
RiAiR: A Framework for Sensitive RDF Protection

Irvin Dongo1 and Richard Chbeir2

1Univ. Bordeaux, ESTIA, Bidart, France
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Abstract

The Semantic Web and the Linked Open Data (LOD) initiatives promote the
integration and combination of RDF data on the Web. In some cases, data
need to be analyzed and protected before publication in order to avoid the
disclosure of sensitive information. However, existing RDF techniques do
not ensure that sensitive information cannot be discovered since all RDF
resources are linked in the Semantic Web and the combination of different
datasets could produce or disclose unexpected sensitive information. In this
context, we propose a framework, called RiAiR, which reduces the complex-
ity of the RDF structure in order to decrease the interaction of the expert user
for the classification of RDF data into identifiers, quasi-identifiers, etc. An in-
tersection process suggests disclosure sources that can compromise the data.
Moreover, by a generalization method, we decrease the connections among
resources to comply with the main objectives of integration and combination
of the Semantic Web. Results show a viability and high performance for a
scenario where heterogeneous and linked datasets are present.

Keywords: RDF protection, Sensitive information, Semantic Web, Disclo-
sure source.
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1 Introduction

With the advance of the Semantic Web and the Linked Open Data initiatives,
more and more RDF documents are available on the Web. RDF describes
resources as triples: 〈subject, predicate, object〉, where subjects,
predicates, and objects are all resources identified by their IRIs. Ob-
jects can also be literals (e.g., a number, a string), which can be annotated
with optional type information, called datatype. Since the last decade, RDF
is attracting more and more people, and data is gathered and published by
different sources (e.g., companies, governments) for many purposes such as
statistics, testing, and research proposals. For instance, according to [21],
more governments are becoming e-governments, since they are part of the
LOD initiatives, providing their data to have a more flexible data integration,
increasing the data quality, and offering new services. However, as more data
is available, sensitive information (e.g., diseases, salaries, or bank accounts)
could be sometimes provided or inferred leading to compromise the privacy
of related entities (e.g., patients, users, companies).

Data can be analyzed and protected before being published on the
Web [24, 41], or limited in access for queries over controlled scenar-
ios [35, 48]. In this work, we only focus on the protection of RDF data,
expressed as documents, by the analysis of the data before publication. A pri-
vacy protection of the RDF data is tricky, since the use of different published
heterogeneous datasets could break some protection. For instance, the combi-
nation of well-known datasets as DBpedia and Enipedia1 produces sensitive
information of places of interest (e.g., schools, hospitals, production facto-
ries), regarding their proximity to nuclear power plants (high contamination
resource).

According to [41], anonymization is one common and widely adopted
technique for sensitive data protection that has been successfully applied
in practice. It consists on protecting the entities of interest by removing or
modifying identifiable information to make them anonymous before publica-
tion, while keeping the utility of the data. This latter is modified according
to certain criteria of the existing values (e.g., taxonomies, ranges) to satisfy

1 Enipedia is a dataset containing data related to the production of energy and its applica-
tions. The information available on Enipedia is provided by governments, which support the
LOD. http://enipedia.tudelft.nl

http://enipedia.tudelft.nl


RiAiR: A Framework for Sensitive RDF Protection 3

some conditions of anonymity (e.g., k-anonymity1, l-diversity2). To apply
anonymization, it is necessary to identify and classify the data (see D in
Fig. 1) into: (i) main entities, which are the entities of interest, and (ii) re-
lated data that is directly or indirectly associated to the main entities and
can compromise their privacy. The related data can also be classified as [6]:
(i) Identifiers, data that directly identify a main entity (e.g., security social
number); (ii) Quasi-identifiers, data that can be used to link with other data
to identify a main entity (e.g., birthday, postal code, gender); (iii) Sensitive
information, which is the data that compromise a main entity (e.g., diseases);
and (iv) Unsensitive information that does not have a particular role or impact.

Figure 1 Anonymization framework inspired from [29]; D is the data to be published, BK
is the Background Knowledge; and pD the protected data obtained by the anonymization
process, considering the classification made by the Expert User

A classification, which is performed by an expert user (see Expert User in
Fig. 1) who knows previously the data and is responsible of protecting model,
is based on predefined assumptions about how an adversary can take advan-
tage over these data. These assumptions are called Background Knowledge.
The background knowledge (see BK in Fig. 1) is the information related to
the published data, which can be used by adversaries to discover sensitive
information of the main entities. Due to the huge complexity of the RDF
structure, a classification requires a high interaction of the expert user. More-
over, all RDF’s elements can be considered as main entities, and they can
also be classified into identifiers, quasi-identifiers, sensitive information, etc.,
making the RDF protection complex.

1 k-anonymity is one of the most used common condition, that consists on making entities
undistinguished from at least k − 1 other entities, because they have similar information [43]

2 l-diversity is an extension of the k-anonymity model that protects the corresponding
sensitive values within a homogeneous group.
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Works on RDF anonymization are limited [24, 41]. They mainly apply
generalization and suppression operations over taxonomies (each RDF’s el-
ement has a defined taxonomy) to anonymize the RDF document. Defined
areas (neighborhood) are also provided [24], where anonymization properties
as k-anonymity are satisfied. Various anonymous RDF documents are gener-
ated by the combination of all values from the taxonomies and a measure is
required to choose the best option. However, the exhaustive method to select
the best anonymous RDF document makes these approaches unsuitable for
complex cases, since a greater quantity of values to take into account, needs
a more elaborate anonymization process (more possible solutions).

Since RDF forms a directed, labeled graph structure with data, where
the edges (predicates) represent the named link between two resources,
represented by the graph nodes (subjects and objects) [36], databases
and graphs anonymization techniques could be applied, but they are limited
and inappropriate for privacy protection in the Semantic Web, as we detail in
Section 3.

Thus, in the context of RDF data, the following limitations are identified:

1. RDF anonymization techniques are limited and designed for a particular
and ideal scenario, which is inappropriate when having several linked
heterogeneous datasets [4, 24, 41, 48];

2. The non-consideration of IRIs as external and reachable resources
makes the current RDF solutions unsuitable for protection on the Web,
since other available resources could link or infer sensitive information;

3. The presence and consideration of resources (IRIs and Blank nodes),
which are a fundamental part of the RDF data, makes the database ori-
ented methods [26, 30, 31, 33, 44] unsustainable for a large quantity of
resources due to the number of JOIN functions needed to satisfy the
existing normalized models;

4. Graph anonymization techniques assume simple, undirected and un-
labeled graphs [5, 7, 8, 22, 27, 28, 52, 53, 56]; thus, the reduction of
complexity of the RDF structure to a simple graph is necessary for
the application of graph solutions, but inappropriate for the Semantic
Web, since properties and semantic relations among resources would be
ignored;

5. The complexity of the RDF structure requires a high interaction of the
expert user to identify and select the RDF’s elements to be protected
(main entities), and the ones related to the main entities (identifiers,



RiAiR: A Framework for Sensitive RDF Protection 5

quasi-identifiers, sensitive information, and unsensitive information);
and

6. Approaches based on conceptual RDF representations are needed in
order to provide more general solutions that can be serialized later on
different formats (e.g., RDF/XML, Turtle, N3, JsonLD).

To overcome these limitations, we propose a framework, called RiAiR
(Reduction, Intersection, and Anonymization in RDF) , which is independent
of the serialization formats and providers. The proposal is designed for RDF
documents, considering their elements (IRIs, blank nodes, literals) and the
scenario, where a huge quantity of information is available. The complexity
of the RDF structure is reduced to make possible the task of classification
and to suggest potential disclosure sources to the expert user, decreasing his
interaction. Moreover, by a generalization method, we reduce the connections
among datasets, preserving the main objectives of the Semantic Web (integra-
tion and combination), and protecting the sensitive information at the same
time.

We validated our anonymization approach through several experiments.
We evaluated the viability and the performance of the proposal with respect
to the related work. Results show a real viability of our approach for linked
heterogeneous datasets and a high performance of the anonymization process
of quadratic order with respect to the triples of the the data to be published
(n) and the ones from the background knowledge (m) (i.e., O(n2 +m2)).

The paper is organized as follows. Section 2 presents a motivating sce-
nario to illustrate the disclosure of sensitive information on the Web. Section 3
surveys the related literature. Terminologies and concepts are presented in
Section 4. Section 5 describes our approach. Section 6 shows the experiments
to evaluate the viability and performance of our approach. Finally, we present
our conclusions in Section 7.

2 Motivating Scenario

The goal of the Semantic Web is to publish datasets, mainly as RDF, describ-
ing and combining resources on the Web for an open access. The datasets
are usually treated and protected before being published; however, sensitive
information could be deduced using related information available from other
datasets. To illustrate this, let’s consider a scenario in which a data manager X
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works for a government to publish a dataset A, related to energy production
and its applications, on the Web2.

An extract of the dataset A to be published is shown in Table 1.

Table 1 An example of the data extracted from Enipedia dataset
N cat:Fuel -

type
cat:radio-

active rdfs:label prop:City
(rdfs:label)

prop:Country
(rdfs:label) prop:lat. prop:long.

1 art:Nuclear true Hartlepool Hartlepool
Cleveland United Kingdom 54.6824 -1.2166

2 art:Nuclear true Limerick Pottstown United States 40.2257 -75.5866
3 art:Nuclear true Neckar Neckarwestheim Germany 49.0411 9.1780
4 art:Nuclear true Beaver Valley Shippingport United States 40.6219 -80.4336

Figure 2 shows the schema of the dataset A to be published. Note that the
properties prop:Latitude, prop:Longitude, rdfs:label, and cat:ra-

dioactive define values, while the properties prop:City, prop:Country,
and cat:Fuel type define resources.

Figure 2 Structure of the data extracted of the Enipedia dataset

As a data manager, X should pay attention about the side effect of
publishing the dataset A on the Web, since it can produce sensitive infor-
mation for entities already published. For instance, DBpedia3, which is a
linked open dataset extracted from Wikipedia, can be used as background
knowledge in order to discover sensitive information related to places of
interest. This dataset can be easily connected by the use of properties, such
as prop:Latitude and prop:Longitude present in the dataset A as well.
Table 2 shows some places of interest available in the DBpedia dataset.

2 The example provided uses an extract from Enipedia dataset.
3 DBpedia does not contain sensitive information, since all data correspond mainly to well-

known entities (e.g., places, governments, actors, singers).
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Table 2 Some places of interest available in the DBpedia dataset
N rdf:type rdfs:label prop:lat. prop:long.
1 dbo:School Hartlepool College of Further Education 54.6839 -1.2109
2 dbo:School English Martyrs School and Sixth Form College 54.6754 -1.2362
3 dbo:School Coventry Christian Schools 40.2505 -75.5930
4 dbo:School Hlderlin-Gymnasium Lauffen am Neckar 49.0704 9.1394
5 dbo:School Pennsylvania Cyber Charter School 40.6385 -80.4549

By the intersection among coordinates (prop:Latitude and prop:Lon-
gitude) of nuclear power plants (dataset A) and the ones of places of
interest (dataset DBpedia), one can easily identify their proximity in a defined
Region. A Region is an area obtained by the maximum distance between a
nuclear power plant and a place of interest. The following SPARQL query
produces the intersection between the dataset A to be published and the
dataset DBpedia. Note that a Region of 100km was used to obtain the results.

SELECT DISTINCT
?Place ?g bif:st_distance(?g,bif:st_point(".$long.",".$lat."))
AS ?distance
FROM
<http://dbpedia.org> WHERE {?p rdfs:label ?Place ;
geo:geometry ?g ; rdf:type dbo:School .
FILTER
(bif:st_intersects (?g, bif:st_point (".$long.", ".$lat."), 100)
&& (lang(?Place) = \"en\"))}
ORDER BY ASC(?distance)

Table 3 is the result of the intersection between the dataset A and dataset
DBpedia. It shows in row 1 that a school is less than 500 meters distance
from a power nuclear plant in United Kingdom. It also shows which hospi-
tals, universities, and any other crowded places are close to power nuclear
plants in a defined area. One can even identify which are the dirtiest power
nuclear plants (prop:Carbonemissions) and the places next to them. If
this combined information is available on the Web, it can be misused against
the nuclear power plants to stop their production and management, and even
against the places of interest near to them.

Figure 3 illustrates graphically the intersection between dataset DBpe-
dia and the dataset A. The resource Region links School, University,
Hospital and Power Plant resources.

To protect the dataset A to be published, X needs to identify and classify
the data, according to the assumptions of how an adversary can obtain or
produce sensitive information, using the background knowledge, as follows.
The information of a Power Plant resource of type nuclear (art:Nuclear)
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Table 3 Some places of interest next to Nuclear Power Plants
Nuclear
PowerPlant City Country School Distance

(Km)
Hartlepool Hartlepool

Cleveland United Kingdom Hartlepool College of
Further Education 0.40244

Hartlepool Hartlepool
Cleveland United Kingdom English Martyrs School

and Sixth Form College 1.48812

Beaver Valley Shippingport United States Pennsylvania Cyber
Charter School 2.5761

Limerick Pottstown United States Coventry Christian Schools 2.81988

Neckar Neckarwestheim Germany Hlderlin-Gymnasium
Lauffen am Neckar 4.2998

Figure 3 Intersection between Energy Production dataset and other datasets

is sensitive, if there is at least a place of interest (e.g., School) in a defined
Region4.

• Keys: (Identifiers/Quasi-Identifiers): Properties prop:Longitude and
prop:Latitude are keys since both values indicate the position of a
Power Plant, which belongs to a defined Region.
• Sensitive Information: A resource dbo:School and its properties are

sensitive information, since they define the places of interest.
• Unsensitive Information: Other values and properties, which are not

considered in the previous types, are unsensitive information.
4 Considering only DBpedia dataset as external related information (background knowl-

edge).
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Once X has established the classification, a protection technique based
on this classification, should be used to protect the disclosure of sensitive
information. Thus, the following challenges are defined in this study.

• Provide an easy classification of the RDF data (keys, sensitive informa-
tion and unsensitive information);
• A similarity measure able to evaluate the intersection between the data

to be published and the background knowledge, to suggest disclosure
sources; and
• Select the most appropriate protection taking into account the complex-

ity of the RDF data and the objectives of the Semantic Web.

Our contribution in this study is as follows:

• A general framework designed for RDF documents, independent of
the serialization formats, in a scenario where linked and heterogeneous
resources are presented; i.e., the Web;

1. A method to reduce the complexity of the RDF structure of the data
to be published, simplifying the task of analysis, performed by the
expert user;

2. A method to suggest disclosure sources to the expert user, based on
node similarity, reducing the task of data classification; and

3. An anonymization operation, based on a generalization method, to
decrease the relations among resources from different datasets, to
preserve the main objectives of integration and combination of the
Semantic Web.

The following section presents the related work of RDF anonymization.

3 Related Work

In this work, we focus on anonymization techniques as a solution to pro-
tect the sensitive information since it has been widely adopted for sensitive
data protection [41]. To the best of our knowledge, works on RDF document
anonymization are limited [24, 37–41, 48]; however, due to the particularity
of the RDF data, other domains where anonymization has been extensively
studied could be applied, such as: databases [16, 26, 30, 31, 44, 51] and
graphs [5, 7, 8, 22, 27, 52, 56]. To evaluate and classify the existing works, we
identified the following criteria of comparison according to the challenges
and objectives of this work:
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1. The complexity of the data, which should be aligned with the one of RDF
structure, considering heterogeneous nodes and relations, increasing the
expressibility and difficulty of the representation;

2. The type of classification method for identifiers, quasi-identifiers, sen-
sitive and un-sensitive information due to the high quantity of entities,
properties and values available on the Web, making difficult the task of
the expert user; and

3. The conditions of anonymity that are proposed in the current proposals
to identify the most appropriate ones for the Semantic Web.

Following sections describe the RDF, databases, and graph approaches in
the context of anonymization.

3.1 RDF Document Anonymization

For RDF documents, the authors in [41] provide an overview of RDF’s
elements over the role in anonymization (e.g., explicit identifiers, quasi-
identifiers, sensitive data). They propose a framework to anonymize RDF
documents, which satisfies the k-anonymity condition. They consider the use
of taxonomies for values and relations (each type of value and relation has
its own taxonomy). Generalization and suppression operations are applied
over these taxonomies to anonymize the RDF document. Once the operations
are applied, several anonymous RDF documents are produced by the use
of all value combinations from the taxonomies. A measure for anonymous
solutions that satisfied the k-anonymity condition, is proposed to select the
best option. In [24], the authors extend the previous work defining an area
(neighborhood), where the k-anonymity condition is satisfied. The exhaus-
tive method to select the best option makes these approaches unsuitable for
complex cases, since a greater quantity of values to take into account, needs a
more elaborate anonymization process (more possible solutions). Moreover,
the authors assume a classification of the data provided by the model and they
do not specify how this classification was performed.

Additionally, there are some works on the context of statistical queries [4,
48] based on grouping operators (e.g.,SUM, AVG,MAX) and others based on
expert-defined sanitization queries [37–40] to remove identifiers, but we only
focus on the protection of RDF documents.
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3.2 Database Anonymization

In some cases when one has small RDF data, a common practice can be to
convert the RDF to a structured dataset as tables to reuse existing techniques.
Anonymization in databases has been extensively studied and many works
are available in the literature. One of the most used work is proposed in [42],
the authors define a condition, called k-anonymity, where an entity cannot
be identified, since there is at least k − 1 other similar entities. However,
the problem of satisfying the k-anonymity condition is NP-hard, producing
different studies where the complexity and an efficient solution are addressed.
For instance, to anonymize the data, the authors in [33] apply techniques
based on neural networks, the authors in [2] apply genetic algorithms, while
in [33] the authors use matching learning. Non-perturbative operations, such
as generalization and suppression methods, where data is modified according
to certain criteria of the existing values (e.g., taxonomies, ranges), are mainly
used to satisfy the k-anonymity condition [3]. Other studies use perturbative
operations, such as Micro-aggregation/clustering methods, where the entity
values are replaced or modified by the centroid of the clusters, adding in some
cases new entities to satisfy conditions of anonymization in each cluster [47,
55].

According to [30], k-anonymity condition does not protect the sensitive
values, since k similar entities can have the same sensitive information,
which is the one required by the adversary. For that, the authors in [30]
extend the k-anonymity condition considering a diversity (l) of sensitive
values for each set of similar entities (l-diversity). However, the disclosure
is still possible due to the attribute distribution of the dataset. The authors
in [26] propose a condition where the distribution of each sensitive attribute
should be close/similar to the whole attribute distribution in the dataset (t-
closeness). Other studies extend the previous mentioned conditions to address
particular assumptions of the background knowledge. The authors in [31]
propose a (k,T)-anonymization model over spatial and temporal dimensions.
Other works apply the conditions of anonymity to different values as the
authors [44] do, where l-diversity condition is satisfied by the sensitive in-
formation as well. The l-diversity condition is extended in the clustering
proposal work [51], defining a (k, l, θ)-diversity model, which takes into
account the cluster size, the distinct sensitive attribute values, and the privacy
preserving degree of the model. An improvement of certain conditions is
made for special scenarios; for instance, the authors in [19] divide numerical
sensitive values into several levels, getting a better protection for numerical
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values. Also, properties of the data such as utility, value distribution, etc.,
are considered to propose anonymization models. The work in [16] takes
into account the association between quasi-identifiers and the sensitive in-
formation as a criterion to control the use of generalization hierarchy. Some
semantic features are added in recent works. The authors in [34] provide a
(l, d)-semantic diversity model based on a clustering method. They analyze
the distance among sensitive values (d) to consider more actual diversity.
According to [45], a value can be quasi-identifier and sensitive information at
the same time, proposing a method that can treat “sensitive quasi-identifier”
and satisfying the conditions of l-diversity and t-closeness.

Differential Privacy as k-anonymity is another well-used technique to
provide privacy. The authors in [13] propose a perturbation method for true
answer of a database query by the addition of a small amount of distributed
random noise. This method is extended by other authors as in [23], where
they improve the accuracy of a general class of histogram queries while satis-
fying differential privacy. The work in [32] is a non-interactive setting model,
generalizing probabilistically the raw data and adding noise to guarantee dif-
ferential privacy. Other studies are focused on the privacy of anonymized
datasets, since a dataset, in the context of databases, can be affected by up-
dating and removing operations, which can expose the sensitive information.
The authors in [46] propose an architecture which protects the main entities
for databases that require removing operations frequently. They apply gen-
eralization operations based on hierarchies (non-perturbative method). The
model satisfies k-anonymity condition; however, the architecture needs to
verify the anonymous data for each new deleting request in order to protect
the privacy of the original datasets. A centralized scenario is required to apply
this proposal.

Works on database anonymization approaches that satisfy k-anonymity
and its variations, assume that the classification of data into identifiers, quasi-
identifiers, sensitive and un-sensitive information is provided by a user expert,
who knows the data, focusing mainly on the method to satisfy the conditions
of anonymization. In the Semantic Web, it is unable to understand the detailed
characteristics of external datasets, and assume all the background knowledge
possessed by adversaries. Moreover, as more information is involve, more
complex is the task of converting the RDF data to a structured normalized
model, since a high granularity (many tables) is produced due to the use of
IRIs, acting as foreign-keys.

Following section describes the works related to graph anonymization.
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3.3 Graph Anonymization

RDF data can be represented as a graph structure, having labeled-nodes, and
directed and labeled-edges. In the literature, there are several works in the
context of social media, where the authors assume a simple network as undi-
rected, node-unlabeled and edge-unlabeled structure [7, 27, 52] (see Group 9
in Table 4). These works focus on the privacy through the number of edges
among nodes, since an adversary can have the information about the relations,
which can be the only one with a particular number (k-degree condition).
The work in [7] proposes a greedy algorithm to satisfy the k-degree by parti-
tioning all nodes to n clusters. Each cluster becomes uniform with respect to
the quasi-identifier attributes and the quasi-identifier relationship (generaliza-
tion). To choose the best n values, two criteria are taken into account: (i) each
cluster has to contain at least k nodes and (ii) minimize the information loss of
the data. The authors in [27] propose an algorithm to satisfy the k-anonymity
condition over the number of edges of each node. They also rename the
k-anonymity as k-degree condition. The proposal consists in two steps: (i)
Degree Anonymization, where a degree sequence of the graph (descending
order) is generated to group similar nodes with the same degree and (ii)
Graph construction, where an algorithm decides among which nodes a new
edge is added according to satisfy the k-degree condition. In [52], the authors
anonymize a graph by adding random edges. They provide an analysis on the
spectrum of the graph to measure the impact of the anonymization solution.
The spectrum is directly related to the topological properties such as diameter,
presence of cohesive clusters, long paths and bottlenecks, and randomness of
the graph. Works in this group only take into account the number of relations
as a condition of anonymity (k-degree), but in a scenario where a diversity of
nodes is present, the number of operations to satisfy the k-degree condition
increases exponentially. Moreover, diversity of edges values is not analyzed
and the authors assume that the classification of the data is provided by the
expert user.

Other works manage more complex graphs by assuming labeled-node
structure as in [5, 8, 22, 56] (see Group 10 in Table 4). The authors in [5]
demonstrate assuming several attacks that removing identifiers and renam-
ing the nodes in an arbitrary manner, from a social graph, is an ineffective
anonymization mechanism. Walk-based attacks are able to compromise the
privacy for modest numbers of node (around 90%); thus, it has been proven
for the authors that removing identifiers of the data is not a well protection.
The authors in [8] assume that the adversary knows only degree-based in-



14 I. Dongo and R. Chbeir

formation, which is the number of relations (edges) that has each node. To
anonymize the graphs, they add new nodes instead of edges, since they affirm
that “introducing new nodes does not necessarily have an adverse effect. To
the contrary, adding new nodes with similar properties could better preserve
aggregate measures than will distorting the existing nodes”. To satisfy the
k-anonymity condition, an algorithm following four steps is provided: (i)
Optimally partition degree sequence (descending order), (ii) Augment graph
with new dummy nodes, (iii) Connect original graph nodes to new dummy
nodes, and (iv) Insert inter-dummy-node edges to anonymize dummies. In
[22], the authors propose an anonymization technique that protects against
re-identification by generalizing the input graph. They generalize the graph
by grouping nodes into partitions, and then publishing the number of nodes in
each partition, along with the density of edges that exist within an across par-
titions. To preserve the privacy of individuals, which are represented as nodes
in a social network, the authors in [56] assume that an adversary may have the
background knowledge about the neighborhood of some target individuals.
Two properties are taking into account: (i) node degree in power law distribu-
tion [14] and (ii) small-world phenomenon [50] to ensure a low loss of data.
They greedily organize nodes into groups and anonymize the neighborhoods
of nodes in the same group to satisfy the k-anonymity condition.

Works in this group have the same drawbacks as the previous one, which
are related to the modeling of social graphs as a simple structure (even if
the graph is node-labeled), and the assumption of the classification, which is
provided by the expert user.

The authors in [28] work also on the context of social networks by ensur-
ing the privacy of main entities, which are the nodes in the graph (see Group
11 in Table 4). They consider a weight over edges, since it can represent affin-
ity among two nodes, frequency among two persons, or similarity between
two organizations. They propose a Gaussian Randomization Multiplication
strategy due to its simple implementation in practice and responds to the
dynamic-evolution nature of social networks, since it is very hard and costly
to collect the information in advance in a huge and dynamic scenario. This
work represents in a better way the scenario present in the Semantic Web.
However, edges-labeled are reduced to values and they are not considered as
reachable resources which can be used to disclosure the sensitive information.
Also, this work assumes that the classification of the data is provided by user
expert.

Another work is presented in [53] (see Group 12 in Table 4), the authors
assume a more complex graph than the previous described groups. In fact,
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in addition of the node degree, they also assume the values of the nodes
as sensitive data. They propose a framework, which satisfies k-anonymity
and l-diversity conditions. They generate a sequence of 3-tuples (id, node-
degree, and its respective sensitive value). A grouping algorithm is applied
over the list to group similar triples, following certain criteria to satisfy the
conditions of anonymization (k-anonymity and l-diversity). The sequence is
called KDLD sequence, when all the defined conditions are satisfied. From
the KDLD sequence, the graph is rebuilt. Then, they propose a graph con-
struction technique adding nodes to preserve utilities of the original graph.
Two key properties are considered: (i) Add as few noise edges as possible;
(ii) Change the distance between nodes as less as possible.

In general, graph anonymization approaches assume a simple structure
of the data as an undirected and unlabeled-edge social media graph. Also,
k-degree is a one of the common conditions of anonymity used for the au-
thors; however, considering a diversity of nodes as in RDF and using the
existing solutions to satisfy the k-degree condition, the complexity increases
considerably.

The following section summarizes and discusses the works related to
anonymization.

3.4 Summary and Discussion

Existing techniques in the context of RDF document anonymization are re-
ally limited. In [24, 41], the authors reduce the complexity of RDF structure
to micro-data, where a huge quantity of information such as heterogeneous
nodes and relations is simplified and anonymized. However, in a scenario
where thousands of heterogeneous resources are present, the current solu-
tions are not appropriate due to the greedy algorithm to generate all possible
solutions (anonymous RDF) and then, their measure to evaluate and select
the most adequate one.

Since RDF data can be converted, in some cases, to a structured data
as databases, database anonymization techniques could be also applied.
Small RDF data can be managed by these solutions; however, reducing the
complexity of big RDF data into structured models can produce a high se-
mantic information loss (properties), and a huge granularity of the structured
normalized-model. Moreover, solutions are proposed for simple cases where
data satisfy conditions of anonymity, but when a diversity of values is present,
the complexity of the solutions increases exponentially. As RDF data can
be also represented as a graph, anonymization graph approaches have been
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Table 4 Related Work Classification

G Work Requirements
Conditions

of Anonymity Complexity of data Classification
Method

1 [41] k-anonymity RDF Manual
(I, QI, SI, USI)

2 [24] k-anonymity
neighborhood RDF Manual

(I, QI, SI, USI)

3 [48] Differential
privacy RDF Manual

(SI)

4 [4] Differential
privacy RDF Manual

(SI)

5 [33] k-anonymity Structured
data

Manual
(I, QI, SI, USI)

6 [26, 30, 31, 44] k-anonymity
and variations

Structured
data

Manual
(I, QI, SI, USI)

7 [13] Differential
privacy

Structured
data

Manual
SI

8 [23, 32, 46]
Differential
privacy and
variations

Structured
data

Manual
(SI)

9 [7, 27, 52] k-degree
Undirected,

node-unlabeled,
edge-unlabeled

Manual
(I, QI, SI, USI)

10 [5, 8, 22, 56] k-degree
Undirected,

node-labeled,
edge-unlabeled

Manual
(I, QI, SI, USI)

11 [28] k-degree

Undirected,
node-labeled,
edge-labeled

(weight)

Manual
(I, QI, SI, USI)

12 [53] k-degree
l-diversity

Undirected,
node-labeled,

edge-unlabeled
Manual

(I, QI, SI, USI)

13 [37, 38]
[39, 40] Sanitization RDF Manual

(I, QI, Si, USI)

14 Our proposal Intersection RDF Automatic
(I, QI)

explored in this work. The simplicity of the graph structure assumption makes
the current approaches not adequate for the Semantic Web, where heteroge-
neous nodes and relations are present. Some criteria of anonymization, such
as k-degree, can be adopted to the Semantic Web, but the solutions to satisfy
these criteria have to be modified according to the complexity of the RDF
structure.

Most of the works in RDF documents, databases and graphs anonymiza-
tion assume that the classification of the data required to satisfy the conditions
of anonymity, is provided by expert user. However, the scenario of the Se-



RiAiR: A Framework for Sensitive RDF Protection 17

mantic Web complicates the task of classification, since it is difficult to
understand the detailed characteristics of external datasets, and assume all
the background knowledge possessed by adversaries.

Table 4 shows our analysis in this regard. Note that none of the works on
database and graph anonymization satisfies the criteria of complexity of data
(heterogeneous nodes and relations). Moreover, the classification on the data
is mainly provided by the proposals and there is no information about how
it was performed. We assume that the process to classify the data has been
manual. Thus, a new anonymization approach able to cope all requirements
is needed to provide an appropriate protection of sensitive information for the
Semantic Web.

Before describing how our approach addresses these requirements, the
following section introduces some common terminologies and definitions of
anonymization in the context of RDF.

4 Terminologies and Definitions

For the Semantic Web, RDF is the common format to describe resources,
which are abstractions of entities (documents, persons, companies, etc.)
of the real world. RDF uses triples in the form of 〈subject, predicate,
object〉 expressions also named statements, to provide relationships among
resources. The following elements compose the RDF triples:

− An IRI, which is an extension of the Uniform Resource Identifier (URI)
scheme to a much wider repertoire of characters from the Universal Character
Set (Unicode/ISO 10646), including Chinese, Japanese, and Korean character
sets [12].
− A Blank Node, representing a local identifier used in some concrete RDF

syntaxes or RDF store implementations. A blank node can be associated with
an identifier (rdf:nodeID) to be referenced in the local document, which is
generated manually or automatically.
− A Literal Node, representing values as strings, numbers, and dates.

According to the definition in [9], it consists of two or three parts:
• A lexical form, being a Unicode string, which should be in Normal
Form C5 to assure that equivalent strings have a unique binary
representation.

5 It is one of the four normalization forms, which consists on a Canonical Decomposition,
followed by a Canonical Composition -http://www.unicode.org/reports/tr15/
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• A datatype IRI, being an IRI identifying a datatype that determines
how the lexical form maps to an object value.
• A non-empty language tag as defined by “Tags for Iden-
tifying Languages” [1], if and only if the datatype IRI is
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString.
Table 5 describes the sets of RDF’s elements that we use in our approach

description.

Table 5 Description of sets
Set Description
I A set of IRIs is defined as: I = {i1, i2, ..., il} | ∀ii ∈ I , ii is an IRI.
L A set of literal nodes is defined as: L= {l1, l2, ..., lm} | ∀li ∈ L, li is a literal

node.
BN A set of blank nodes is defined as: BN = {bn1, bn2, ..., bnn} | ∀bni ∈ BN ,

bni is a Blank Node.

After the definition of sets of RDF’elements, we formally describe a triple
in Def 1.

Definition 1. Triple (t): A Triple, denoted as t, is defined as an atomic struc-
ture consisting of a 3-tuple with a Subject (s), a Predicate (p), and an Object
(o), denoted as t :< s, p, o >, where:
− s ∈ I ∪BN represents the subject to be described, that can be an IRI or
a blank node;
− p ∈ I is a predicate defined as an IRI in the form
namespace prefix:predicate name, where namespace prefix is a lo-
cal identifier of the IRI , in which the predicate (predicate name) is
defined. The predicate (p) is also known as the property of the triple.
− o ∈ I ∪BN ∪L describes the object, that can be an IRI or a blank node.

�

From our motivating scenario, we can observe several triples with differ-
ent RDF resources, properties, and literals:
− t1: <genid:S1,rdf:type,dbo:School>
− t2: <genid:S1,rdfs:label,"Hartlepool College of Further

Education">

− t3: <genid:S1,prop:latitude,1.4545>
− t4: <genid:S1,prop:longitude,0.40244>

A set of triples defines an RDF document, by encoding the triples, using
a predefined serialization format complying with the RDF W3C standards,
such as RDF/XML, Turtle, N3, etc. According to the structure of triples, RDF
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document can be represented as an RDF Graph, since the structure allows
node-edge-node relations. An RDF graph is defined in Def 2.

Definition 2. RDF Graph (G):An RDF graph of an RDF document is
denoted as Gd(N,E), where each triple ti from d is represented as a node-
edge-node link. Therefore, G nodes (N), denoted as ni, represent subjects and
objects, and G edges (E), denoted as ej , represent corresponding predicates:
ni ∈

⋃
ti.s∪ti.o and ej ∈

⋃
ti.p

[49]. �

The following subsection presents the formal concepts used in this work.

4.1 Problem Definition

As we show in the motivating scenario, there are cases in which sensitive in-
formation can be disclosed through the data published from different sources
on the Web (due to data intersection). Thus, the data to be published, de-
noted as D, should be protected before, in order to avoid compromising the
disclosure or production of sensitive information.

The available information on the Web is called background knowledge.
It can be provided automatically or semi-automatically by the expert user
and can contain simple or complex resources (e.g., one RDF resource, RDF
graph, text files). The background knowledge is formally defined in Def. 3.

Definition 3. Background Knowledge (BK): It is a set of IRIs, considered
as nodes and denoted as BK: {n1, n2, ..., ni | ∀ni, ni is a IRI}. �

In this work, we assume that the intersection between D and BK can dis-
close or produce sensitive information, hence identifiers and quasi-identifiers
appear in D due to the connection among its subjects and objects. We rename
both concepts to keys, defined in Def. 4, since they allow the disclosure of
sensitive information.

Definition 4. Keys (K): Keys are identifiers and quasi-identifiers, denoted as
K : {ki | ∀ki ∈ I ∪BN ∪ L, ki produces sensitive information}. �

We formally define our assumption concerning the intersection between
D and BK datasets in Ass.1.

Assumption 1. Key Detection (Intersection) (IN): The intersection be-
tween a set of triples T and a set of IRIs I is defined as a set of nodes (subjects
and objects of triples) that belong to the RDF graph of T (GT ), denoted as
IN , where each node of IN has another similar one in I. The similarity among
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the two nodes is measured by a similarity function (simFunc), whose value is
equal or greater than an established threshold.

IN : T u I =
⋃
{ni∈GT |sim(ni∈T,nj∈I,α,β,γ)≥threshold}

Where:
– u is an operator that defines the intersection between triples and IRIs;
– ni is a subjects or object that belong to T ;
– nj is a IRI that belong to I;
– sim is the similarity function defined in Def. 5.

The similarity function between two nodes is defined in Def. 5.

Definition 5. Similarity function (simFunc): The similarity between two
nodes is defined as a float value, denoted as simFunc that takes into account
three different aspects of the nodes: (i) syntactic; (ii) semantic; and (iii) con-
text analysis, such that:

simFunc(ni, nj , α, β, γ) = α× syntactic similarity(ni, nj) +
β × semantic similarity(ni, nj) +
γ × context similarity(ni, nj))

Where:
– ni ∈ I ∪BN ∪ L and nj ∈ I;
– Syntactic similarity is a function which considers the syntactic aspect of

the node, whose values are in [0, 1];
– Semantic similarity is a function which considers the semantic aspect of

the nodes, whose values are in [0, 1];
– Context similarity is a function which considers the incoming and outgo-

ing relations of the nodes, whose values are in [0, 1];
– α+ β + γ = 1. �

According to the type of nodes of BK (IRIs), different similarity func-
tions should be provided to discover similar nodes. For instance, similarity
in the context of RDF information retrieval has been widely studied and
several work analyze queries (e.g., a node, graphs) with respect to RDF
structure [17, 54]. Moreover, images, texts, and other multimedia files could
be converted to RDF to facilitate the comparison of RDF nodes [15, 20, 25].
The nodes belonging to the intersection between D and BK (IN), are po-
tential keys according to our assumption, then K = IN . For example,
according to our motivating scenario, the properties prop:Longitude and
prop:Latitude from Enipedia dataset (D) are keys since the position iden-
tifies a particular Power Plant and have intersection with the ones from
DBpedia dataset (BK). The triples from D that contain at least a key are
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considered as disclosure sources, defined in 6, since the triples are connected
to other resources.

Definition 6. Disclosure Sources (DS): It is a set of triples, which contains
at least a key from K, denoted as DS : {dsi | ∀dsi ∈ D ∧ (dsi.s ∈ K ∨
dsi.o ∈ K), dsi is a disclosure source that disclose or produce sensitive
information}. �

However, all triples in D that contain at least a key, cannot be considered
as disclosure sources, since it depends of the scenario; thus, the interaction of
the expert user is needed to identify only the ones that compromise the data to
be published. For example, the triple 〈..., prop:lat, 54.6824〉, from Enipedia
dataset (D), is considered as a potential disclosure source since it has a key
(prop:lat) as predicate. Def. 7 formally explains the result of the expert
interaction.

Definition 7. Disclosure-Source Query (EU): It is a selection/projection
query applied over DS (

∏
DS), that returns triples considered as disclosure

sources by the expert user according to the scenario. This set of triples is
denoted as EU : {eui | ∀eui ∈ DS, eui is considered as a disclosure source
by the expert user}. �

Using the classification of the expert user, anonymization methods can be
applied on the selected triples in order to prevent the disclosure of sensitive
information. Note that even the original set of triples (D) could be protected,
it should be re-protected considering the already published data (BK) and
their intersections with the original one. A protection operation is formalized
in Def. 8.

Definition 8. Protection Function (ProtFunc): It is a function applied on
a triple that returns another similar one, by modifying either the subject, the
predicate, the object, or all the three RDF elements, to avoid the disclosure
of sensitive information. It is denoted as ProtFunc(t ∈ D, op, par), where
op is a protection operation (e.g., generalization, suppression) and pr are the
parameters of configuration (e.g., level of generalization). �

By the result of applying the protection process on the set of triples
selected by the expert user, the protected data is obtained. This latter is
formalized in Def. 9 and it does not allow the disclosure of sensitive
information.
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Definition 9. Protected data to be published (pD): It is a set of triples
denoted as pD, which is the result of applying any protection technique on
the set of triples selected by the expert user (EU) of D; i.e., the data to be
published are protected if their intersection with the BK does not produce
the triples selected by the expert user, using the same threshold established
during the intersection:

pD = D u {ProtFunc(eui) | eui ∈ EU}
Where:

– D is the data to be published;
– u defines the replacement of the set EU ⊂ D with the one obtained by

applying a operation function over its elements;
– EU is the set of triples considered as disclosure sources by the expert (see

Def. 7);
– ProtFunc is a function that applies a protection operation (e.g., gener-

alization, suppression) on either the subject, predicate, object, or all three
values. �

Following the previous example, let’s protect the triple
〈..., prop:lat, 54.6824〉 considered as a disclosure source, selected
by the expert user, by applying a generalization function over the
predicate to reduce its similarity with the DBpedia dataset (BK):
〈..., prop:coordinate, 54.6824〉.

The next section describes our protection process.

5 Protecting Process: Our Proposal

Our protection process mainly relies on a four phases approach (see Fig. 4),
called RiAiR, where the input, a set of RDF documents in any serialization
format (D), is converted into a graph representation, used by all modules:
(i) Reducing-Complexity phase in which the graph is analyzed to reduce its
complexity-structure to extract a compressed one; (ii) Intersection phase,
where similar nodes between the input graph (reduced or not) from D and the
one from the BK are identified as potential keys (IN); (iii) Selecting phase in
which the expert user analyzes and selects the disclosure sources (EU), which
contains at least one potential key; and (iv) protection phase that executes a
protection process over the selected triples (EU).

A description of each phase is presented in the following sections.
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Figure 4 Framework of our RDF anonymization process

5.1 Reducing-Complexity Phase

Since the expert user needs to classify thousands of triples available in D, a
reduction step is needed in order to simplify the interaction and make easy the
task of classification. As some triples are essential to describe concepts, they
cannot be removed from the data and are considered as constraints. These
latter are a set of triples, defined by the expert user, that have an important
role over the data. The set of constraints is defined in Def. 10.

Definition 10. Constraints (C): It is a selection/projection query applied
over D (

∏
D) the indicate the triples to be preserved. It is denoted as C:{ci:<

si, pi, oi >| ∀ci ∈ D, ci is a triple to be preserved}. �

For example, we define as a constraint the triples whose predicates are
equal to the value http://www.w3.org/1999/02/22-rdf -syntax-ns#type,
since it describes the concept of a resource.

The set of triples T={ti : 〈si, pi, oi〉} of D is analyzed by the similarity
function simFunc defined in Def. 5, considering the set of IRIs as a simple
node (e.g., a resource). This similarity should take into account the context
of the value (e.g., a similarity function based on the incoming and outgoing
relations) instead of the analysis of the value itself in order to identify a more
general resource. From two similar nodes, the one that subsumes the other
is kept. A sorting step to organize the triples in a defined order is needed
to return a unique output (e.g., Depth-Subject-Predicate-Object order). As
sensitive information can be present in resources and literal values as well,
we classify the nodes into two categories: internal nodes, which are the ones
that are subjects and objects at the same time, and external nodes that are
only objects in the set of triples (T).

We propose Algo. 1 and Algo. 2 to reduce the complexity of each cate-
gory of nodes. The reducing-complexity algorithm applied on internal nodes,
receives a set of triples T={ti : 〈si, pi, oi〉}, a threshold th1, a similarity
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function simFunc, and returns another set of triples T’={t′i : 〈s′i, p′i, o′i〉}. In
Algo. 1, each triple (ti) in T is analyzed by the simFunc applied to its subject
(node) with other subjects from T (lines 4-5 of Algo. 1). If the simFunc is
equal or greater than the defined threshold (th), the triple (ti) is added to the
list processedListTriples and the subject of ti will be replaced by the one
from tj in all triples from T (lines 8, 9 of Algo. 1). The replacing function is
performed in line 11 of Algo. 1 and the modified set of triples is returned in
line 13.

Algorithm 1: Reducing Complexity - Internal Nodes
Input: Set of triples T={t:〈s,p,o〉}, threshold th1, Function simFunc
Output: Set of triples T’

1 processedListTriples = {}; //List of processed triples.
2 replaceListNodes = {}; //List to replace nodes in the set of triples.
3 T = T.sort(HSPO); //Sorting by depth-subject-predicate-object order.
4 foreach ti in T do
5 foreach tj in T-{ti} do
6 if tj /∈ processedListTriples then
7 if simFunc(ti.s, tj .s)≥ th1 then
8 processedListTriples.add(ti);
9 replaceListNodes.add(Pair(ti.s,tj .s));

10 break; //Since a similar node was found, the next ti is analyzed.

11 T’ = T.replaceNodes(replaceListNodes); // Nodes are replaced.
12 T’ = T’.removeDuplicateTriples(); //Duplicate triples are removed.
13 return T’;

The algorithm for external nodes receives a set of triples
T={ti : 〈si, pi, oi〉}, a threshold th1, a similarity function simFunc,
and returns another set of triples T’={t′i : 〈s′i, p′i, o′i〉}, according to the
threshold (th) provided by the expert user. A list, called removeListTriples,
is used to store temporarily the triples to be removed in the last step of the
algorithm (line 1 in Algo. 2). As the previous algorithm, a sorting step is
needed to return an unique output. Each subject (node) from triple ti in T
is compared with other subjects that belong to the triples in T, using the
similarity function simFunc defined in Def. 5 for simple nodes. To verify if
the triple has an external node, its depth6 is calculated. If the depth of ti is
different than 0, then the object node is not external, and we move forward

6 The depth of a triple is considered as the biggest path of its object to a terminal node.
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to the next triple in T (lines 4-5 of Algo. 2). If the simFunc between ti and tj
is equal or greater than the defined threshold and ti does not belong to the
set of constraints (C in Algo. 2) defined by the expert user (see Def.10), the
triple ti is added to the removeListTriples list (lines 8-10 in Algo. 2). Finally,
the triples are removed in line 11 in Algo. 2).

Algorithm 2: Reducing Complexity - External Resource
Input: Set of triples T={t:〈s,p,o〉}, threshold th1, Function simFunc
Output: Set of triples T’

1 removeListTriples = {}; //List to remove triples.
2 T = T.sort(HSPO); //Sorting by depth-subject-predicate-object order.
3 foreach ti in T do
4 if ti ∈ removeListTriples ∨ depth of ti 6= 0 then
5 continue; //Next triples is analyzed.

6 foreach tj in T - {ti} do
7 if tj /∈ removeListTriples then
8 if simFunc(ti.s, tj .s)≥ th1 and ti /∈ C then
9 removeListTriples.add(ti); //Adding triples to be removed.

10 break; //Since a similar node was found, the next ti is analyzed.

11 T’ = T.removeTriples(removeListTriples); //Triples of removeListTriples list are
removed.

12 return T’;

Note that Algo. 1 and Algo. 2 are independent and they can be used in
any order.

The reducing-complexity algorithms are applied to the data to be pub-
lished (D). Once the reductions are obtained, the intersection among this set
and the BK can be performed. Following phase describes the intersection
phase.

5.2 Intersection Phase

The previous phase reduces the complexity-structure of D; the number of
triples of D to decrease the interaction of the expert user over the data. How-
ever, identifying the triples that are disclosure sources in the reduced set of D,
is still a difficult task for the expert user. To identify the nodes of the reduced
set D that belong to the intersection with the background knowledge (BK),
we propose Algo. 3, based on the intersection among two datasets assumption
(see Ass. 1) and using the similarity function defined in Def.5.
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Algorithm 3: Intersection among two datasets
Input: Set of triples T={ti:〈s,p,o〉}, I , threshold th2, Function simFunc
Output: Set of nodes IN

1 IN = {}; //Set of nodes.
2 foreach ti in T do
3 foreach ij in I do
4 if simFunc(ti.s, ij)≥ th2 then
5 if ti.s /∈ IN then
6 IN.add(ti.s); //The subject of T is added.

7 if simFunc(ti.o, ij)≥ th2 then
8 if ti.o /∈ IN then
9 IN.add(ti.o); //The object of T is added.

10 return IN;

Algo. 3 receives a set of triples T={ti : 〈si, pi, oi〉}, a set of IRIs I , a
threshold th2, a similarity function simFunc, and returns a set of nodes IN,
according to the threshold defined by the expert user. Each subject and object
from triple ti in T is analyzed by using the similarity function (simFunc) with
the IRI ij in I . If simFunc is equal or greater than the defined threshold (th),
the subject or object from triple ti in T are added to the list IN (lines 4-9 in
Algo. 3). The set IN is returned in line 10.

The nodes of IN are considered as potential keys (see Def.4), since they
allow the connection of the data to be published with other datasets. Fol-
lowing section presents the selecting phase which is executed by the expert
user.

5.3 Selecting Phase

According to Def. 6, triples that contain at least a key are disclosure sources
and can disclose or produce sensitive information; however, not all triples that
belong to this definition can reveal sensitive information; therefore, the inter-
action of the expert user is needed to select only the triples that compromise
the data. The selection can be performed by a query or any other method.

To further simplify the expert user interaction, we propose the use of a
Graphic User Interface (GUI) based on the set of potential disclosure sources
(DS). By a visual interface, the expert user can analyze and select only
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Algorithm 4: Protection Process
Input: Set of triples T={ti:〈s,p,o〉}, Set of taxonomies TA, Level of generalization g
Output: Set of triples T ′

1 T’ = {}; // Set of triples.
2 foreach ti in T do
3 Taxonomy ta = TA.getTaxonomy(ti.p); // Taxonomy of predicate ti.p.
4 ti.p = ta.getPredicate(g); // Predicate from taxonomy ta.
5 T’.add(t); // The modified triple is added to T’.

6 return T’;

the triples which are disclosure sources for the scenario. The set of triples
obtained by the selection of the expert user, is the set EU (see Def. 7).

Following section describes the protecting phase applied over the set of
triples EU.

5.4 Protection Phase

Once the disclosure sources are selected by the expert user, a protection pro-
cess on these triples can be performed. We propose the use of generalization
operations on the predicate of each triple, to only reduce the connections
among datasets (D and BK), preserving the objectives of integration and
combination of the Semantic Web. A taxonomy for each type of relation
from the set of triples EU (see Def. 7), has to be provided by the expert
user. Moreover, a measure to calculate the level of generalization, applied
to the taxonomies (to choose a predicate form a set of values), is needed
(e.g., hierarchical and taxonomy measures) in order to provide an appropriate,
customized and measured protection according to different scenario. Algo. 4
describes the protection process by applying a generalization operation on
each selected triple of EU (see Def.8).

Algo. 4 receives a set of triples T={ti : 〈si, pi, oi〉}, a set of taxonomies
TA, a level of generalization g, which is a value among [0, 1], and returns
a set of modified triples T’={t′i : 〈s′i, p′i, o′i〉}, according to the taxonomies
and the level of generalization provided by the expert user. From the set of
taxonomies provided by the expert user (TA), the taxonomy which corre-
sponds to the predicate of ti (ti.p) is used to obtain another predicate that
satisfy the level of generalization (g) (lines 3 and 4 in Algo. 4). The modified
triple is added to the list T ′ (line 5 in Algo. 4) and the whole list is returned
in line 6.
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Note that to obtain the protected RDF data, the compressed triples se-
lected by the expert user, have to be released to apply the protection process
over their triples.

Our whole proposal overcomes the limitations identified in the context of
RDF protection, such as the assumptions of simple data that is not similar
to the one available on the Web, and the high interaction of expert user for
the classification. The proposal is designed for RDF data, considering their
elements (IRIs, blank nodes and literals) and the scenario, where linked and
heterogeneous resources are available. The complexity of the RDF structure
is reduced in order to decrease the interaction of the expert user and to
make easy the task of classification. Potential keys are identified and dis-
closure sources are provided to the expert user. Moreover, by a generalization
method, we reduce the connections among datasets, preserving the main ob-
jectives of the SW (integration and combination), and protecting the sensitive
information at the same time.

The following section evaluates the complexity of our proposal.

5.5 Complexity Analysis of the whole Anonymization Process

A complexity analysis of our anonymization approach indicates a quadratic
order performance in terms of number of triples of the data to be published
(n) and the ones from the background knowledge (m), i.e., O(n2 +m2). A
detailed complexity analysis was done on each phase of the process to get the
complexity of the whole process:

• For the Reducing-complexity phase, each triple (n) is analyzed by
searching another similar one in the set of triples, then their execution
order is O(n2).
• The Intersection phase based on the reduced set of triples from D, has

an execution order O(n×m), D and BK respectively, for the worst case
where no triple was removed by reducing-complexity phase.
• The Configuration phase, which is made by the expert user, depends

of the number of triples from D that contain potential keys, which are
obtained by the intersection between D and BK. Thus, this phase has
an execution order O(n) where all triples are considered as disclosure
sources.
• The anonymization phase, applied over the triples selected by the expert

user, has an execution order of O(n), if all triples from D are considered
as disclosure sources.
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As the four phases are executed sequentially, the whole protection ap-
proach exhibits a quadratic order complexity, i.e., (O(n2 +m2 + n ×m +
2× n)).

The following section evaluates the viability and demonstrate the
quadratic order performance of our proposal.

6 Experimental Evaluation

To show the viability and performance of the approach for heterogenous
datasets available on the Web, we performed an experimental evaluation.

6.1 Prototype and Implementation

To evaluate and validate our protection approach, a desktop prototype sys-
tem, called RiAiR, was developed using Java. Fig. 5 shows a visual interface
of our prototype, which has several customizable options according to user-
preferences. For example, the expert user can apply the reducing-complexity
process to either internal, external nodes, or only one of them. The thresh-
olds for the reduction, intersection, and protection processes can be also
customized by the expert user, selecting a value among [0,1] in the left area
of the visual interface.

Figure 5 Visual interface of our Protection Approach

For the reducing-complexity and intersection phases, we implemented
the similarity function, called simFunc (Def. 5), considering only the
context similarity to be independent of the domain and to address more
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heterogeneous datasets. The function is defined by using the incoming and
outgoing properties (relations) from the nodes, since the behavior of a node
can be determinate through its relations (context). We present the similarity
function as follows.

simFunc(ni, nj , α=0, β=0, γ=1) = α× syntactic similarity +
β × semantic similarity +
γ × (0.5× |incomingProperties(ni)∩incomingProperties(nj)|

|incomingProperties(ni)∪incomingProperties(nj)| +

0.5× |outgoingProperties(ni)∩outgoingProperties(nj)|
|outgoingProperties(ni)∪outgoingProperties(nj)|)

Where:
– incomingProperties is a function that returns the incoming relations of

a node;
– outgoingProperties is a function that returns the outgoing relations of a

node;

Note that for the reducing-complexity phase, the intersection and union
among properties is made by a syntactic string comparison; while for the
intersection phase (see Def. 4), since the datasets are provided from different
sources, the syntactic comparison is performed to only the property name of
the incoming and outgoing properties (e.g., http://www.domain1.com/name-
Prop is equal to http://www.domain2.com/nameProp, since both property
names are equals - nameProp).

For the anonymization phase, we implemented a generalization opera-
tion based on taxonomies provided by the expert user. The taxonomies are
processed by the approach through the use of a simple document in XML
format, presented as follows.

<taxonomies>

<taxonomy_1>

<taxonomy_1a>

</taxonomy_1a>

<taxonomy_1b>

</taxonomy_1b>

</taxonomy_1>

<taxonomy_2>

<taxonomy_2a>

</taxonomy_2a>

</taxonomy_2>

...
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</taxonomies>

A taxonomy for each triple of the set EU (see Def. 7) is analyzed by
applying a similarity measure that returns another similar relation (predicate)
according to a defined threshold. We use the similarity measure of work [10],
since it takes into account the deepness, the distance, and the children in
common of the taxonomies.

6.2 Datasets and Environment

Our prototype was used to perform several experiments to evaluate the via-
bility and the performance (execution time) of our approach in comparison
with the related work. To do so, we considered three datasets:

• Data 1: the DBpedia person data7 with 16,842,176 triples (used to
evaluate the reducing-complexity phase due to the huge number of
triples);
• Data 2 (BK): the DBpedia geo coordinates 8 with 151,205 triples; and
• Data 3 (D): an extraction of Enipedia dataset (power plants), con-

sidering properties art:Nuclear, cat:radioactive, prop:City,
prop:Country, prop:lat, prop:long, and prop:year, with 568
triples.

Using Data 1, Data 2, and Data 3, we evaluated the viability and perfor-
mance of the reducing-complexity process, while for the intersection phase,
we used Data 2 and Data 3. The protection phase is applied over the reduced
set of triples obtained by the reducing-complexity phase and the set of nodes
of the intersection phase between Data 3 and Data 2. Since in this particular
case the BK is also a set of triples (a complex node), we applied the reducing-
complexity process over the dataset as well. Experiments were undertaken on
a MacBook Pro, 2.2 GHz Intel Core(TM) i7 with 16.00GB, running a MacOS
High Sierra and using a Sun JDK 1.7 programming environment.

7 Information about persons extracted from the English and Germany Wikipedia, repre-
sented by the FOAF vocabulary - http://wiki.dbpedia.org/Downloads2015-10.

8 Geographic coordinates extracted from Wikipedia - https://wiki.dbpedia.org/

downloads-2016-10.

http://wiki.dbpedia.org/Downloads2015-10
https://wiki.dbpedia.org/downloads-2016-10
https://wiki.dbpedia.org/downloads-2016-10
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6.3 Evaluation metrics

6.3.1 Accuracy in disclosure sources
In order to evaluate the accuracy of our approach when a set of triples are
suggested as disclosure sources to the user expert, we calculated the F-score,
based on the Recall (R) and Precision (PR). These criteria are commonly
adopted in information retrieval and are calculated as follows:

PR =
A

A+B
∈ [0, 1] R =

A

A+ C
∈ [0, 1] F-score =

2× PR×R

PR+R
∈ [0, 1]

where A is the number of correctly suggested triples; B is the number of
wrongly suggested triples; and C is the number of triples not suggested by
our approach but considered as disclosure sources.

According to our scenario, Data 3 contains eight properties, from which
only two properties (prop:lat and prop:long) are considered as disclosure
sources. Thus, 142 triples need to be selected by the user expert, since 71
power plants are present. We describe the accuracy evaluation in subsection
Configuration Phase.

6.3.2 Protection Data Verification
To consider a data as a protected one, it should not contain disclosure sources
which compromise the data; thus, to verify the data, we propose a measure
based on the sensitive triples returned by applying a query over the datasets.
The verification is performed as the relation between the sensitive infor-
mation produced by the original data with respect to the one produced by
protected data; i.e.,

AnonV(D,pD) =
N. of sensitive triples from D − N. of sensitive triples from pD

N. of sensitive triples from D
∈ [0, 1].

where D is the data to be published and pD the protected one (see Def. 9).
For our evaluation, we use the query presented in our motivating scenario,

considering any type of resources (e.g., dbo:School, dbo:Hospital). A
total of 364 entities, represented by 1456 triples, are sensitive information.

SELECT DISTINCT

?Place ?g bif:st_distance(?g,bif:st_point(".$long.",".$lat.")) AS ?distance

FROM <http://dbpedia.org>

WHERE {?p rdfs:label ?Place ; geo:geometry ?g.

FILTER (bif:st_intersects (?g, bif:st_point (".$long.", ".$lat."), 100)

&& (lang(?Place) = \"en\"))}

ORDER BY ASC(?distance)
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This metric evaluates the protected RDF data in the subsection Protection
Phase. We describe and evaluate as follows each process to obtain a protected
RDF data.

6.4 Reducing-Complexity Phase

We performed the reducing-complexity process over three real datasets avail-
able on the Web (Data 1, Data 2, and Data 3). We evaluated the Jena
parsing-time (ms) and the size (bytes) of the input and output to com-
pare the improvement of working over the output in terms of viability and
performance.

6.4.1 Viability Evaluation
Test 1: We chose randomly the value 0.44 as the threshold for the reducing-
complexity process. We extracted 1,000 triples from each dataset and in-
creased the number of triples by a step of 1,000 for the next iterations. Table 6
shows the results obtained for Data 1. This process reduced the complexity
of more than 16 millions of triples to only 132 triples, since the values were
extracted from Wikipedia following a schema with a finite number of prop-
erties. The Jena parsing-time of the input is reduced to 1.03 ms (132 triples)
and its size to 9333 bytes. Note that applying the same threshold for different
sets of triples extracted from Data 1, we obtain the same output for all the
cases, showing that the general schema of the resources (finite number of
properties) is returned by this process.

Table 6 Test 1: Reducing-Complexity process for Data 1, using a threshold 0.44
Data 1 Input Output

Threshold Triples Jena Time
(ms)

Size
(bytes) Triples Jena Time

(ms)
Size

(bytes)
0.44 1,000 7.99 68958 132 1.10 9333
0.44 2,000 16.89 138108 132 1.08 9333
0.44 3,000 23.95 207036 132 1.12 9333
0.44 4,000 30.41 276070 132 1.05 9333
0.44 5,000 36.50 345687 132 1.07 9333
0.44 6,000 42.75 414809 132 1.15 9333
0.44 7,000 48.23 484719 132 1.06 9333
0.44 8,000 53.11 553507 132 1.10 9333
0.44 9,000 56.93 622646 132 1.01 9333
0.44 10,000 61.12 666224 132 1.09 9333
0.44 16,842,176 – – 132 1.03 9333

For Data 2, Table 7 shows the results of applying the reducing-complexity
process. The dataset of 151,205 triples is reduced to only 4 triples, i.e., the



34 I. Dongo and R. Chbeir

151,205 triples follow the schema represented by the 4 returned triples. The
Jena parsing-time and the size of the input were reduced to 0.40 ms and 455
bytes, respectively. In Data 3, the output contains only 8 triples from 568
triples as we can observe in Table 8. The Jena parsing-time and the size of
the dataset was reduced to 0.68 ms and 769 bytes, respectively. Similarly to
the two previous data sets, the 8 returned triples represents the scheme of all
triples in the set.

Table 7 Test 1: Reducing-Complexity process for Data 2, using a threshold 0.44
Data 2 Input Output

Threshold Triples Jena Time
(ms)

Size
(bytes) Triples Jena Time

(ms)
Size

(bytes)
0.44 1,000 9.45 77144 4 0.40 455
0.44 2,000 17.94 154729 4 0.35 455
0.44 3,000 25.37 232222 4 0.39 455
0.44 4,000 31.49 309952 4 0.44 455
0.44 5,000 38.63 387289 4 0.36 455
0.44 6,000 44.98 464888 4 0.41 455
0.44 7,000 51.81 543737 4 0.37 455
0.44 8,000 57.41 622768 4 0.36 455
0.44 9,000 62.74 700421 4 0.39 455
0.44 10,000 69.89 778651 4 0.42 455
0.44 151,205 – – 4 0.40 455

Table 8 Test 1: Reducing-Complexity process for Data 3, using a threshold 0.44
Data 3 Input Output

Threshold Triples Jena Time
(ms)

Size
(bytes) Triples Jena Time

(ms)
Size

(bytes)
0.44 568 4.99 37645 8 0.68 769

Test 2: In order to select the best threshold for the reducing-complexity pro-
cess of each dataset, we evaluated the number of triples, Jena parsing-time,
and the size of the output by using a threshold value between [0.01 - 1.00]
with a step of 0.01. Table 9 shows the results obtained for Data 1. As we
can observe, we obtained the best result for the thresholds from 0.01 to 0.29,
where only nine properties are used in the whole database. The Jena parsing-
time of the output was reduced to 0.49 ms, while the size was reduced to 834
bytes.

For Data 2 and Data 3 (see Tables 10 and 11), the best results were ob-
tained for a wide range of thresholds [0.01 - 0.49]. By regarding the datasets,
in Data 2 and Data 3, all resources were described by the same properties
(four and eight properties, respectively), while in Data 1, there are some
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resources described by only three or four properties from a total of nine, there-
fore in Data 1, the optimal threshold was obtained in a smaller range [0.01 -
0.29], since for the range [0.30 - 0.49], some resources were not considered
as similar to the general schema due to their less number of properties.

Table 9 Test 2: Reducing-Complexity process for Data 1 with a step 0.01
Data 1 Input Output

Threshold Triples Jena Time
(ms)

Size
(bytes) Triples Jena Time

(ms)
Size

(bytes)
[1.00 , 0.50] 10,000 63.62 666224 10,000 62.56 666224
[0.49 , 0.45] 10,000 61.54 666224 148 1.17 10420

0.44 10,000 62.21 666224 132 1.12 9333
0.43 10,000 65.32 666224 111 0.96 7934
0.43 10,000 62.59 666224 75 0.86 5423

[0.41 , 0.40] 10,000 61.98 666224 55 0.80 4040
0.39 10,000 60.81 666224 39 0.72 3069
0.38 10,000 62.44 666224 26 0.63 2174

[0.37 , 0.36] 10,000 62.86 666224 33 0.65 2617
[0.35 , 0.34] 10,000 61.12 666224 18 0.56 1523
[0.33 , 0.30] 10,000 63.29 666224 12 0.51 1047
[0.29 , 0.01] 10,000 63.58 666224 9 0.49 834

0.29 16,842,176 – – 9 0.49 834

Table 10 Test 2: Reducing-Complexity process for Data 2 with a step 0.01
Data 2 Input Output

Threshold Triples Jena Time
(ms)

Size
(bytes) Triples Jena Time

(ms)
Size

(bytes)
[1.00 , 0.50] 10,000 69.25 778651 10,000 69.42 778651
[0.49 , 0.01] 10,000 70.91 778651 4 0.39 455

0.49 151,205 – – 4 0.39 455

Table 11 Test 2: Reducing-Complexity process for Data 3 with a step 0.01
Data 3 Input Output

Threshold Triples Jena Time
(ms)

Size
(bytes) Triples Jena Time

(ms)
Size

(bytes)
[1.00 - 0.50] 568 4.92 37645 568 4.89 37645
[0.49 -0.01] 568 4.71 37645 8 0.39 769

0.49 568 – – 8 0.39 769

6.4.2 Performance Evaluation
To evaluate the performance of of the reducing-complexity phase, we mea-
sured the average time of 10 executions for each test.
Test 3: We evaluated the time of the reducing-complexity process of 10,000
triples from Data 1 by using several thresholds between [0.01 - 1.00] in order
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to observe the influence of the threshold over the reduction time. Figure 6
shows that from a threshold 0.49, where the number of triples is reduced to
only 148, the reduction time decreases to 4,977.91 ms until 3,668.54 ms for
a threshold value of 0.01. As more triples are reduced during the reducing-
complexity process, less comparisons are performed, since for each iteration
less operations of similarity are needed to discover another similar node.

Figure 6 Test 3: Execution time of the Reducing-complexity process using a threshold
between 0.01 and 1.00

Test 4: In this test, we evaluated the impact of the number of triples, from
Data 1, on the execution time of the reducing-complexity phase. We used a
threshold value of 0.29, which was one of the thresholds that reduced more
triples, and a step of 10,000 triples for the iterations. Figure 7 shows the
execution time with respect to the number of triples. For 60,000 triples, the
execution time is 302.65s. The result obtained confirms the quadratic per-
formance of this process. The following section evaluates the intersection
phase.

6.5 Intersection Phase

Using the reduced datasets of Data 2 and Data 3, obtained by the reducing-
complexity process (4 and 8 triples, respectively), we perform the intersection
process considering Data 3 as the data to be published (D), while Data 2 as
the background knowledge (BK).

6.5.1 Viability Evaluation
To evaluate the viability of applying this process over real scenarios, we chose
randomly a threshold value (0.65) and later we analyzed the behavior of this
process with respect to several threshold values.
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Figure 7 Test 4: Execution time of the Reducing-complexity process using a threshold value
of 0.29

Test 5: By using a threshold value of 0.65, the intersection process did not
return any intersection node. Regarding the reduced datasets, the nodes that
represent the latitude and longitude properties are terminal nodes, thus they
do not have outgoing properties and its similarity is less than 0.50. Addition-
ally, the similarity between the node which represents a power plant (Data 3)
and the one which represents a place of interest (Data 2) is calculated based
on two properties in common (intersection – latitude and longitude) from ten
properties (union – eight properties in D and four properties in BK), thus their
similarity value is 0.20.
Test 6: We evaluated the viability of this process using several thresholds
from 0.01 to 1.00 with a step of 0.01 (see Table 12). From a threshold value
between 1.00 and 0.50, no node was returned. For [0.49, 0.21], two nodes
which represent the coordinates of the nuclear power plant resource in D, are
returned as potential keys, which is what we expect. For [0.20, 0.01], three
nodes are returned (coordinates and the node which represents the nuclear
power plant).

Table 12 Test 6: Intersection process for Data 3 with a step 0.01
Threshold Number of Nodes

[1.00 - 0.50] 0
[0.49 - 0.21] 2
[0.20 - 0.01] 3
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6.5.2 Performance Evaluation
Test 7: The time required to discover the nodes that can be potential keys,
was measured. An average of 10 execution indicates a time of 0.24 ms for
this process.

6.6 Selecting Phase

A GUI based on triples was built to reduce the effort of the expert user.
The interface selects automatically the triples which contain at least one key,
considered as potential disclosure sources.
Test 8: We measured the average of verifying the selected triples, which
contain the nodes detected during the intersection process, of 10 people that
have under- and post-graduate degrees in Computer Science. Since only eight
triples are available in the reduced dataset of Data 3, the verifying average
time was 8.23 s.
Test 9: We evaluated the accuracy of the set of triples suggested as disclo-
sure sources by our approach, using the F-score measure. Table 13 shows
that for a threshold between [0.49 , 0.21] all triples which compromise the
data to be published are suggested (Data 3), obtaining a F-score 100%. For
a threshold between [0.20 , 0.01] also the triples which compromise the data
are suggested, but other triples were suggested as well. These thresholds have
a F-score of 40%.

Table 13 Test 9: Accuracy evaluation for the set of triples suggested as disclosure sources to
the Expert User

Intersec.
Thres-
hold

N. of
potential

keys

Triples
suggested

as
disclosure

sources
(Expert

User
Interface)

Triples
suggested

as
disclosure

sources
(Internal
Mapping)

Valid Not
Valid

Not
sugges-

ted
Prec.
(%)

Rec.
(%)

F-s.
(%)

[1.00 , 0.50] 0 0 0 0 0 142 0 0 0
[0.49 , 0.21] 2 2 142 142 0 0 100 100 100
[0.20 , 0.01] 3 8 568 142 426 0 25 100 40

6.7 Protection Phase

The relations (properties) that belong to the triples considered as disclosure
sources by the expert user, have to be protected in order to reduce the risk of
disclosure of sensitive information. According to the configuration process,
the eight triples from the reduced set of Data 3 were pre-selected in the
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selecting interface, showing that they can be potentially used to disclose sen-
sitive information. By the verification of the expert user, the anonymization
process is performed. Since there are eight triples with different properties
(predicates), eight taxonomies need to be provided by the expert user.
Test 10: We measured the average time of 10 executions, by using a random
threshold of generalization (0.36). A time of 1.12 ms was required to perform
this process.
Test 11: Additionally, we evaluated the protected data by using the AnonV
function defined in subsection evaluation metrics. Table 14 shows that for a
threshold less than 0.50 in the intersection phase, the protected data (pD) does
not produce sensitive information, obtaining the maximum evaluation value
(100%).

Table 14 Test 11: Protection data evaluation according to the number of sensitive triples
produced by the D and pD

Intersec.
Threshold

Sensitive
Triples in D

Sensitive
Triples in pD

Protected Data
Verification (%)

[1.00 , 0.50] 1456 1456 0
[0.49 , 0.21] 1456 0 100
[0.20 , 0.01] 1456 0 100

In these subsections, we evaluated the viability and performance of our
approach by using datasets available on the Web. We demonstrated a huge
reduction of the expert-user interaction suggesting disclosure sources. Also,
a high performance was obtained for all the phases. Following subsection
evaluates our approach with respect to related work.

6.8 Related Work Comparison

In order to compare the viability and the performance of our approach with re-
spect to the state of the art, we selected a work for each identified group of the
related work section. For RDF data, we selected the work in [41], for struc-
tured data (database) the work in [44], while for graph data the work in [53].
Thresholds of 0.49, 0.10, and 0.36 were used for the reducing-complexity
(D and BK), intersection, and generalization processes, respectively in
our approach. The implementation of each work was done following the
same development environment used for our approach, such as computer
specifications and programming language.
Test 12: We evaluated the average time of 10 executions of the anonymization
processes. From Data 2, 10,000 triples are considered as the background
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Table 15 Test 12: Related Work Comparison
Work Complex.

of data Triples Classification Anonymization
Time (s)

Total
Time (s)Type Time (s)

[41] RDF D: 568
BK: 10,000

Manual
(I, QI, SI, USI) ∼10,568(*) >3,789.24(+) >14,357.24

(>3.99 h)

[44] Structured
data

D: 528
BK: 10,000

Manual
(I, QI, SI, USI) ∼10,568(*) >3,632.67(+) >14,200.67

(>3.94 h)

[53] Graph D:568
BK:10,000

Manual
(I, QI, SI, USI) ∼10,568(*) >3,721.34(+) >14,289.34

(>3.97 h)
Our

Appro-
ach

RDF D: 568
BK: 10,000

Automatic
(I, QI)

8.23
(Verifi-
cation)

Reduc. Inter. Anon. 13.51
(0.00375 h)D: 0.82

BK: 4.46 0.00024 0.00112

(*) An estimation of 1 second for each triple.
(+) The approach was stopped after an hour of execution.

knowledge (BK) and the whole Data 3 as the data to be published (D).
Table 15 shows the results obtained for this comparison. The non-viability
of the works in [41, 44, 53] for real scenarios, was clearly demonstrated in
this evaluation, since the interaction of the expert user to classify the data,
required a high effort (more than three hours), making this task almost impos-
sible. Moreover, the execution time of the anonymization processes, without
considering the classification, was greater than one hour for [41, 44, 53] (the
executions were stopped after one hour of processing), while for our solution
was only 5.28 s. Note that we considered the time of classification similar
to the time of verification which was obtained in our configuration-phase
evaluation (∼1 second for triple).

Following section presents our conclusions of this paper.

7 Conclusions

In this paper, we investigated the protection of sensitive information for
RDF documents before publication on the Web. We proposed a protection
approach, consisting on four phases: (i) Reducing-Complexity phase, where
the input, a set of RDF documents (D) in any serialization format, is analyzed
to reduce its graph complexity; (ii) Intersection phase, where similar nodes
(IN ) between the reduced graph from the data to the published (D) and the
one from the background knowledge (BK) are identified as potential keys;
(iii) Configuration phase in which the expert user analyzes and selects the
triples that contain at least one potential key, considered as disclosure sources
(EU ); and (iv) protection phase that executes an generalization operation
over the selected triple.

We evaluated the viability and performance of our anonymization ap-
proach with several datasets available on the Web. Results show that our ap-
proach decreases the interaction of the expert user by reducing the complexity
of the graph structure (reducing-complexity phase), identifying potential keys
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(intersection phase), and suggesting potential disclosure sources through a
graphic user interface to the expert user. Moreover, we evaluated our ap-
proach with respect to the state of the art, demonstrating that our proposal
overcomes existing solutions, and these latter are not able to manage linked
and heterogeneous resources.

To select an adequate threshold for the reducing-complexity and inter-
section phases, the structure of the dataset needs to be analyzed before. For
instance, the dataset Data 1, from our experimental evaluation, has a depth
equal to 2 and it is composed by sub-graphs that are not linked, so to compare
the root nodes, a threshold similarity less than 0.50 is required since they do
not have incoming properties.

We are currently working on a new graphic user interface based on graph
visualization to better illustrate the relations among the datasets. Furthermore,
we are testing different similarity function to provide a better reducing-
complexity and intersection processes for heterogeneous datasets. For the
intersection phase, new semantic similarity functions are required to recog-
nize potential keys that are not from the same domain (e.g., SameAs service).
Additionally, the datasets can be enriched with new properties (relations)
or extra inferred information as a pre-step in order to better perform the
similarities (e.g., syntactic and semantic datatype inference as in [11, 18],
respectively).
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