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Outline
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1. Network Operation and Planning under Uncertainty

2. Enhanced Fault Level Assessment in Smart Grids

3. Reliability Enhancement under Uncertainty from DERs

4. Optimal Energy Management: Hybrid Micro-Grids

5. Conclusions: Quality of Supply & DERs
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Context and Motivation

Key Drivers:
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Decision Making under Volatility and Uncertainty?
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MV/LV Distribution Network Planning
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…motivated by different factors (Objective Functions) 
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Network Layout Sample
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MV Overhead Distribution Network 
(sub-urban and rural areas) 
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Network Layout Sample
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MV Underground Distribution Network 
(metropolitan and urban areas) 
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Traditional Distribution Planning
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Need for New Planning Methodology
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New Philosophy for Network Planning
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Novel Planning – Go Probabilistic

Hernando-Gil, Ignacio – Tutorial 3



www.cired2021.org

Probabilistic Calculation
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Main Issue: data availability for probabilistic models definition.
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Operation and Planning with Smart Grids
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Multi-objective Programming and Decision Making 
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Demand-side Integration – Active Demand
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Distribution Network Design
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• Generic MV/LV distribution 
network models

• Residential customer groups
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Single-Line (1-ph) vs Three-Phase (3-ph) Models
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Single-line model (SLM) of a

‘balanced’

generic suburban LV network

Three-phase model
(TPM) of an 

‘unbalanced’ 

(& realistic)

generic suburban LV
network
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Model Order Reduction for Reliability Assessment

Hernando-Gil, Ignacio – Tutorial 3

• Detailed LV model

• Time-consuming MCS

• Equivalent PC

• Same unavailability

• Minimum error

• Faster MCS

SE+MCS EquivalentingED System States

Reduced number of states 

and accurate reliability indices
Aggregate
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Formulation of Reliability Equivalents of LV Networks by
State Enumeration and Monte Carlo Simulation Techniques
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Fault (short-circuit) Level in Distribution Networks
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• How is it going to (likely to) change?

G59 & P28 EMC Compliance (QoS, PQ, V, flicker…) DER Hosting capacity!
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Network Fault Levels: UK Case Study
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• How is it going to (likely to) change?

National Grid’s projection of fault level reduction from 2015 to 2025

Average Combined Heat and 

Power Fault Level Infeed –

4.5MVA/MVA 

Average Inverter Fed Generator 

Infeed – 1.2MVA/MVA 

Even if the Power Station was 

equivalent to a CHP unit a 

2000MW station would have an 

infeed value of 9000MVA 

If all that power was generated by 

inverter fed distributed generation 

the fault level infeed would be 

reduced by 6600MVA to 2400MVA 
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Generic Fault Levels and ZSYS : UK Case Study
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Fault Levels: Network Generalisation
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Objectives:

Potential Applications for Industry:

▪ Information on hosting capacity: Connect / Disconnect Generation 

▪ Inform requirements for Network Reconfiguration 

▪ Understand requirements/purpose of Dynamic Protection Settings

▪ Combined with application of novel ‘Superconducting’ Fault Current Limiters 

▪ Facilitate the use of Synthetic Inertia 

▪ ‘General framework’ flexibly adapted to different network characteristics

▪ Assess gradient of fault level variations according to diverse feeder structures

▪ Dependency of short-circuit levels to electricity demand & DG Connection:                                            
Demand & DG (time)-varying fault level monitoring.

▪ Wider range of ZSYS benchmark values than those in IEC 60725  
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Fault Levels: Network Generalisation

Hernando-Gil, Ignacio – Tutorial 3
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Enhanced Fault Level Assessment in Smart Grids
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Demand influence on Fault Level depends on network supply locations and effect of OLTC regulation:

▪ Point A:    before OLTC regulating transformer (33KV)
▪ Point B:    after OLTC regulating transformer (11KV)
▪ Point C:    primary of 11/0.4 kV distribution transformer (before LV distribution board)
▪ Point D:    at LV customer supply point (0.4KV)
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Enhanced Fault Level Assessment in Smart Grids
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Balanced three-phase fault Unbalanced phase-to-ground fault

The more phases related to fault, the more influence the fault has on the Short-circuit Level.

Fault Case
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Enhanced Fault Level Assessment in Smart Grids
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Steady-state Fault Level after OLTC (11kV)

Fault Level reduces after connecting Micro-DG, especially during peak demand period (6.5pm-0.5am).   
Combined PV and WTs offers a better solution to Fault Level than WTs only.

DG Case + Micro-DG Connection

Steady-state Fault Level at LV Transformer (0,4kV)
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Power System Reliability: Why?
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• The Availability Challenge:

- The majority of system assets were installed 

around 1980, with a design life of 40 years!

• Environmental Challenge:

- Question of analysis:

How does the energy

industry manage its impact 

on the environment?

Def.: Ability of a component/system to operate without interruptions

How does the energy 

industry manage the effects 

of environment on it?

- Increased capability: enhanced ratings 

above nameplate!
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Power System Reliability: Why?

Hernando-Gil, Ignacio – Tutorial 3

Permanent fault in

Distribution network

• Faulted component will be disconnected 
by protection system

• DNO will try to reconfigure the network 
to maintain supply to all customers

Design limitations?

(n-1 criterion) Consequences

Load

shedding

Long

InterruptionsResidential

customers

• Residential demand is responsible for around ~30% of consumption. 
Residential customers are highly dispersed within LV networks 

• DNOs can neither trace nor control individual demands

• Hybrid Micro-Grid systems, in coordination with E. Storage and DSM, will 
maximise the number of customers with a continuous supply.
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Reliability Planning of Active Networks
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• Energy not supplied is due to: (most frequently)

– Faults on distribution system              Lose small amounts of load

– MV/LV networks have a dominant impact on the quality of service 

seen by the end customers:

90%   CI and   97%   CML    between     0.4kV–20kV

➢ System-oriented evaluation masks poor reliability performance.

➢ Accurate reliability evaluation raises customer “Willingness To Pay”.

➢ Different customer perceptions of DNO services’ value. The most rated are:

• Rapid supply restoration.

• Quicker detection of supply loss.

• Carbon reduction initiatives.

• Customer Priorities in a Climate of Rising Energy Prices: CI & CML (UK, 2016-17)
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Integrated Method for Supply Security
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Reliability Enhancement under Uncertainty from DERs
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Data Analytics for renewable generation and weather data:

• Seasonal Prediction Model of PV output (vs irradiation) (vs wind) (vs temperature)

Summer Winter
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Reliability Enhancement under Uncertainty from DERs
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Reliability Enhancement under Uncertainty from DERs
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Average ENS: Urban MV/LV distribution network

• Metropolitan areas

• Underground 
arrangement

• Meshed operation 
radially, 

• High loading 
conditions and 
load density
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➢ E. Storage offers a more significant contribution to ENS reduction because it represents a post-fault 
corrective action, while DSR is deployed as a preventive action

Urban networks
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Reliability Enhancement under Uncertainty from DERs
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SG Performance in Rural LV Networks?
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• DSR schemes have small effect on reliability indices:

• Likely due to low-peak load profile

• DSR suits higher density networks 

• Cumulative energy supply from E. Storage:

• Loads down radials benefit more

• PV case (75% penetration): largest improvement 
(21% ENS/cust./year)



www.cired2021.org

Reliability Enhancement under Uncertainty from DERs
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Energy Not Supplied 
DISAGGREGATION of 

Reliability Performance:

Energy Not Supplied 
AGGREGATE Network:

• Limiting ENS raises customer 
willingness to pay

• Aggregation significantly lowers 
the collective probability of having 
‘zero’ ENS in the network

• ES+DSR increases the probability 
of low ENS values given the 
combined average reduction in all 
constituent networks

(variability of performance 
due to network configuration, 

demand and mix of 
components)

Wide network Diversity!
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Locational Hosting Capacity (LHC) for Wind-Based DERs

Hernando-Gil, Ignacio – Tutorial 3

Wind speeds for which an actual WT 
produces 1 p.u. power output

variations in minimum and maximum DTR values for OHL 
Type S for wind speeds of 14.5 m/s (up) and 23 m/s, and 

wind directions of 0o and 90o

(example of coincidental DTR values with max/min demands)

Deterministic vs Probabilistic Assessment: 
Variations of demands + DG power outputs + dynamic thermal ratings (DTR) of network components
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Comparison of ranges of LHC values assessed by deterministic 
and probabilistic approaches at individual network buses (for a 

single DG unit connected at a considered bus in generic MV network)

Comparison of two optimisation
methods (IEEE 33-bus network)

Locational Hosting Capacity (LHC) for Wind-Based DERs
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Multi Energy Systems
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Optimal Energy Management: Hybrid Micro-Grids 
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Smart Energy Management Systems

Aims:
- Maximise self-consumption of local generation   (multi-energy)

- Minimise use of peak-price electricity   (dispatchable microgrids in the pool market) 

- Gain revenue through resolving network congestions

Insights into:

- Real-time modelling and forecasting of: 

- DSR Aggregation: Battery Storage for network balancing

- Improve security of supply through storage of excess energy

- Control algorithms for an optimal PV-Battery management (fail-safe control) 

- Peer-to-Peer Energy Trading (technically tested for the first time) – new business models

- Local (renewable) generation 

- Local consumption / storage

- Supplier’s time-of-day pricing(hardware)
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Optimal Energy Management: Hybrid Micro-Grids 
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Comparison of building energy management systems algorithms
Criteria:

I.    Ability to consider predictions.

II.   Calculation complexity.

III.  Model dependency.

IV.  Flexibility concerning Building Micro-Grid expansion.

V.   Robustness against uncertainties.
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Optimal Energy Management: Hybrid Micro-Grids 
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Proactive Operation Management of Building MicroGrids
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▪ self-consumption

▪ self-management

▪ self-monitoring

▪ self-healing

▪ self-optimization

▪ comfort, safety, well-being,

▪ new associated business models

Energy Cloud

Smart operation of buildings: 

from reactivity to proactivity

Objectives:
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Optimal Energy Management: Hybrid Micro-Grids 
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ZELEC Project:
Towards Self-Sufficient Zero Emision Local Energy Communities

Control and Optimization 
Building-integrated Microgrid based 

on Hybrid PV/Hydrogen/Energy 
Storage Systems

Appliance and SOC consumption 
scheduling for HEMS optimisation 
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Optimal Energy Management: Hybrid Micro-Grids 

Two-stage coordinated Volt-Pressure Optimization (VPO) for Integrated Energy Systems (IES) 
networked with Energy Hubs considering Renewable Energy and Power-to-Gas (P2G) sources

PV Q output (case 1)

PV Q output (case 5)

Energy Hub 
scheduling

Economic-effective
day-ahead preparation
and real-time adaptive
operation scheme
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Quality of Supply & DERs: Future Work
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Quality of Supply & DERs: Conclusions
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Thanks for listening

Questions?

Dr Ignacio Hernando-Gil 

ESTIA Institute of Technology (University of Bordeaux)

i.hernandogil@estia.fr

GT Microgrids
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