thickness of aeration zone calculation is mostly based on
the topographic index [68]:

Di = D − Szm × [TIi − λ], (4)

where, Di is the thickness of aeration zone on the i-th grid, TIi is the topographic index
on the i-th grid, λ is the mean value of topographic index, D is the average saturated
groundwater surface depth at the initial time, and Szm is the maximum storage depth in
unsaturated area.

D and Szm have a relationship:

D = −SzmLn
Qb
Q0

, (5)

Qb is the base flow at the outlet of the basin at the time of drought, Q0 is the base flow
at the outlet of the basin when the soil reaches saturation. Szm can be obtained by base flow
(digital filtering method) or the mass curve technique (MCT) [63,75,76].

Thickness of aeration zone can be obtained by Equation (4), whereas the thickness of
impervious surface and water is 0, accordingly it needs to be adjusted by land-use. The
scale problem of topographic index in Equation (4) has been discussed [77], and fitting
method and multiscale method have been proposed [57,78,79]. A combination method is
proposed to minimize the effect of scale. First, the multi-resolution method of topographic
index is expressed as:

TIMi =
1
n ∑n

j=1 Ln

(
αj,i

tanβj,i

)
, (6)

M =
1
k ∑k

i=1 TIMi , (7)

where TIMi is the topographic index under multi-resolution; αj,i is the single width catch-
ment area of point i under the j-th scale, βj,i is the slope angle of point i under the j-th scale,
λM is the mean value of multi-resolution topographic index, n is the scale dimension, which
is generally between 3 and 5 depending on the detail of data and watershed conditions,
and k is the number of watershed grids.

Although the multi-resolution topographic index obtained above reduces the scale
dependence to a certain extent, yet it depends on the parameter n. This paper selects a
variety of fitting functions (Figure S4) and finally applied the generalized beta distribution
of the second kind (best fits) to represent the watershed topographic index, which can be
written as:

f(TIM) =
r3

bB(r1, r2)

(
TIM

b

)r1r3−1(
1 +

(
TIM

b

)r3
)−(r1+r2)

, (8)

where, B(r1, r2) is Beta function, r1, r2, and r3 are shape parameters and r1 > 0, r2> 0,
r3 > 0. The parameters r1 and r2 jointly determine the skewness of the distribution, and r1
controls the shape of the left tail, r2 controls the shape of the right tail, r3 determines the
global shape and affects the peak value of probability density function, b is the position
parameter and its value depends on the TIM.

2.3. Data Preprocessing and Model Setting

According to the requirements of Equations (1)–(8), the data preprocessing for L-
WSCC mainly includes the following steps: (1) Get the topographic index of the watershed;
(2) obtain the thickness of aeration zone; (3) with soil parameters and vegetation parameters,
the final distribution of water storage capacity under different land-use is calculated
(Figure S5). Please see Text S3 for detailed processes.
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To compare the performance of the WSCC and L-WSCC, two sets of simulations
were implemented on hourly and daily scale. The PEST (parameter estimation) automatic
calibration algorithm [80] was adopted for the calibration of the WSCC and other modules
(evapotranspiration, runoff sources partition, and flow concentration) parameters based
on Xinanjiang model. PEST is a model-independent nonlinear parameter estimation and
uncertainty analysis program, which is a flexible and generic calibration tool [80]. It has
the advantages of fast optimization speed and good robustness [81], which can be used
in any of these hydrologic models and has been widely applied [82,83]. For the L-WSCC,
the parameters were obtained by remote sensing data (mentioned in Sections 2.3 and 2.4),
the other modules parameter values were directly adopted from the calibrated WSCC. The
parameters are listed in Table S3.

2.4. Evaluation Criteria

To evaluate the performance of WSCC and L-WSCC on daily scale, Nash–Sutcliffe
efficiency (NSE), Kling–Gupta Efficiency (KGE), and percent bias error (BE) are calculated
for the calibration (1982–1985) and validation (1986–1988) period. Daily NSE and BE
values are compared with the values for basin-scale models recommended by related
study, and model performance was classified as “very good”, “good”, “satisfactory”, and
“unsatisfactory” [84] (Table S4). In addition, the appearance time of peak (ARPT) and flood
peak error (PE) are also used to evaluate model performance on the hourly scale. In order
to study the magnitude of impact of different factors on runoff yield, the change of mean
absolute error (∆MAE) is also used. Please see Text S4 for more details.

3. Results and Discussion
3.1. Results on Land-Use Change

In order to fully demonstrate the degree of land type transfer of Misai watershed from
1982 to 1988, the rate of land-use change is used to conduct the research [85] and the results
are shown in Table 1. Due to the forest land and cultivated land accounting for about 95%
of the watershed (Table S2), hence they play an essential role in hydrological processes, es-
pecially in runoff generation processes at Misai watershed. Therefore, we focus on changes
in these two land-use types. Forest and cultivated land changed dramatically in 1986
(Figure S6 and Table 1), the rate of land-use change is 16.00% and −42.42%, respec-
tively, which will have the greatest impact on the hydrological modelling (mentioned in
Sections 3.2–3.4).

Table 1. Rate of land-use change of the study area from 1982 to 1988.

Year
1982

1983
(%)

1984
(%)

1985
(%)

1986
(%)

1987
(%)

1988
(%)Land Use

Cultivated land - −18.41 26.00 2.53 −42.42 23.12 12.83
Forest land - 2.31 −8.03 −0.01 16.00 −8.04 7.05
Grass land - 753.00 −14.39 1.48 26.52 51.92 −99.42

Water - 1.67 −0.96 −2.57 1.88 2.42 −0.73
Urban land - −38.15 110.17 −45.90 14.29 14.17 −45.83

3.2. Calibration and Validation on Different Time-Scales

Comparing simulated and observed discharge at the outlet of the watershed, a close
fit was observed with an R2 value above 0.7 whether calibration or verification period
(Figure 3a,b). Additionally, the simulation effects of WSCC and L-WSCC can well meet
the simulation requirements depending on the NSE and KGE (Figure 3c,e) and simulated
streamflow hydrographs matched the observed data well (Figure S7). No significant
model over or underestimation was found, since the obtained parameter values are in the
recommended range. Nevertheless, compared with WSCC, L-WSCC significantly improved
the flood volumes: L-WSCC improved the BE by 3.10% and 12.02% during calibration and
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validation period, respectively (Table S5). Even worse, there was a sudden change in the
simulation performance of WSCC in terms of BE in validation period (Figure 3d), especially,
WSCC gets “unsatisfactory” result in 1988, which may be due to the fact that WSCC uses
the initial calibration parameters whereas the land-use has changed strongly at this time
(Table 1). However, the L-WSCC performs equally well indicating that integrated approach
considers the impact of land-use on runoff yield, so it is more flexible (than WSCC) to
handle differences in the rainfall and runoff in validation period. This corresponds to the
purpose of our research.
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Figure 3. The simulation results on daily scale. Scatterplots of the simulated discharge against the
observed discharge under calibration (a) and validation (b) period (the dashed line represents a
straight line with a slope of 1, and the linear regression line is the solid line, shaded is 90% confidence
band). The results of model assessment are (c) Nash–Sutcliffe efficiency (NSE). The red dotted line
represents the dividing lines where the results are “satisfactory” to “good”, the yellow are “good” to
“very good”. (d) Percent bias error (BE). The red dotted line represents the dividing lines where the
results are “unsatisfactory” to “satisfactory”, the yellow are “satisfactory” to “good” and the cyan are
“good” to “very good”. (e) Kling–Gupta Efficiency (KGE).

In addition to the daily scale, 17 representative floods from 1982 to 1988 are chosen to
evaluate the simulation performance of L-WSCC on rainstorm process (hourly scale).

The hydrographs of these floods are shown in Figure S8 and Figure 4a. The perfor-
mance statistics are shown in Figure 4b. WSCC and L-WSCC resulted in at least satisfactory
performance (NSE > 0.5) during the calibration and validation period (Figure 4b). The
mean value of NSE were 0.78 and 0.82 of WSCC and L-WSCC considering the entire period,
indicating that the WSCC and L-WSCC can reasonably predict the general shapes of the
storm hydrographs in Misai watershed.
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Figure 4. The simulation results on daily scale. (a) Observed and simulated hourly discharge
(occurred on 2 April 1982; 5 May 1985; 19 May 1986; 26 May 1987 in turn, OBQ: observed values).
(b) Boxplot graph of evaluation results (BE, PE and ARPT are absolute values).

L-WSCC achieves better results compared to WSCC on the hourly scale with the NSE
of L-WSCC increased from 0.76 to 0.85 during the validation period, PE decreased from
values of approximately 21.56% to 10.10% and from 21.79% to 16.50% during the calibration
and validation period, respectively (Table S6 and Figure 4b). When the BE is less than 20%,
we think it is qualified. The BE qualified rate of WSCC is 70% in calibration period, and all
qualified in the validation period, 80% and 86% in L-WSCC, respectively. The BE decreased
from approximately 12.96% to 11.50% compared to WSCC during the calibration period
and from 11.07% to 10.33% during the validation period (Figure 4b).

Despite the good performance in reproducing flood volumes, the PE was unsatisfac-
tory (PE > 20%) for some floods (40.00% of the floods during the calibration period and
57.14% during the validation period of WSCC, while only 10.00% of the floods during
the calibration period and 28.57% during the validation period of L-WSCC). This result
indicated that WSCC has markedly poorer performance for the validation period, which
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experiences higher variability in runoff than the calibration period, suggesting that WSCC
cannot be accepted in the validation period. Hence, the parameters of WSCC and L-WSCC
calibrated were able to reproduce runoff generation process but failed to capture the be-
havior of confluence process at the basin scale. These bad simulations occurred after 1985
(64% in all bad events). This is because of the fact that the land-use in the watershed has
changed dramatically in 1986 and affected the confluence of the watershed, resulting in the
unreliable simulation results.

Figure 4a demonstrates the visual contrast of observed and simulated discharge time
series to investigate the similarity of discharge in the watershed. The overall shape of
the discharge hydrograph matches well with the observed discharge. However, the peak
discharge is degraded during both runs. This degradation is mainly due to frequent
negative updates (reduction) in the surface runoff, which is more affected by land-use
change while L-WSCC weakens the impact of land-use on it. Hence, the simulated runoff
series from the L-WSCC corresponds fairly well with the observed data (compared with
WSCC), even though minor discrepancies still exist for the peak discharge simulation.

3.3. Seasonal Variation of Simulation

The observed and simulated discharge of every month have been analyzed and the
mean absolute error (MAE) are shown in Figure 5. L-WSCC runoff simulation results
are better than WSCC in the rainy season (May–July). The main reasons are: most of the
remote sensing data used are from around June (Section 2.1). The water storage capacity
calculation for runoff generation from May to July is more accurate. For other months,
such as from September to April, the vegetation growth status is less than that in rainy
season, which will influence the simulation results of L-WSCC. Therefore, the improvement
effect of L-WSCC during this period is not as obvious as that in the rainy season (Figure 5).
For WSCC, the runoff simulation results are better for the rainy season because WSCC is
suitable for the simulation of large floods. Therefore, how to improve the simulation effect
in dry season needs further research.
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3.4. Simulation in Different Flood Types

To understand the simulation performance of WSCC and L-WSCC in different
flood types, 21 floods are divided into three typical flood processes: big (B: peak
discharge > 1000 m3/s), medium (M: 500 m3/s < peak discharge ≤ 1000 m3/s), and
small (S: peak discharge ≤ 500 m3/s) floods according to the observed peak discharge.
The simulated and observed values of WSCC and L-WSCC are shown in Figure S9. The
discharges relationship in big floods is very good, but not so good in small and medium
floods, especially small floods. This is noteworthy as the initial soil deficit has a greater
impact on small floods and this is also consistent with the phenomenon that small floods
are more easily disturbed by human activities. The NSE/KGE of the L-WSCC is greatly
improved compared with the WSCC in small and medium floods, especially for small
floods (Table S7 and Figure 6). However, there is very little difference between the WSCC
and L-WSCC for big floods (Figure 6). This is expected because the watershed is close to
saturation-excess state, and all rainfall produces runoff yield in big floods. Although there
is a certain improvement in terms of BE, the flood volume of some events is obviously less
(lower 20%), which may be caused by artificial interception. In summary, L-WSCC has a
significant improvement of small and medium floods, but almost no improvement for large
floods. This corresponds to the impact of land-use on saturation-excess runoff.
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3.5. The Local Sensitivity Analysis of Different Driving Factors

To investigate the magnitude of impact of different factors on runoff yield, the sensitiv-
ity of model input parameters was evaluated through local sensitivity analysis by adjusting
different factor parameters by ±10% to construct different scenarios: (a) land-use scenarios.
The area of bare land and vegetation is increased by 10% (according to Section 2.3), and
the scenarios are land-use scenario 1 and land-use scenario 2, respectively. (b) Soil scenar-
ios. The soil parameters are increased and decreased by 10%, and the scenarios are soil
scenario 1 and soil scenario 2 respectively. (c) Topography scenarios. The topography pa-
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rameters are increased and decreased by 10%, and the scenarios are topography scenario 1
and topography scenario 2 respectively. Figure 7a shows the relationship between rainfall
and runoff under different scenarios. An upward or downward shift in the relationship
indicated that the relationship between rainfall and runoff has been altered by land-use,
soil, and topography, correspondingly. However, the original relationship between rainfall
and runoff is the same. As the parameter changes, the rainfall-runoff relationship changes
in different directions (Figure 7a). Remarkably, the bare land (land-use scenario 1) has an
enhancing effect on the runoff, while the vegetation (land-use scenario 2) has a significant
inhibitory effect. Similarly, changes of soil parameters and topography parameters also
cause changes in different trends of runoff (above and below the L-WSCC line, respectively).
In addition, it should be noted that the degrees of influence for different factors on the
runoff are different; land-use has the greatest, followed by topography, with the lowest for
soil. Moreover, vegetation changes have the deepest impact on runoff (the farthest distance
to the line of the L-WSCC). Moreover, the higher the rainfall, the greater the increase in
the runoff difference, suggesting that the relationship between rainfall and runoff is more
sensitive to different factors with increasing rainfall. Figure 7b shows the changes of MAE
in different scenarios and we can also find that different land-use has a great influence on
the runoff yield. When the bare land region is changed, the ∆MAE is about 20%, but when
the vegetation region is changed, the ∆MAE changes to 113.97–173.14% with the average
is 131.38%. For the soil scenarios, the ∆MAE is relatively small (about 20%), indicating
that the runoff yield is less sensitive to soil factors. For the topography scenarios, although
∆MAE has changed, the variation range is between the land-use and soil factors (about
60%), demonstrating that the sensitivity of topography factors is between the land-use and
soil factors. These results suggest that the land-use is the largest of the explanatory variable,
revealing that land-use is the most significant driver for runoff yield.
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on the relationship between rainfall and runoff. The lines above and below the L-WSCC line represent
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indicate the degree of influence of different factors on runoff. (b) The ∆MAE in different scenarios.
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3.6. Strength and Recommendations for Future Studies

This study systematically evaluated the integrated approach proposed by remote
sensing and WSCC in the Misai watershed. Compared to WSCC, L-WSCC obtained
more satisfactory results (Sections 3.2–3.4), revealing its potential in hydrological modeling
considering human activities at watershed scale. These results were related to the difference
in the runoff generation structure of the WSCC and L-WSCC, in which L-WSCC considered
the underlying surface change on runoff yield. The results of local sensitivity analysis
(Section 3.5) suggested that land-use plays an important role in runoff yield and is consistent
with our study. The information and knowledge obtained from remote sensing data
and WSCC were coupled together, facilitated addressing the problem and predicting the
runoff yield, and provided a calculation method in ungauged basins [86,87]. In addition,
runoff generation parameters of L-WSCC were obtained from remote sensing data without
calibration, thus, L-WSCC can eliminate a source of parameter uncertainties. Taking
this approach further, it is also applicable to the runoff generation part of other rainfall-
runoff models based on saturation-excess runoff such as VIC [88], GR4 J [89], PDM [90],
ARNO [91], HBV [92], G2G [54], unifying the distribution of WSCC for all these models.

Although study objectives generally are achieved, this study has limitations that
should be outlined and perhaps targeted in forthcoming studies. First, the influence of
climatic factors on runoff yield is not considered in L-WSCC. Despite this will not have an
impact on the results of this study, it cannot be ignored if long-term runoff predictions are
carried [93]. Second, although multi-resolution and fitting method are used to minimize
the effect of topography scale, the accuracy of land-use, soil, vegetation, and other data has
not been considered. The solution of the problem will have maximized the accuracy of our
model. Furthermore, seasonal variation of simulation results indicates that the acquisition
time of remote sensing data has a certain influence on the simulation results. Higher
temporal resolution data for the improvement of simulation needs further study. Moreover,
the study period is quite long ago and the basin hydrology may be substantially altered.
Therefore, obtaining more recent data for comparative research is the direction of our further
research. Although this study has obtained good results in the short-term hydrological
simulation (1982–1988), the long-term hydrological process of the basin will inevitably be
affected by climate change, so it is worth exploring how to take the climate factors into
account for the long-term hydrological simulation. Notwithstanding these limitations,
this study outlines a comprehensive runoff generation process for flood simulation based
on remote sense and WSCC. L-WSCC considers the impact of human activities on runoff
yield, enhances the physical meaning of WSCC, and can better understand the hydrological
process. Extreme floods events are expected to occur more frequently, and the integrated
approach will help relevant departments implement corresponding measures.

4. Conclusions

A new integrated approach (L-WSCC) combined the various remote sensing factors
and saturation-excess runoff was proposed at basin scale, which helped to clarify the differ-
ence between the distribution of water storage capacity in reality and the modelled runoff.
Unlike the traditional WSCC method, the extended L-WSCC consisted of equations of the
effect of different factors on runoff, which provided beneficial insights in understanding
the behaviors of the rainfall-runoff process. L-WSCC enhanced the physical meaning of
the original WSCC, and simulating flood in regions characterized by physical basis rather
than calibration/empirical approach. L-WSCC was evaluated from the Misai basin to be
very effective in flood simulation and the results showed that the physics-based approach
is promising. The major findings of this paper are summarized as follows:

(1) The application of L-WSCC in Misai basin demonstrated that the method proposed
in this article performed well in hydrological simulating at the different timescales
(mean NSE: 0.86 for daily scale, 0.82 for hourly scale; mean BE: 4.34% for daily scale,
11.02% for hourly scale). The results have proven to be robust and reliable, which
were powerful evidence for the reasonability of the construction process of L-WSCC.
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(2) The contrasting results confirmed that L-WSCC performed favorably compared to the
empirical WSCC method and identified novel L-WSCC with high confidence in flood
simulation (mean NSE increased from 0.78 to 0.82, mean PE decreased from 21.66% to
12.74%, mean RE decreased from 12.18% to 11.02%). These results indicated that the
L-WSCC can derive a set of feasible values for the runoff generation.

(3) The correction of hydrologic responses resulting from L-WSCC is more obvious for
relatively small flood event (increased by 15.96% of small floods in terms of mean
NSE). The proposed method can more accurately capture the runoff process of small
flood events according to various remote sensing factors, thereby improving the
ability of WSCC to simulate small floods. Thus, the newly proposed model may
better represent runoff generation that previously have been beyond the scope of
the traditional WSCC method (which is considered to work well for large flood
events simulation).

(4) The results of sensitivity analysis showed that land-use and land cover (especially
the change of vegetation) have the greatest impact on yield (mean ∆MAE: 131.38%),
which demonstrated that land-use have a predominant control on runoff yield in the
short term.

The benefit of the spatially distributed method (L-WSCC) indeed mainly lies in the
broader range of applications such as spatial scenario simulations and the ability to runoff
simulation in similar basins. Our suggested approach can serve as an alternative to re-
gionalization techniques, when one is interested in runoff simulation at ungauged internal
stations of a particular scale. Moreover, this new spatial description of runoff provided by
L-WSCC may allow for a more realistic extension of the WSCC method to runoff related
processes such as water quality model and sediment migration model.
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cover dynamics in Misai basin. Figure S7. The observed and simulated streamflow hydrographs
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