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The hemostatic system is pivotal to maintaining vascular integrity. Multiple components 18 

involved in blood coagulation have central functions in inflammation and immunity. A derailed 19 

hemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders and, 20 

lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a 21 

hyperactivated hemostatic system through adaptive changes in gene expression. While this is 22 

mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are 23 

increasingly perceived as central hubs governing multiple facets of the hemostatic system. 24 

This layer of regulation modulates the biogenesis of hemostatic components, for example in 25 

situations of increased turnover and demand. However, they can also be ‘hijacked’ in disease 26 

processes, thereby perpetuating and even causally entertaining associated pathologies. This 27 

review summarizes examples and emerging concepts that illustrate the importance of 28 

posttranscriptional mechanisms in hemostatic control and crosstalk with the immune system. 29 

It also discusses how such regulatory principles can be used to usher in new therapeutic 30 

concepts to combat global medical threats such as sepsis or cardiovascular disorders. 31 
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Introduction 1 

In light of the current SARS-CoV2 pandemic, the mechanisms underlying the crosstalk 2 

between the hemostatic system and the immune system have received unprecedented 3 

attention. This interplay plays a central role in many pathological processes, ranging from 4 

sepsis to cardiovascular disease. 5 

Perturbations of the hemostatic system are common in sepsis, the leading cause of death in 6 

critically ill patients worldwide1. As a systemic inflammatory response to severe infections, 7 

sepsis involves excessive activation of the coagulation system2. This can result in severe 8 

complications such as disseminated intravascular coagulation (DIC), which eventually leads to 9 

tissue necrosis, multiple organ failure and death, illustrating that inappropriate amplification of 10 

protective host-defense mechanisms can become a devastating alliance of harm3. 11 

Cardiovascular disorders including myocardial infarction, ischemic stroke and venous 12 

thromboembolism are the leading global cause of mortality with over 17 million deaths 13 

annually4. The incidence of cardiovascular disorders increases markedly with age, starting in 14 

the late 40s, with a dramatic increase occurring at 60 years of age5. They account for 15 

approximately 32% of all deaths worldwide, underscoring the need of illuminating underlying 16 

mechanisms and devising therapeutic interventions to treat and prevent cardiovascular 17 

disorders6. 18 

The immune system and the hemostatic system are closely linked7 and their responses tend 19 

to reinforce each other8, 9. Activation of coagulation and fibrin deposition in response to 20 

inflammation is well known. This led to the emergence of the concept of immunothrombosis, a 21 

defense mechanism in which inflammatory cells participate in thrombotic processes, and 22 

thrombosis in turn acts as an intravascular effector of innate immunity by limiting the spread of 23 

invading pathogens10. However, a derailed hemostatic response can lead to a situation where 24 

coagulation, fibrin deposition and thrombosis contribute to disease, as evidenced by the 25 

propagation and exacerbation of atherosclerotic plaques11. Another example is the systemic 26 

activation of coagulation combined with microvascular failure resulting from the systemic 27 

inflammatory response to severe infection or sepsis, which eventually contributes to multiple 28 

organ dysfunction, such as in septicemia3 or COVID-1912. 29 

The multifaceted and intricate link between hemostasis and inflammation involves crosstalk 30 

between both systems at multiple levels3, 7-11, including coordinated changes in gene 31 

expression in megakaryocytes, immune cells, the vessel wall and/or the liver. A notable 32 

example is the acute phase response, in which central hemostatic components such as 33 

fibrinogen13, 14, Von Willebrand factor15, 16 and factor VIII17-21 are induced in response to 34 

inflammatory signals. Such changes in gene expression are primarily regulated at the level of 35 

transcription, and the transcriptional regulation of hemostasis-related genes in physiological 36 

and pathological conditions has been well studied22-27. 37 
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In the present review we focus on emerging concepts of posttranscriptional mechanisms 1 

underlying the control of hemostasis and its crosstalk to other systems. In doing so, we discuss 2 

examples of the complexity of the transcriptome architecture arising from the use of alternative 3 

transcription start sites, exons and polyadenylation sites, as well as gene regulation by non-4 

coding RNAs (miRNAs, lncRNAs, circRNAs), RNA-binding proteins and mechanisms of RNA 5 

modification. Remarkably, many of these regulatory principles also play an important functional 6 

role in tuning the immune system28-32, suggesting conserved regulatory links between both 7 

systems. Finally, we also illustrate the emerging therapeutic opportunities on the cusp of a new 8 

era of targeted therapeutic approaches33, exemplified by the recent introduction of novel RNA 9 

therapeutics in the hemostatic system34. 10 

 11 

Role of splicing regulation in the hemostatic system 12 

With the completion of the human genome project in 2003, it became apparent that the human 13 

genome comprises around 22.000 protein-coding genes, far less than actually required for the 14 

functional complexity in higher eukaryotes35. On the other hand, next generation RNA 15 

sequencing and particularly the recently introduced long-read sequencing technologies36, 37 are 16 

uncovering a perplexingly complex transcriptome architecture that arises from the use of 17 

alternative transcription start sites, exons and polyadenylation sites38, 39. The combinatorial use 18 

of such elements considerably expands genomic information and is subject to dynamic spatial 19 

and temporal modulation during development and adaptation (Figure 1). 20 

Pre-mRNA splicing, i.e. the accurate removal of introns and ligation of exons, is a pivotal step 21 

in the co- and posttranscriptional regulation of gene expression40. Depending on how the 22 

exon/intron structure of the pre-mRNA is decoded by the spliceosome, the same primary 23 

transcript may be processed into different mature mRNAs (alternative splicing), encoding 24 

different isoforms of the same protein. In fact, the recognition of exon/intron boundaries in the 25 

pre-mRNA is critically dependent on the engagement of nearby splicing enhancer and silencer 26 

sequences by trans-acting proteins (splicing factors) whose availability varies in different cell 27 

types and disease states. As a consequence, splicing patterns are typically regulated in a 28 

tissue-specific manner and may change according to the developmental stage or in response 29 

to pathological processes. Moreover, they can be disrupted by genetic variants that weaken 30 

(or strengthen) the consensus sequences recognized by the spliceosome on the pre-mRNA. 31 

This is a well-known mechanism of disease in mendelian disorders41, but it is increasingly 32 

appreciated that much of the genetic variation associated with complex traits also acts by 33 

altering splicing patterns42, 43 34 

Like most human genes44, many genes encoding proteins of the hemostatic system are 35 

alternatively spliced45-57. This often results in isoforms with distinct structural and functional 36 
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characteristics, as exemplified by two major components of the extrinsic coagulation pathway 1 

(Figure 2). 2 

Tissue factor (TF), the main trigger of blood coagulation, acts as cofactor of the circulating 3 

serine protease factor VIIa (FVIIa) and comes in two isoforms: as membrane-bound (full-4 

length) protein and as a shorter, alternatively spliced variant that is secreted in soluble form 5 

(Figure 2)58. The two isoforms are identical at the N-terminal end, but the soluble form, which 6 

arises from exon 5 skipping, lacks the transmembrane and cytoplasmic domains, and has a 7 

completely different C-terminal sequence58. Just as full-length TF, alternatively spliced TF is 8 

produced by a variety of cell types58, 59, is induced by pro-inflammatory stimuli59, 60 and 9 

enhances factor X (FX) activation by FVIIa, albeit less potently than full-length TF58. However, 10 

while membrane-bound TF is essential for normal hemostasis, elevated intravascular levels of 11 

TF have been proposed to contribute to venous as well as arterial thrombosis61. Despite 12 

conflicting data, it has been suggested that soluble TF, which is most likely dispensable for 13 

normal hemostasis, may represent a preferential target for antithrombotic therapy than full-14 

length TF, due to a lower risk of bleeding62. 15 

Tissue factor pathway inhibitor (TFPI) is a glycoprotein that functions as an inhibitor of 16 

coagulation and of TF-dependent signaling63. The TFPI gene encodes two main splicing 17 

isoforms that are generated by the alternative inclusion of exon 8 (TFPIβ) or exons 9-10 18 

(TFPIα) in the mature mRNA (Figure 2). Both isoforms are expressed in endothelial cells, but 19 

TFPIα is also found in plasma, platelets and the extracellular matrix64. Structurally, TFPIα 20 

comprises an acidic N-terminus, three Kunitz domains and a basic C-terminus, whereas TFPIβ 21 

lacks the third Kunitz domain and the basic C-terminus, which are replaced by a 22 

glycosylphosphatidylinositol-anchor that tethers the protein to the cell membrane65. Both TFPI 23 

isoforms inhibit TF/FVIIa and FXa with their Kunitz-1 and Kunitz-2 domains, respectively, but 24 

TFPIα has additional properties by virtue of its Kunitz-3 domain (which binds protein S) and 25 

basic C-terminus (which binds FV/FV-short). Binding to protein S and FV/FV-short prevents 26 

the clearance of plasma TFPIα from the circulation51, 66, 67 and promotes its association with 27 

biological membranes, enhancing its anti-FXa activity68-70. Moreover, the interaction with 28 

FV/FV-short allows TFPIα to inhibit FV activation71 and early prothrombinase activity72, 73, while 29 

TFPIβ lacks these anticoagulant functions. 30 

These and other51, 74 examples illustrate how alternative splicing can change the structural and 31 

hence functional properties of central components in the hemostatic system75. Extracellular 32 

signals, such as pro-inflammatory cytokines, can modify global patterns of alternative splicing76 33 

and it will be interesting to explore how this plays out in different (disease) contexts, including 34 

COVID-1977. Moreover, since alternative splicing is pervasive and there are increasingly new 35 

therapeutic means to (re)direct splicing78, 79, modulation of alternative splicing may become 36 

relevant for the therapeutic manipulation of the hemostatic system. In particular, many studies 37 
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support the utility of antisense oligonucleotides (ASOs) to mask specific splicing signals on the 1 

pre-mRNA and thus prevent the recognition of these sequences by spliceosomal components, 2 

thereby re-directing splicing80. Alternatively, ad hoc engineered U1snRNA can be employed to 3 

promote the usage of donor splice sites that are naturally weak or have been disrupted by 4 

mutation81. 5 

Apart from diversifying the transcriptome and proteome, alternative splicing has been 6 

proposed to contribute to the overall regulation of gene expression through its coupling with 7 

nonsense mediated decay (NMD), a surveillance pathway that degrades mRNAs containing 8 

premature stop codons. In fact, it has been observed that up to one third of all human 9 

transcripts are normally spliced into non-viable mRNAs that are substrates for NMD. This 10 

phenomenon, known as “regulated unproductive splicing and translation” (RUST), has been 11 

interpreted as a mechanism for the post-transcriptional temporal and spatial fine-tuning of gene 12 

expression82. Evidence that this control mechanism may apply within the realm of hemostasis 13 

has been provided for the F11 gene, encoding coagulation factor XI47. Interestingly, targeting 14 

non-productive splicing by antisense oligonucleotides can be exploited for the upregulation of 15 

gene expression from wild-type or hypomorphic alleles in disease states83. 16 

 17 

Role of polyadenylation in the hemostatic system 18 

In addition to capping and splicing, almost all eukaryotic transcripts undergo further processing 19 

at the RNA 3’-end (Figure 1). For most genes, this involves endonucleolytic cleavage and non-20 

templated polyadenylation (CPA) before the mature RNA can be exported to the cytoplasm84. 21 

As CPA controls almost all genes, regulation of CPA has evolved as an important layer of gene 22 

expression regulation. CPA is carried out by a multi-subunit complex involving over 80 trans-23 

acting proteins organized in four core protein subcomplexes85. The recruitment of these 24 

multimeric complexes to dedicated, but largely poorly conserved, RNA sequence elements86 25 

ensures that 3’-end processing of the nascent transcript occurs timely and at the right 26 

position87, 88. Perturbations of this process - due to mutations in RNA sequence elements or 27 

defects in the RNA processing machinery - have drastic consequences, as exemplified by 28 

numerous diseases89, 90. 29 

The common thrombophilia mutation in the prothrombin (F2) gene (F2 G20210A) is a prime 30 

example of how mutations in noncoding regions can become pathogenic84. This mutation 31 

affects the last nucleotide of the 3’-untranslated region (UTR), where the pre-mRNA is cleaved 32 

and polyadenylated. As a result of the mutation, the efficiency of endonucleolytic cleavage is 33 

increased, leading to more prothrombin mRNA and protein expression. Although this mutation 34 

merely increases the amount of the precursor of a central hemostatic component (i.e., 35 

thrombin), it already shifts the balance of the hemostatic system toward a procoagulant 36 

condition91-93. Consequently, the expression of F2 must be tightly controlled: even small 37 
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changes (1.5- to 1.7-fold) in gene expression due to mutations at this and other nearby 1 

positions (F2 C20209T and F2 G20221T)93, 94 can result in clinically relevant thrombophilia94-2 

97. 3 

Compared to other genes, the architecture of sequence determinants directing 3’-end 4 

processing in F2 is unconventional96. It consists of weak signals, which explains the unusual 5 

susceptibility to thrombophilic gain-of-function mutations94, 97. At the same time, this 6 

configuration allows for mechanisms that enhance processing and thereby upregulate F2 7 

expression when needed98. This is achieved through complex, mutually exclusive binding of 8 

suppressive and stimulatory RNA binding proteins (RBPs), and is regulated by activation of 9 

p38 MAPK (Figure 3)99. After phosphorylation by p38 MAPK, inhibitory RBPs (FBP2, FBP3) 10 

can no longer bind to the processing sites in the F2 pre-mRNA, allowing 3’-end processing to 11 

proceed. Thus, virtually all types of ‘environmental’ conditions that lead to activation of p38 12 

MAPK100, 101 can induce F2 expression. 13 

Inflammatory conditions are known to trigger F2 expression102-107. Consistently, the mechanism 14 

described here was found to account for the induction of F2 expression under inflammatory 15 

conditions, including septicemia99, 108. While this may contribute to the initial onset and 16 

undesirable propagation of hemostatic perturbances during septicemia, such mechanisms 17 

may also play a compensatory role3. After an initial hypercoagulable state, septicemia is often 18 

followed by a hemorrhagic phase, in part due to consumption of procoagulant components109. 19 

Such conditions of increased turnover and demand require mechanisms to restore the 20 

hemostatic balance and stockpile hemostatic components110. 21 

In addition to the critical function in hemostasis, the role of thrombin in angiogenesis111 22 

suggests that regulatory mechanisms have evolved a sensor for low oxygen pressure. This 23 

could explain why F2 is overexpressed due to ischemic events112 or in the tumor micromilieu99. 24 

Consistent with its role in oxygen pressure sensing100, 101, activation of p38 MAPK also drives 25 

F2 overexpression in the tumor microenvironment. This activates protease-activated receptors 26 

(PARs) that induce genes with a role in angiogenesis and tumor dissemination99. 27 

Thus, regulated 3′-end processing emerged as an important mechanism of gene regulation in 28 

the control of the hemostatic system. While such mechanisms are desirable under 29 

physiological conditions (to replenish the amount of blood coagulation factors under high 30 

turnover, see above), they can be ‘hijacked’ under pathological conditions (such as 31 

inflammation or cancer), thereby leading to a thrombophilic state108, 113. Since prothrombin is 32 

expressed in a wide variety of organs and cells108, this type of regulation may become relevant 33 

to numerous other thrombin-mediated diseases113. However, it also appears that tissue-34 

specific mechanisms can be used to selectively target deleterious prothrombin expression 35 

without altering essential prothrombin expression in the liver108. 36 
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Targeted interference with cleavage and polyadenylation is increasingly perceived as an 1 

important therapeutic means. This involves either redirection of aberrant RNA processing 2 

(through ASOs, U1snRNP interference or trans-splicing) or the elimination of faulty 3 

transcripts89 to prevent the fatal consequences of aberrant 3’-end processing114, 115. 4 

Perturbations of 3’-end processing can, for example, act as nongenomic oncogenic drivers of 5 

tumorigenesis115, but they also play important roles in inflammatory conditions116. Deciphering 6 

the underlying mechanisms is of paramount importance for establishing targets with 7 

therapeutic selectivity and specificity.  8 

RNA-protein interactome studies117 and transcriptome-wide profiling of polyadenylation118 are 9 

thus central to defining new therapeutic targets, their specificity and downstream 10 

consequences119. Since most miRNA binding sites are localized in the 3’-UTR, when and 11 

where a pre-mRNA is polyadenylated has a critical impact on the regulatory properties of the 12 

resulting mRNA molecule (see below). A significant proportion of genetic variants in 3’-UTRs, 13 

often dismissed as ‘non-functional’ polymorphisms, are therefore likely to disrupt important 14 

regulatory mechanisms, ultimately leading to pathologies including a dysbalanced hemostatic 15 

system89. This is supported by the thrombophilia variants discovered in the F2 gene. However, 16 

this also extends to other coagulation factor 3’-UTR variants that affect, for example, miRNA 17 

regulation120, 121. 18 

 19 

Role of microRNAs in the hemostatic system 20 

MicroRNAs (miRNAs) are small single-stranded non-coding RNAs (17-25 nucleotides in 21 

length) that post-transcriptionally down-regulate target gene expression by RNA silencing122. 22 

After transcription, miRNAs are processed in the nucleus by the microprocessor complex 23 

consisting of Drosha and DGCR8 to produce a pre-miRNA123. After export to the cytoplasm 24 

and further processing by Dicer124, the mature miRNA duplex is incorporated into the RNA-25 

induced silencing complex (RISC)125. This complex is guided by miRNA base pairing to a target 26 

gene mRNA resulting in translational inhibition and/or transcript degradation126. Generally, 27 

miRNAs target mRNAs via the 3'-UTR. In a few cases, miRNAs can also carry out their 28 

inhibitory function by binding to the coding region or the 5’-UTR of target mRNAs127. 29 

Over 2600 human miRNAs have been identified128, regulating the majority of human genes129. 30 

Thus almost every biological process is modulated through miRNAs130. Although miRNAs 31 

generally fine-tune gene expression131, they can also function as master regulators132. For 32 

example, multiple miRNAs can cooperatively silence a single gene to gain regulatory 33 

specificity, with the targeting of particular network hub genes enabling the regulation of entire 34 

pathways133. In addition, a single miRNA can target multiple genes, allowing broad regulation 35 

of molecular networks127. Perturbations of miRNA expression are observed in most disorders, 36 
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with some of them even causally contributing to the development and progression of 1 

disease130. 2 

A growing number of studies document a contribution of miRNAs to the regulation of 3 

hemostatic134-138 and thrombotic121, 135, 137-140 functions. miRNAs directly regulate multiple 4 

hemostatic factors through interactions with the 3'-UTR (Table 1). Additionally, miRNAs can 5 

tune hemostatic factors indirectly, for example fibrinogen via interleukin-6-mediated 6 

signaling141, factor IX by repressing NMD142, plasminogen activator inhibitor 1 (PAI-1) via 7 

SMAD2 signaling143 and CXCL12 to reduce inflammatory response and thrombosis, altering 8 

the expression of multiple factors including TF, PAI-1 and VWF144.  9 

Further evidence implicating miRNAs in the hemostatic system comes from the important roles 10 

that miRNAs play in the development of bleeding disorders and thrombosis. Blood miRNA 11 

levels are associated with hemostatic perturbations, suggesting their potential use as 12 

prognostic or diagnostic tools in VTE145 and beyond146. These include aberrant coagulation in 13 

sepsis147, venous thromboembolism140, 148-158, trauma-induced coagulopathy159, 14 

atherosclerosis160-164, coronary artery disease165-167, ischemic stroke168, 169 and autoimmune 15 

inflammatory conditions such as systemic lupus erythematosus (SLE)170-172. 16 

Recently, using an unbiased systematic search based on a biophysical miRNA interaction 17 

study coupled to high-throughput sequencing, the Atlas of the Hemostatic miRNA Targetome 18 

was released135. This screening identified more than 1500 miRNA/3'-UTR interactions with 19 

potential function in the hemostatic system from nearly 4500 miRNA/3'-UTR biophysical 20 

interactions135. A proof-of-concept, rigorous filtering combined with loss-of-function studies 21 

(limited to 96 of the 1500 miRNA/3’-UTR interactions with a potential function) identified dozens 22 

of miRNAs targeting 27 hemostasis-associated gene 3′-UTRs globally or in a gene-specific 23 

manner (Figure 4). This highlights the global importance of miRNAs in controlling the 24 

hemostatic system and suggests that many more functional miRNAs will be discovered in this 25 

system. 26 

The unbiased view on miRNAs regulating the hemostatic system also sheds light on hitherto 27 

functionally poorly characterized connections between different physiological systems and 28 

diseases. These include the link between tumor formation and hemostatic perturbations135, or 29 

the intricate relationship between the hemostatic system and inflammatory processes (Table 30 

1). For example, miR-181 family members that target the 3'-UTR of F11 mRNA135 are involved 31 

in several aspects of hemostasis, including vascular inflammation152, 173-175 and platelet 32 

activation176. Another example is miR-24 which controls the expression of VWF177. Here, 33 

hyperglycemia-induced repression of miR-24 increases VWF expression and secretion in 34 

diabetes mellitus, linking metabolic dysfunction to a miRNA-mediated mechanism of 35 

hemostatic deregulation. 36 
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On the other hand, polymorphisms affecting miRNA binding sites in hemostatic genes can be 1 

associated with disease. For example, deletion of the miR-759 binding site of FGA is 2 

associated with susceptibility to chronic thromboembolic pulmonary hypertension178, and SNPs 3 

in the 3′-UTR of the F2, F8 and F11 genes are associated with increased activity levels of 4 

these hemostatic components120, 179-182. 5 

The importance of miRNAs in hemostasis is further corroborated by their role in platelet 6 

biology136. Here miRNAs modulate the expression of target mRNAs important for hemostatic 7 

and thrombotic function183-187. For example, miRNA levels are altered in platelets from patients 8 

with essential thrombocythemia and this in turn is associated with elevated platelet counts and 9 

an increased risk of thromboembolic events188. Additionally altered miRNA expression is often 10 

observed in atherosclerotic plaques189 (and refs therein). 11 

In light of the functional importance of miRNAs in the hemostatic system135 and the increasingly 12 

recognized role of miRNA therapeutics190 currently conquering the cardiovascular system191, it 13 

is tempting to turn this knowledge into new therapeutics (see targeting section below). In 14 

support of this, miRNA treatment has been demonstrated to result in therapeutic response in 15 

thrombosis and hemostasis. In murine models of venous thrombosis, overexpression of 16 

miRNAs contributes to thrombus resolution193, reduces thrombogenesis194, enhances 17 

endothelial progenitor cell migration and tubulogenic activity195, angiogenesis and thrombosis 18 

recanalization196. Furthermore, the use of antagomirs (i.e., molecules that silence miRNAs) 19 

has been shown to block miR-19b-3p-mediated silencing of SERPINC1 (antithrombin), 20 

resulting in increased antithrombin expression and activity in vivo135. This documents the in-21 

principle druggability of the hemostatic system in a miRNA-directed manner and opens 22 

opportunities to target other hemostatic components such as coagulation FXI138.  23 

 24 

Other means of posttranscriptional regulation of the hemostatic system 25 

RNA binding proteins beyond their function in the biogenesis of mRNAs 26 

In addition to co- and posttranscriptional processing, much of the fate of RNAs from synthesis 27 

to decay depends on RNA-binding proteins197. RBPs regulate RNA localization, transport, 28 

translation, stabilization and degradation of bound RNA molecules. In fact, much of the rapid 29 

adjustment of gene expression in inflammation and the immune system30-32 is executed via 30 

modulation of RNA stability and decay. The same is likely to apply to the hemostatic system 31 

as well, and the adaptation of prothrombin expression (Figure 3) may be a prototype for 32 

analogous occurrences198. It is interesting to note that even in apparently non-polar cells such 33 

as hepatocytes, the major source of most hemostatic components, localization of transcripts 34 

and thus protein output critically depends on UTR-RBP interactions199. This suggests that 35 

dynamic changes of 5’ and 3’-UTR structures of mRNAs, due to the use of alternative 36 

transcription start sites and alternative splicing/polyadenylation, may have a critical impact on 37 
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protein output and ultimately function. This is corroborated, for example, by the role of 5’-UTR 1 

variants that alter upstream open reading frames in cardiovascular disorders (CVD)200. 2 

 3 

RNA modification and networks of competitive RNA-RBP binding 4 

As soon as the nascent RNA molecules emerge from the RNA polymerase during transcription, 5 

they are instantly decorated with RBPs. While this ensures that co-transcriptional processing 6 

takes place effectively and at the right position, RBP loading also prevents the hybridization of 7 

the nascent RNA molecule with the DNA strand. This helps to avoid the formation of reactive 8 

RNA:DNA hybrids (so called R-loops)201, 202, which can lead to genomic instability203, 204. Most 9 

importantly, binding of RBPs and non-coding RNAs to (pre-)mRNAs can occur in a complex, 10 

sometimes mutually exclusive manner, thereby determining the posttranscriptional fate of 11 

mRNAs selectively84 or in a global manner205, 206. This is supported by the observation that the 12 

density of RBP and miRNA binding to the UTRs of coagulation factor mRNAs is very high138, 13 

and that numerous RBP and miRNA binding sites are in close proximity (Figure 5). 14 

Hence, there must be mechanisms that coordinate the binding of such molecules. Although 15 

not yet studied in great detail, it is likely that modifications of both RNAs207 and RBPs208 can 16 

result in remodeling of the 3’-UTR-RBP architecture and thereby change the fate of RNAs 17 

encoding coagulation factors under inflammatory conditions. In support of this notion, 18 

posttranslational modifications of RBPs have been shown to change the fate of mRNAs 19 

encoding central hemostatic components (Figure 3)99. But also variations in N6-20 

methyladenosine (m6A), the most prevalent RNA modification with a wide biological impact209, 21 

210, have been documented in various RNA transcripts in vascular tissues of septic rats211. 22 

Additionally, there is growing evidence that m6A modification is closely related to the 23 

development and progression of CVD, including cardiac hypertrophy, heart failure, ischemic 24 

heart disease and pulmonary hypertension212, 213. It is tempting to explore if therapeutic 25 

modulation of the cellular m6A machinery (for example in COVID-19 214) might be useful in 26 

preserving vascular integrity and function in sepsis and/or CVD. Interestingly, the fat mass and 27 

obesity-associated protein (FTO), one of the few m6A erasers, has emerged as an important 28 

pharmaceutical target in many pathophysiological conditions209. As many more RNA 29 

modifications are currently being discovered215, this holds great potential for systematically 30 

uncovering their importance in human diseases and defining novel therapeutic avenues. 31 

 32 

Long non-coding RNAs and circRNAs 33 

Despite the unexpectedly small number of protein-coding genes identified by the human 34 

genome project, RNA sequencing has shown that up to 85% of the human genome is 35 

transcribed216. This led to the identification of a large number of non-coding RNA molecules 36 

with regulatory functions217. In contrast to small non-coding RNAs (such a miRNAs, snoRNAs 37 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvad046/7082876 by U

niversite de Bordeaux user on 17 April 2023



11 

or piRNAs), long-noncoding (lnc)RNAs are around 200 nucleotides or more218 and often 1 

undergo alternative splicing, which further expands their repertoire. LncRNAs can bind to DNA, 2 

mRNAs, miRNAs and proteins depending on sequence and secondary structure, thereby 3 

modulating gene expression under physiological and pathological conditions219. Their modes 4 

of action include epigenetic, transcriptional and post-transcriptional mechanisms. Accordingly, 5 

this new class of ncRNAs is increasingly taking center stage in the modulation of the 6 

cardiovascular system. As an example, lncRNA H19 is involved in the pathogenesis of 7 

atherosclerosis220. The expression of lncRNA H19 is significantly increased in patients with 8 

ischemic stroke compared to healthy controls221. Genome-wide association studies have 9 

identified SNPs in the lncRNA ANRIL associated with CVD, such as coronary atherosclerosis 10 

and cardiac infarction222, 223, while variants in lncRNA ZFAS1 are associated with susceptibility 11 

to ischemic stroke224. Recently, a transcriptome wide association study on VTE also revealed 12 

further lncRNA hits (RP11-747H7.3, RP4-737E23.2)225, corroborating their function in CVD. 13 

Unlike miRNAs or proteins, lncRNA function cannot currently be simply inferred from sequence 14 

or structure, and the diversity of lncRNAs described to date precludes simple 15 

generalizations219. In the context of the hemostatic system, this hitherto poorly explored area 16 

deserves attention. This is also supported by the role lncRNAs have in platelets226, 227, although 17 

their role is still under active investigation. In analogy to the central regulatory function of non-18 

coding RNAs in the immune system and because of the resulting therapeutic implications228, 19 

it will be important to better understand the pathophysiological dimension of this class of 20 

regulators in thrombosis and its connection to inflammation. 21 

Circular RNAs (circRNAs) are another class of endogenous non-coding regulatory 22 

biomolecules. They are prevalent and arise from a non-canonical splicing event called 23 

‘backsplicing’ 229. They exert important biological functions by acting as miRNA or protein 24 

sponges, by regulating protein function or by being translated230. As such, circRNAs regulate 25 

a plethora of biological functions including ROS formation and cardiovascular metabolic 26 

inflammation231. Accordingly, perturbations of these process(es) can become pathogenic and 27 

result in CVD. For example, a haplotype on 9p21 that protects against coronary artery disease 28 

has been shown to be associated with the abundance of circRNA ANRIL, which in turn 29 

regulates ribosomal RNA maturation, conferring atheroprotection232. Accordingly, circANRIL 30 

has been proposed as a potential therapeutic target for the treatment of atherosclerosis. The 31 

in-principle therapeutic utility of circRNA is also supported by recent preclinical observations 32 

demonstrating their use, for example, to attenuate cell apoptosis in cerebral ischemia-33 

reperfusion233. Finally, circulating circRNA may have diagnostic potential and serve as 34 

biomarkers for acute ischemic stroke234 and even help distinguish different etiologies (i.e., 35 

atherothrombotic, cardiothrombotic vs undetermined stroke)235. 36 

 37 
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What comes next? Alternative polyadenylation and 3’-UTR diversity as central 1 

regulatory hubs 2 

Much of the posttranscriptional regulation of the hemostatic system depends on players that 3 

determine the fate of RNAs encoding the respective hemostatic components. The different 4 

layers of regulation are largely inter-dependent, as alternative splicing and polyadenylation are 5 

coupled to each other84 and thereby determine not only the final open reading frame, but also 6 

the 3’-UTR sequence and hence the susceptibility of the mature mRNA to posttranscriptional 7 

control by RBPs and ncRNAs. 8 

Since much of the posttranscriptional regulation of gene expression takes place at the level of 9 

the 3’-UTR, to which RBPs and ncRNAs are abundantly recruited, the 3’-UTR architecture has 10 

an important regulatory function (Figure 6)84. Diversification of the transcriptome at the 3’-end 11 

by alternative polyadenylation (APA) has recently emerged as a pervasive and evolutionarily 12 

conserved layer of gene expression control236 (Figure 1), which affects more than 70% of all 13 

genes. APA considerably expands the diversity of the transcriptome 3’-end, affecting protein 14 

output, isoform composition and protein localization237. 15 

APA is globally regulated in various conditions, including developmental and adaptive 16 

programs89. It is thus likely that APA also tunes the hemostatic system, as exemplified by 17 

alternative processing of TF and TFPI, where alternative splicing also generates different 3’-18 

UTRs (Figure 2). In addition, a recent large scale RNAi screen based on the depletion of more 19 

than 170 putative APA regulators revealed how individual regulators affect the APA 20 

landscape115, including the resulting impact on gene ontologies119. Several significantly 21 

enriched GO terms suggest a critical function of UTR structures in inflammatory processes and 22 

innate and adaptive immunity119. APA affects key components broadly involved in inflammation 23 

and blood coagulation (Table 2). This is consistent with findings that APA is a critical 24 

component in the control of inflammatory processes116, 238, 239 (including COVID-19240), that 25 

typically result in shorter mRNA isoforms (Figure 6). 26 

Strikingly, several hemostatic components have alternative transcripts that differ not only in 27 

their exon composition but also in their 3’-UTR structure (see NCBI Ref seq). These include 28 

essential components of the protein C pathway (i.e., protein C and protein S) with established 29 

functions at the interface of coagulation and inflammation241. For the protein C cofactor protein 30 

S, 3'-UTR dynamics are already documented119, which appear to be regulated by specific 31 

RBPs (RNPS1) or other components (CDKN2D). This points to a regulatory function of APA 32 

at the interface of the hemostatic and the immune system. Due to the pervasive regulatory 33 

function of APA in various processes119 (with perturbations leading to numerous diseases89), 34 

it is plausible that much of this diversity in the hemostatic system is regulated in response to 35 

inflammatory signals. This is illustrated by inflammation-triggered alternative processing of the 36 

FGG mRNA242, resulting in gamma prime (γ') fibrinogen74. γ' fibrinogen is the fibrinogen fraction 37 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvad046/7082876 by U

niversite de Bordeaux user on 17 April 2023



13 

that contains the γ' chain, which arises when the FGG mRNA is polyadenylated at an 1 

alternative polyadenylation signal, resulting in a polypeptide with a unique 20-amino acid 2 

extension encoded by intron 9 74. Thanks to the strongly negatively charged C-terminus of the 3 

γ' chain, fibrinogen γ' can bind with high affinity to thrombin exosite II, decreasing thrombin 4 

activity on several substrates (antithrombin I activity)243. As a consequence, low γ' fibrinogen 5 

levels have been associated with an increased risk of venous thrombosis74, 244, while a potential 6 

role in CVD245 and ischemic stroke246 is under debate247. This highlights how seemingly subtle 7 

changes through alterations of APA and 3’-UTR diversity can have most significant functional 8 

effects in the hemostatic system. It also serves as an example illustrating the complex 9 

interdependency of posttranscriptional processing of RNA molecules and hence functional 10 

output. 11 

Interrogating system-wide posttranscriptional gene regulation38, 39 and transcriptome 3’-end 12 

diversity118, 119, combined with unbiased RNA interactome studies117, 135 and strategies to 13 

disentangle the functional significance of genomic perturbations in non-coding elements248, 14 

therefore holds great potential to unravel novel layers of coupling of the hemostatic system 15 

with inflammatory processes. This could also open entirely new therapeutic perspectives89 to 16 

combat medical threats centering around thromboinflammation such as sepsis, which is still 17 

the leading cause of death in the Western world and in critically ill patients worldwide1. 18 

 19 

Targeting post-transcriptional regulation of the hemostatic system 20 

The multiple layers of posttranscriptional control of gene expression offer various opportunities 21 

and targets for therapeutic intervention. For example, RNA-based therapeutics can be used 22 

not only to re-direct splicing80 and polyadenylation249, but also to silence an mRNA or to prevent 23 

its interaction with other RNAs or RBPs250, 251. 24 

Compared to ‘conventional’ small therapeutic molecules, RNA-based therapeutics such as 25 

ASOs, siRNAs and miRNAs offer the advantage of being able to act on ‘non-druggable’ targets 26 

(i.e., proteins that lack enzymatic function or whose conformation is inaccessible to traditional 27 

drug molecules), as they can be designed to affect virtually any gene of interest192. 28 

ASOs are relatively short, chemically modified single-stranded nucleic acids that selectively 29 

pair to specific regions of mRNA resulting in endonucleolytic cleavage and degradation250. 30 

Currently, more than 60 ASO therapies are in or have completed phase I/II trials, with a 31 

substantial number of antithrombotic ASO therapeutics currently under development138. 32 

The recent introduction of ASOs down-regulating FXI expression exemplifies the potential of 33 

such therapeutics to modulate the hemostatic system via post-transcriptional mechanisms34. 34 

This phase II study in patients undergoing knee surgery revealed that the FXI-targeting ASO 35 

effectively protects patients against venous thrombosis with a relatively limited risk of bleeding. 36 

However, this proof-of-concept trial was too small to assess the effect on other thrombotic end 37 
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points. Other genes that are being explored as potential targets for antithrombotic therapy 1 

using silencing ASOs are FII, FVII, FXII, prekallikrein, plasmin activator inhibitor, 2 

thrombopoetin and FMO3138. A possible concern is that changes in platelet counts were 3 

observed in non-human primates treated with ASOs252, which has been attributed to peripheral 4 

clearance253 and could potentially impact hemostasis. 5 

miRNA therapeutics represent another highly versatile therapeutic means in the context of the 6 

hemostatic system138. MiRNA mimics may be employed to silence pro-coagulant genes to treat 7 

thrombosis (or alternatively, anticoagulant genes to treat bleeding). Conversely, antagomirs or 8 

target site blockers can be used to relieve silencing of anticoagulant genes to treat thrombosis. 9 

Moreover, some miRNAs target several hemostatic components at the same time (Figure 4), 10 

and silencing of such miRNAs can be intentionally used to control several hemostatic 11 

components. On the other hand, undesired pleiotropy is one of the conceptual downsides of 12 

therapeutic miRNA targeting. 13 

MiRNA therapeutics are currently at an early stage of development and not yet applicable in 14 

the clinical setting254. In preclinical studies, several miRNA mimics and antagomirs have been 15 

shown to reduce thrombus formation138 or increase the antithrombin activity in vivo135. One of 16 

the biggest challenges in the clinical development of miRNA-based therapeutics is the 17 

identification of key miRNA candidates and targets, their specificity and effect size. There is 18 

currently a relatively small number of experimentally validated miRNA:mRNA interactions, 19 

making knowledge of the miRNA targetome in the hemostatic system a major trove for future 20 

targeted therapeutics135. 21 

ASOs and most siRNAs exhibit perfect complementary to their targets, which usually results 22 

in degradation of the target mRNA255. In contrast, partial base-pairing of miRNAs prevents the 23 

cleavage activity of RISC, predominately causing translational repression, and only in some 24 

cases deadenylation, decapping and finally mRNA degradation256. Although the proportion of 25 

mRNA target degradation varies widely257, a number of targets are almost exclusively 26 

repressed at the level of translation258. How much each mechanism contributes to down-27 

regulation depends on characteristics, such as seed-flanking nucleotides, of the individual 28 

miRNA–mRNA pair259. 29 

In the context of the hemostatic system, it is interesting to note that miRNA regulation of 30 

transcripts encoding secretory proteins results almost exclusively in translational repression, 31 

because miRNA translational repression is stronger for mRNAs translated at the endoplasmic-32 

reticulum compared to free cytosolic ribosomes258. Thus, miRNA-mediated therapeutic 33 

targeting without degradation of the target mRNAs preserves physiological cell intrinsic 34 

regulatory mechanisms carried out by 3’-UTRs and their binding partners (such as RBPs, 35 

miRNAs, lncRNAs, circRNA or miRNA sponges). This allows for ‘compensatory’ on-demand 36 
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adjustments of protein output even in the presence of the miRNA therapeutic, and thus may 1 

represent a conceptual advantage of miRNA therapeutics over ASO-based approaches138. 2 

While RNA therapeutic approaches have been used in the development of new drugs and 3 

clinical trials are underway260, there are still concerns and challenges to be overcome. These 4 

include, but are not limited to, off-target effects261, triggering innate immune responses262, 5 

stability of the therapeutic RNA molecule and design of optimal delivery systems for disease-6 

specific release with minimal toxicity190. 7 

Finally, there are increasingly strategies to modulate other facets of the RNA biogenesis. This 8 

concerns the targeted interference with splicing80 or with cleavage and polyadenylation249, 9 

involving either redirection of aberrant RNA processing (through ASOs, U1snRNP interference 10 

or trans-splicing) or the elimination of aberrant transcripts79, 89. The characterization of the 11 

transcriptome dynamics thus becomes the next milestone to exploit the untapped therapeutic 12 

opportunities arising from the increasingly available RNA therapeutics. 13 

 14 

Summary 15 

Besides transcriptional control, posttranscriptional regulation of gene expression is taking 16 

center stage in the modulation of the hemostatic system. The highly regulated use of 17 

alternative transcription start sites, exons and polyadenylation sites makes the transcriptome 18 

highly dynamic in time, space and in response to pathological processes. Additional 19 

posttranscriptional regulation by non-coding RNAs, RNA-binding proteins and RNA 20 

modification mechanisms further modulate the functional output of numerous biological 21 

processes, including the hemostatic system. Many of these regulatory principles also play an 22 

important functional role in tuning the immune system28-32, suggesting conserved regulatory 23 

links between both systems. It will be critical to characterize these links to identify rational 24 

targets for the emerging repertoire of RNA therapeutics to effectively combat the dangerous 25 

alliance of the hemostatic and the immune system. 26 
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Figure 1 

 2 

 3 

Figure 1 4 

 5 

 6 

 7 

Figure 1. The functional complexity encoded by approximately 22.000 genes is substantially 8 
diversified by co- and posttranscriptional mechanisms involving alternative transcription 9 
initiation, alternative splicing and alternative polyadenylation (APA). Regulation by non-coding 10 
RNAs such as micro (mi)RNAs, long-non-coding (lnc)RNAs, circular (circ)RNAs, as well as 11 
RNA-binding proteins (RBPs) and RNA modifications, further tunes the functional output of the 12 
transcriptome. Modulation of the biogenesis and the posttranscriptional fate of RNAs (RNA 13 
localization, transport, translation, stability or decay, RNA modifications) are emerging 14 
therapeutic principles (further details see text; *263, **264). 15 
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Figure 2 1 

 2 
Figure 2. Alternative splicing in components of the hemostatic system, resulting in distinct 3 
structural and biochemical characteristics. Of note, the 5’UTR of TFPI contains several non-4 
coding exons (not to scale), a regulatory feature found in many genes 265, 266. 5 
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Figure 3 1 
 2 
 3 

 4 

Figure 3. Modulated 3’end processing as a principle to rapidly adjust protein output. Example 5 
shown for the prothrombin (F2) gene, where mutually exclusive binding of inhibitory (red) and 6 
stimulatory (green) RNA-binding proteins modulates cleavage and polyadenylation of the F2 7 
pre-mRNA. Upon induction of p38 MAPK, the abundance of cleavage and polyadenylation 8 
(CPA) factors (grey) is induced, and the inhibitory proteins (FBP2 and FBP3, shown in red) are 9 
phosphorylated. This impairs RNA binding of these proteins, and allows for binding of 10 
stimulatory components (green), which eventually enhances RNA maturation and protein 11 
output (modified from 99). 12 
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Figure 4 1 

 2 

 3 

 4 

Figure 4. Snapshot on the human hemostatic miRNA targetome (for the full miRNA atlas see 5 
135, Table S4). Heatmap of miRNA/3′UTR interactions (only highly stringent interactions are 6 
depicted). Results of miTRAP assays were divided into three functional categories of 7 
procoagulant, anticoagulant and fibrinolytic components, and for miRNAs targeting multiple 8 
3′UTRs each category subjected to unsupervised hierarchical clustering as indicated by tree 9 
on the left (modified from 135). For further information of miRNA-mediated regulation of 10 
hemostatic components see Table 1. 11 
 12 
 13 
 14 

Figure 5 15 

 16 

Figure 5. FXI 3’-UTR interactome. The graph depicts the density of sites for miRNA and RNA-17 
binding proteins (RBPs) across the FXI 3'-UTR (based on 125 FXI 3'-UTR/miRNA interactions 18 
identified by miTRAP/RNA-seq135 with 41 mapped to the FXI 3'-UTR using miRWalk target site 19 
prediction, and 392 FXI 3'-UTR/RBP interactions identified by miTRAP/MS and of which 66 20 
are mapped to the FXI 3'-UTR using RBPDB target site prediction. Site density calculated by 21 
number of sites present in 50 nt windows over length of the FXI 3'-UTR).   22 ACCEPTED M
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T
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Figure 6 1 

 2 

3 
Figure 6. Alternative polyadenylation is a pervasive gene regulatory mechanism that results in 4 
mRNA isoforms with different 3’-ends. This can result in mRNA isoforms encoding truncated 5 
proteins or in mRNA isoforms with distinct 3’-UTR properties altering RNA transport, 6 
localization, translation, and/or stability (through binding to non-coding RNAs (such as 7 
miRNAs, lncRNAs, ceRNA), through binding to RNA binding proteins (RBPs) and/or through 8 
complex, sometimes mutually exclusive, interactions of RNA motifs with RBPs and/or ncRNAs. 9 
Of note, modifications of RNAs (such as “m6A”) or posttranslational modifications (PTMs) of 10 
RBPs introduce further layers of modulation). Inflammatory conditions tend to result in the 11 
generation of shorter mRNA isoforms (either lacking elements of 3’-UTR regulation or resulting 12 
in truncated proteins; 119 116). Alternative polyadenylation affects numerous genes involved in 13 
blood coagulation and inflammation (Table 2).  14 
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Table 1. Hemostatic components under miRNA control and relation to 1 

thromboinflammation. For full Hemostatic miRNA Targetome Atlas see 135. 2 

Procoagulant  Main miRNAs (functionally validated) Ref. 

 
fibrinogen alpha FGA miR-193b-3p 135 

miR-194-5p 135 
miR-759 267 

135, 267 

 
fibrinogen beta FGB miR-409-3p (miR-29 family) 268 

 
fibrinogen gamma FGG miR-99b-3p 

miR-193a-5p 

135 

 
coagulation factor III, 
tissue factor 

F3 miR-19b 

• Anti-thrombotic protector in patients 
with unstable angina 269 

miR-19b, miR-20a 

• Down-regulation contributes to a 
hypercoagulable state in SLE and 
APS 270 

miR-126 

• Reduces thrombogenicity in 
diabetes mellitus 271 

miR-145 

• Impedes thrombus formation in 
venous thrombosis 194 

miR-223 

• Partially blocks TNF-α-induced 
increase of TF activity in 
endothelial cells 272 

miR-365a-3p  

• Interacts with TF 3’-UTR to 
modulate TF-initiated thrombin 
generation 273 

194, 269-

272, 274 

 
coagulation factor VII F7 miR-19a-3p 

miR-19b-3p 

135 

 
coagulation factor VIII F8 miR-7-5p 135 

miR 454-3p 135 
miR-532-5p 135 
miR-1246 275 

135, 275 

 
coagulation factor XI F11 miR-15b-5p 135 

• Biomarker for PAD 276 

• Influences platelet reactivity and 
clopidogrel response 277 

miR-24-3p 135 

• Biomarker for acute cerebral 
infarction, arteriosclerosis 
obliterans, atherosclerosis and 
severe trauma 278-281 

miR-30a-3p 135 

• Biomarker for AMI and ischemic 
stroke 282, 283 

miR-30d-3p 135 
miR-96-5p 135 

• Biomarker for DVT and DIC 284, 285 
miR-103a-3p 135 

• Involved in atherosclerosis and 
vascular inflammation by 
suppression of KLF4 286 

• Biomarker for VTE 287 
miR-145-5p 288 
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• Biomarker for CAD, AMI, stroke, 
long-term outcome 289-296 

• Impedes thrombus formation in 
atherosclerosis by targeting tissue 
factor and influencing platelet 
reactivity 277, 297 

miR-148b-3p 135 
miR-151a-3p 135 
miR-181a-5p 298, 299 

• Biomarker for AMI and PAD 276, 300 
miR-181b-5p 135 
miR-191b-5p 298 
miR-544a 302 
miR-1255a 135 

• Biomarker for stroke 303 

 
(pre)kallikrein KLKB1 miR-24-3p 135 

 
Von Willebrand factor VWF miR-24 177, 304 

 
ADAM 
metallopeptidase with 
thrombospondin type 1 
motif 13 

ADAMTS13 miR-525-5p 305 

Anticoagulant 

 
tissue factor pathway 
inhibitor 

TFPI miR-27a/b 
miR-494 
miR-27a/b-3p 

306, 307 

 
antithrombin SERPINC1 miR-19b-3p 

miR-186-5p 

135 

 
protein C PROC miR-494 

let-7 family 

135 

 
protein S PROS1 miR-494 308 

 
protein Z PROZ miR-30a-5p 

miR-128-3p 
miR-148a-3p 
miR-148b-3p 
miR-375 
miR-671-3p 

135 

 
protein Z-dependent 
protease inhibitor 

SERPINA10 miR-15b-5p 
miR-16-5p 
miR-17-3p 
miR-197-3p 

135 

 
heparin cofactor 2 SERPIND1 miR-183-5p 

miR-210-3p 
miR-218-5p 
miR-1296-5p 

135 

Fibrinolytic 

 
plasminogen PLG miR-148a-3p 

miR-148b-3p 
miR-181a-5p 
miR-181b-5p 
miR-483-3p 

135 

 
tissue-type 
plasminogen activator 

PLAT miR-340 309 

 
plasminogen activator 
inhibitor 

SERPINE1 miR-30c 

• Biomarker for inflammatory and 
thrombotic disorders310 

310-312 
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miR-421 

• Biomarker for inflammatory and 
thrombotic disorders310 

miR-301a 

 1 
 2 

Table 2. Alternative polyadenylation regulates components involved in blood 3 

coagulation and inflammation. Each column depicts genes belonging to the GO term “blood 4 

coagulation”, “regulation of inflammation” and “complement” that are affected by alternative 5 

polyadenylation (APA) upon depletion of central APA regulators (CPSF6, NUDT21, PCF11). 6 

Data obtained from TREND-DB119; for further APA affected genes and -effectors: 7 

http://shiny.imbei.uni-mainz.de:3838/trend-db/. 8 
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ARRB1 DDX3X C7 ARRB1 ATM C7 ACTG1 ABHD12 HSP90AB1

CBX5 DROSHA CD59 CAPZB CD47 ARRB1 DROSHA RAB27A

CD59 LDLR CBX5 HSPD1 GNA12 GPS2

GATA2 LYN GATA2 ISL1 GNB1 NDFIP1

GNA11 MACIR GATA4 LYN GNG2 NEAT1

GNA12 NDFIP1 GGCX MACIR H3-3B NT5E

GNA13 PBK GNA11 MCPH1 IRF2 PRCP

GNB1 PDCD4 GNA12 NDFIP1 PRCP STMP1

GNG2 PRCP GNA13 PDCD4 PRKAR1A VPS35

H3-3B SETD6 GNB1 SETD6 PRKAR2B

LMAN1 SMAD3 GNG2 SMAD3 RAB27A

LYN STMP1 H3-3B SOD1 VAV2

MAPK1 SYT11 HPS5 SYT11 VPS45

PRCP VPS35 LMAN1 TREX1

PRKAR1A LYN VPS35

PRKAR2B PHF21A

RAB27A PRCP

RAC1 PRKAR1A

RAD51C RAB27A

STXBP1 RAC1

YWHAZ STXBP1

Platelet degranulation

Thrombin/G-Protein coupled receptor signaling

Complement regulation

Positive regulation of secretion by cell

Regulation of inflammatory response/cytokine production

Angiotensin conversion
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regulated by CPSF6-dependent APA regulated by NUDT21-dependent APA regulated by PCF11-dependent APA
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