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A B S T R A C T

Conventional Li-ion battery ageing models, such as electrochemical, semi-empirical and empirical models, re-
quire a significant amount of time and experimental resources to provide accurate predictions under realistic
operating conditions. At the same time, there is significant interest from industry in the introduction of new data
collection telemetry technology. This implies the forthcoming availability of a significant amount of real-world
battery operation data. In this context, the development of ageing models able to learn from in-field battery
operation data is an interesting solution to mitigate the need for exhaustive laboratory testing.

In a series of two papers, a data-driven ageing model is developed for Li-ion batteries under the Gaussian
Process framework. A special emphasis is placed on illustrating the ability of the Gaussian Process model to learn
from new data observations, providing more accurate and confident predictions, and extending the operating
window of the model.

The first paper of the series focussed on the systematic modelling and experimental verification of cell de-
gradation through calendar ageing. Conversantly, this second paper addresses the same research challenge when
the cell is electrically cycled. A specific covariance function is composed, tailored for use in a battery ageing
application. Over an extensive dataset involving 124 cells tested during more than three years, different training
possibilities are contemplated in order to quantify the minimal number of laboratory tests required for the design
of an accurate ageing model. A model trained with only 26 tested cells achieves an overall mean-absolute-error
of 1.04% in the capacity curve prediction, after being validated under a broad window of both dynamic and
static cycling temperatures, Depth-of-Discharge, middle-SOC, charging and discharging C-rates.

1. Introduction

Lithium-ion (Li-ion) battery technology has gained a significant
market share as the principal energy storage solution for many in-
dustrial applications, mainly due to its high energy efficiency and high
specific energy and power [1,2]. However, Li-ion batteries are still re-
latively expensive compared to other storage technologies, and their
performance is known to decline over time and use, which threatens
their competitiveness against more affordable solutions [2,3]. As
highlighted in the first paper of the series [4], the development of ac-
curate battery ageing models could play a key role to overcome such
barriers; however, the obtention of accurate models typically requires a

high number of laboratory tests.
As suggested in a previous publication, a suitable solution to reduce

the number of laboratory tests could be the development of ageing
models capable to continuously learn from streaming data [5]. Fol-
lowing this approach, reduced laboratory tests could be used to develop
a preliminary ageing model. Further, once the battery pack has been
implemented and deployed, in-field data extracted by the data acqui-
sition system could allow updating the preliminary ageing model. In
this way, the ageing model would be continuously upgraded, improving
prediction accuracy, extending the operating window of the model it-
self and providing useful information for predictive maintenance,
adaptive energy management strategies or business case redefinition.
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In a previous study, a critical review on self-adaptive ageing models
for Li-ion batteries was presented, in which the Gaussian Process (GP)
method was identified as the most promising candidate [5]. In fact,
beyond their ability to perform probabilistic, relatively robust and
computationally acceptable predictions, these models enjoy the very
interesting advantage of being nonparametric: in other words, the
complexity of these models depends on the volume of training data.
Within the context of Li-ion ageing prediction, this implies:

- A progressive spread of the operating window for the model. Each time a
new data sample related to previously unobserved operating con-
ditions is included within the training set, additional knowledge is
obtained about the influence of stress-factors on ageing. The re-
sulting models should provide an increasingly comprehensive pic-
ture of the ageing of Li-ion batteries.

- A higher level of specialisation of the model. The preliminary ageing
model developed from the laboratory ageing data could be upgraded
by including new training data extracted from the in-field operation.
In-field data encodes the intrinsic operating profiles of each appli-
cation, as well as the corresponding battery ageing. This implies the
possibility to move from a generic ageing model to a specialised
model tailored to the specific applications.

Each time input values are presented to the model to perform a
prediction, the GP model retrieves similar data samples in the training
dataset to produce analogous predictions. A continuously fed training
dataset implies an increased number of similar data, allowing more
accurate and confident predictions.

From a broader perspective, most of the data-driven ageing models
proposed in the literature refers to the degradation of the Li-ion bat-
teries when the cell is electrically cycled. However, almost all of them
are developed based on cycling profiles corresponding to specific ap-
plications, and do not consider the ageing of Li-ion batteries from a
general prospect. Accordingly, the most critical gaps identified in the
literature regarding data-driven Li-ion ageing models are i) the under-
utilisation of key predictive features (e.g. values of the different stress-
factors) and ii) the insufficient validation of the proposed models [5].
These gaps strongly limit the accuracy and applicability of the models
within the context of real deployment. In this sense, investigation in
data-driven Li-ion ageing models should be more focussed on the im-
plementation or discovery of features presenting strong predictive
capabilities (as suggested in [6]), as well as the deeper validation of the
developed models under broad operating conditions.

The GP framework has already been introduced for Li-ion battery
ageing predictions [4,7–15]. The present study aims to extend existing
research by integrating the following main contributions:

i) The development of a generic data-driven cycle ageing model, able
to perform accurate capacity loss predictions for a broad range of
cycling conditions, and usable for a large diversity of Li-ion battery
applications.

ii) The extension and validation of the main contributions introduced
in the first paper of the series in the context of calendar ageing,
bringing them to the battery cycling use-case. Thus, the ability of GP
models to learn from new data is analysed, illustrating their cap-
ability to provide more accurate and confident ageing predictions
when integrating previously unobserved operating conditions, ex-
tending this way the operating window of the model. Furthermore, a
compositional covariance function is introduced, tailored to Li-ion
battery cycle ageing prediction.

Additionally, this study also extends the secondary contributions
presented in the first paper of the series to the cycle ageing use-case:

i) The quantification of the minimal number of laboratory tests re-
quired for the design of an accurate cycle ageing model for a broad

operating window.
ii) The validation of the proposed ageing model with an extensive

experimental ageing dataset, involving 122 cells tested during more
than three years at static conditions, and 2 additional cells tested at
dynamic operating conditions.

iii) The sensitivity analysis of the capacity loss with respect to the
different stress-factors, from the point of view of the developed
model. As explained in this paper, the developed covariance func-
tion shares the particularity of quantifying the relevance of each
input variable for predicting the defined output variable. This could
provide some intuitions about e.g. which stress-factors are the most
impactful on the capacity loss, producing useful insights for the
design of energy management strategies. Such analysis was not
performed in the field of Li-ion battery ageing prediction.

The body of the research undertaken is presented through a two-
part series. The first paper focussed on the systematic modelling and
experimental verification of cell degradation through calendar ageing
[4]. Conversantly, this paper addresses the same research challenge
when the cell is electrically cycled. During many real-world conditions,
the cell will be subject to both calendar and cyclic ageing. The relative
importance of each will be highly dependent on the nature of the use-
case. The integration of both forms of ageing, within the context of
defining a holistic view of lithium-ion degradation modelling is a
challenging research task, discussed further within [16,17] and is the
subject of ongoing research by the authors further extending the re-
search presented here and in [4].

This paper is structured as follows, Section 2 describes the experi-
mental ageing tests carried out in order to produce the ageing data. The
raw data obtained from the experimental tests are analysed and pro-
cessed before the development of the model. Section 3 details the
processing of the raw data and evaluate the relevance of the obtained
data for ageing modelling. Section 4 introduces the general background
of the GP theory, and Section 5 presents the development of the pro-
posed cycle ageing model under the GP framework. In Sections 6 and 7,
the prediction results of the developed model are presented for the cells
cycled at static and dynamic operating conditions, respectively. Fur-
thermore, both sections aim to illustrate the ability of the GP model to
learn from new data observation. Section 8 discusses the obtained re-
sults, leading to the identification of the limitations of the study and
opening the way to further works. Finally, Section 9 closes the study
depicting the main conclusions.

2. Experimental cycle ageing data

Within the context of the European project titled as Batteries2020,
extensive experimental works were carried out over a time span of more
than three years, in order to analyse the ageing of Li-ion batteries,
covering different possible operations. The capacity retention of a 20
Ah Lithium Nickel-Manganese-Cobalt (NMC 4:4:2) cathode-based
pouch cell with a graphite anode was evaluated. The nominal char-
acteristics of the cell, the operating conditions recommended by the
manufacturer, as well as the experimental results obtained from a
testing batch of 32 cells related to the study of the ageing in storage
operation, were described in the first paper of the series [4]. In this
second paper, the experimental works associated with the study of the
cycling operation will be presented.

From the ageing point of view, the operation of a Li-ion battery in
cycling is conditioned by the level of different stress-factors, mainly
identified in the literature as the operating temperature, Depth-Of-
Discharge (DOD), average State-Of-Charge (middle-SOC), and the
charging and discharging C-rates [18]. A total of 124 cells were cycled
in temperature-controlled climatic chambers, at different combinations
of such stress-factors. Periodical characterisation tests were carried out
at 25°C in order to evaluate the progressive capacity retention of the
cells. The determination of the capacity started 30 min after its surface
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temperature reached 25°C degrees, ensuring that the cells has stabilised
at the target temperature. The test started with a constant current –
constant voltage (CC-CV) charge: the CC charge was done at 6.667 A
(C/3) until reaching 4.15 V, and the following CV charge was stopped
when achieving current values below 1 A (C/20). After a period of
30 min, the cell was discharged using a CC discharge current at 6.667 A
(C/3) until the terminal voltage measured 3 V, followed by a pause
period of 30 min. The procedure was repeated three times. The capacity
value obtained in the last repetition was considered as the cell capacity.

Depending on the variability of the stress-factors’ profiles in the
whole duration of the tests, two types of ageing experiments were
distinguished, namely i) the ageing tests at static operating conditions
and ii) the ageing tests at dynamic operating conditions.

2.1. Experimental ageing tests at static operating conditions

In the ageing tests performed at static conditions, the value of the
stress-factors remained constant throughout the whole duration of the
tests. 122 cells were tested at 34 different operating conditions, speci-
fied in Table A1, Appendix A. Most of these tests were performed in the
laboratories of the Vrije Universiteit Brussel and were completed by the
laboratories of Ikerlan Technology Research Centre, ISEA – RWTH,
Leclanché and Centro Ricerche Fiat. The cells were characterised every
4000 Ah, or equivalently 100 Full-Equivalent-Cycles (FECs). In order to
ensure the repeatability of the results, at least 3 cells were allocated to
each testing condition. The capacity curves resulting from the experi-
mental ageing tests at static conditions are observable in Fig. B.1,
Appendix B. The variability of the capacity curves obtained for each
tested cycling conditions is indicated in Table B1, Appendix B.

2.2. Experimental ageing tests at dynamic operating conditions

As the battery stress conditions in real-world applications are not
constant over time, the developed ageing models should be able to
perform accurate predictions at dynamic operating profiles. The ability
of the GP model to learn from dynamic profiles should also be analysed.
Therefore, 2 additional cells were tested at dynamic profiles of the
different stress-factors. The value of the stress-factors was modified
between each characterisation test, during the whole duration of the
tests. One cell was tested at constant 80% DOD, 50% middle-SOC, C/3
rate in charge, 1C rate in discharge and a variable temperature profile
following the seasonal temperatures over a year, between a range of
15°C–36°C. Furthermore, one additional cell was submitted to the same
seasonal temperature profile, but also variable DOD, middle-SOC and
charging and discharging C-rates. The cells were characterised ap-
proximately every 28 days. The variation profiles of the stress-factors,
as well as the corresponding capacity retention of the tested cells are
depicted in Fig. B.2, Appendix B.

3. Data preprocessing and evaluation of the resulting data

In the context of data-driven modelling, it is important to analyse
and preprocess the raw data before any modelling task, in order to
address data inconsistency and noise issues and achieve effective
models [19]. The capacity curves obtained from the experimental
ageing tests described in Section 2 present clearly three distinct phases,
as illustrated in Fig. 1.

The first phase corresponds to an initial capacity rise appearing at
the Beginning Of Life (BOL). As detailed in the first paper of the series,
this behaviour could be explained by the geometrical characteristics of
the cells and it is not related to any ageing mechanism. Accordingly, the
data corresponding to Phase 1 was discarded for the development of the
ageing model. During the data preprocessing stage, the maximal ca-
pacity point of each cell was designated as the BOL point and assigned
to the ‘zero cycled Ah-throughputs’ state. The second phase is char-
acterised by a progressive rate-constant decrease of the cell capacity,

and it is sometimes followed by a third phase describing a sudden ca-
pacity drop, as illustratively depicted in Fig. 1. According to [20], in
these tested cells, this third phase was provoked by the occurrence of
lithium plating. For the reasons exposed in the first paper of the series,
the modelling of the Phase 3 remained out of the scope of the study, and
the corresponding data was discarded from the modelling dataset.

Therefore, in the context of this study, the modelling work focussed
on capturing the relations between the cycling conditions and the ca-
pacity loss of the cells, during the progressive degradation corre-
sponding to the second phase in Fig. 1.

Besides, some unexpected trends were identified within the ex-
perimental data, for instance, abnormally reduced capacity measure-
ments around 25000 Ah in the cells #21-23 (green curves in
Fig. B.1(a), Appendix B). Such deviations are related to procedural
errors during the capacity tests (e.g. exchange of the testing device,
etc.). These noisy data samples could affect the performances of the
model and were therefore removed from the modelling dataset. Fur-
thermore, the cell #56 showed a clearly defective behaviour (isolated
red curve in Fig. B.1(f), Appendix B) and was also discarded from the
dataset.

On average, 76.5% of the raw experimental data corresponding to
the static ageing conditions was preserved after the preprocessing stage.
The percentage of the remaining data for each cell is indicated in
Table 1. Overall, all the ageing conditions of the initial experimental
ageing matrix were still represented in the processed dataset. It is no-
teworthy that most of the discarded data corresponds to cells cycled at
low DOD values, due to the decision to neglect the initial capacity rise
points. Regarding to the cells submitted to dynamical ageing profiles,
90% and 95.45% of the ageing data was maintained for the cells #124
and #125 respectively. Figs. 2 and 3 illustrates the resultant ageing data
obtained after the preprocessing stage.

The analysis of the capacity curves in Fig. 2 allows to understand
the relations between the values of the different stress-factors and the
underlying ageing of the cells. Comparing the curves corresponding to
identical DOD operations in Fig. 2(a), (b) and (c), it is noteworthy that
the increased cycling temperature in (c) accelerated the capacity loss of
the cells. This observation is in accordance with the literature [21,22].
In fact, the growth of the SEI layer is a chemical reaction and then obeys
to the Arrhenius law: the SEI formation rate increases exponentially
with temperature.

By studying them independently, the Fig. 2(a), (b) and (c) also il-
lustrate the DOD dependency of the capacity loss. Higher values of the
DOD increased the capacity loss. As explained in [23], at relatively low
current rates of battery operation the SEI cracking and reforming is the

Fig. 1. The three different phases of the capacity retention curve of the cells.
The first phase is an increase of the capacity, the second is progressive de-
gradation and third phase is a sudden capacity drop. Modified from [20].
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main mechanism inducing capacity loss. Such capacity loss was shown
to be dependent to the state of lithiation swing (which could be ap-
proximated by the DOD) of the electrode, during lithiation [23]. Similar
experimental results were reported in [24–26].

Regarding the effect of the middle-SOC stress-factor, the cycling at
higher lithiation ranges of the anode is expected to lead to accelerated
ageing, due to i) the effect of the calendar ageing, in which higher SOC
values induce faster degradation [20,27], ii) the increased mechanical
stress accumulated in the anode at higher lithiation states, conducting
to accentuated SEI cracking and reforming [28] and iii) the crossing of
the transitions between voltage plateaus of the negative electrode,
which provokes changes in the lattice parameters of the material and
leads to material expansion and contraction, increasing again the me-
chanical stress [26]. The latter element suggests a U-shape dependency
of the capacity loss to the middle-SOC, with an optimum around 50%
SOC and stronger degradations at higher and lower cycle ranges [26]. A
similar behaviour is observable in Fig. 2(f), in which the cells cycled at
35% and 65% middle-SOC aged slightly faster than the cells operating
at 50% middle-SOC. As for the 10% and 20% DOD operation, Fig. 2(d)
and (e) reflect an increased capacity loss at 80% middle-SOC operation,
compared with lower middle-SOC levels.

Furthermore, the effect of high charging and discharging C-rate
values on capacity loss was also demonstrated in the literature. High C-
rates lead to additional stress in the electrodes, due to i) a non-homo-
geneous intercalation of lithium on graphite which create Li-con-
centration gradients and ii) more important volume expansions and
compressions [28]. This increase the probability of particle fracture,
conducting to a loss of active material. In the negative electrode, the
particle cracking reveals fresh anode surface, which react with elec-
trolyte reforming SEI and augmenting capacity loss [28,29]. Further-
more, the charging at high C-rate could generate the lithium plating
reaction, because of the heterogeneous lithium repartition in the ma-
terial which could locally induce voltages close to the 0 V vs. +Li/Li
[30]. The study of the C-rate effect in the experimental works was
limited to a C/3–2C range, in order to obtain enough resolution. These
are relatively low levels compared to the actual EV market requirement
(~6C in charge [31]). The obtained results showed relatively high
variability, and not clear influence of the C-rate was remarkable below
1C for both charging and discharging C-rates (see Fig. 2(g–j)). How-
ever, an increased degradation rate was observed at 2C charging (dis-
charging at 1C in Fig. 2(h) and at 2C in Fig. 2(j)).

Summarising, the experimental works carried out with 122 cells
allowed to obtain an extensive dataset which describes effectively the
influence of temperature, DOD, and middle-SOC for a relatively broad
operating window of Li-ion cells, which overlaps the typical operating
conditions in many real applications. It is noteworthy that high C-rate
levels, as well as negative temperatures are not represented in the data,
which could limit the applicability of the developed model in such
operating conditions (see Section 8). Furthermore, the additional tests
realised at dynamic operating conditions allow to validate the perfor-
mances of the model under time-varying stress-factors profiles, which
are closer to real-world operation.

4. Gaussian process theory

This section aims to provide a brief overview of Gaussian Process
models, introducing the main concepts and the predictive equations.
Detailed explanations are available in [32].

The GP is a random process, i.e. a random entity whose realisation is
a function f(x) instead of a single value. Rather than assuming a para-
metric form for the function to fit the data, f(x) is assumed to be a
sample of a Gaussian random process distribution. Since the GP is a
nonparametric model, even when observations have been added, the
model is always able to fit the new upcoming data.

A GP is fully determined by its mean and covariance functions.
Defining the mean function m(x) and the covariance function κ(x, x') ofTa
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Fig. 2. Normalised capacity (with maximum value Qmax), after the preprocessing of the raw data obtained from the static ageing tests at (a) 25°C, 50% middle-SOC,
C/3 – 1C, and several DOD values, (b) 35°C, 50% middle-SOC, C/3 – 1C, and several DOD values, (c) 45°C, 50% middle-SOC, C/3 – 1C, and several DOD values, (d)
35°C, 10% DOD, C/3 – 1C, and several middle-SOC values, (e) 35°C, 20% DOD, C/3 – 1C, and several middle-SOC values, (f) 35°C, 50% DOD, C/3 – 1C, and several
middle-SOC values, (g) 25°C, 80% DOD, 50% middle-SOC, 1C discharging rate, and several charging rate values, (h) 35°C, 80% DOD, 50% middle-SOC, 1C dis-
charging rate, and several charging rate values, (i) 35°C, 80% DOD, 50% middle-SOC, C/3 charging rate, and several discharging rate values, and (j) 35°C, 80% DOD,
50% middle-SOC and several symmetric charging and discharging rate values.

Fig. 3. Normalised capacity (with initial value
Qmax), after the preprocessing of the raw data
obtained from the dynamic ageing tests, for the
cell #124 and #125.
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a real process f(x) as:

=
′ = − ′ − ′

m f
κ f m

x x
x x f x m x x x
( ) [ ( )]

( , ) [( ( ) ( ))( ( ) ( ))]
�

� (1)

the GP can be expressed as

∼ ′κf x m x x x( ) ( ( ), ( , ))�� (2)

where x and x′ are two different input vectors.
Both mean and covariance functions encode the prior assumptions

about the function to be learnt. They also express the expected beha-
viour of the model when the prediction inputs diverge from the inputs
observed during training. The covariance function, also called the
kernel, underpins the information about how relevant one target ob-
servation y of the training dataset is to predict the output y*, on the
basis of the similarity between their respective input values x and x*.

The mean and covariance functions depend on some hyperpara-
meters θ, which must be learnt from the training dataset. From a GP
point of view, the mean and covariance function selection and learning
the corresponding hyperparameters are the main tasks which must be
carried out during the training phase. Hyperparameters are typically
estimated by the maximisation of the marginal likelihood logarithm,
using the gradient of the marginal likelihood with respect to such hy-
perparameters [32]. The marginal likelihood is defined as the integral
of the likelihood times the prior.

Under the GP framework, the prior is Gaussian ∼X Kf 0| ( , )� , and
the likelihood is a factorised Gaussian ∼ σ Iy f f| ( , )n

2� , where f is the
vector of latent function values as = …ff x x( ( , , ))n

T
1 ; X is the matrix of

the training input values; � is the Gaussian (normal) distribution; K is
the covariance matrix for the (noise free) f values; y is the vector of the
training target values; σn

2 is the noise variance and I is the identity
matrix.

The obtained log marginal likelihood is expressed in Eq. (3)

= − + − + −−p X K σ I K σ I n πy y ylog ( | ) 1
2

( ) 1
2

log
2

log 2T
n n
2 1 2

(3)

The GP predictive equations are expressed in Eqs. (4)–(6).

∼X Xf y f f*| , , * (¯
*, cov( *))� (4)

with

= + + −−X K X X K X X σ I Xf m y m¯
* ( *) ( *, )[ ( , ) ] ( ( ))n

2 1 (5)

= − + −K X X K X X K X X σ I K X Xfcov( *) ( *, *) ( *, )[ ( , ) ] ( , *)n
2 1 (6)

where f*, f̄*, and cov(f*) are the GP posterior prediction, its corre-
sponding mean and its covariance, respectively; X* is the matrix of test
inputs;m(X) andm(X*) are the vectors of mean functions for the
training and test inputs respectively; K(X, X), K(X*, X*), and K(X, X*) are
the covariance matrices between training inputs, the test inputs, and
training and test inputs, respectively.

5. Development of the cycle ageing model

5.1. Assumptions and input selection

As stated in Section 3, this paper focuses on the modelling of the
progressive capacity loss corresponding to the second phase re-
presented in Fig. 1. The development of the model was based on the
following assumptions:

i) The predominant ageing mechanism involved in such phase is the
formation of the SEI layer on the anode surface, which could be
moderated, accelerated or expanded by the cycling conditions,
characterised by the values of the different stress-factors mentioned
in Sections 2 and 3.

ii) The capacity loss is strongly dependent on the interactions between
the different stress-factors, as described in Section 3.

As explained in the first paper of the series, corresponding to the
calendar ageing model, the influence of the stress-factors should be
considered introducing the corresponding values directly as an input
[4]. Therefore, the model proposed in this section considered six inputs:

- ΔAh-throughput: the number of Ah-throughput for which the ageing
is predicted.

- −T 1: the reciprocal of the temperature corresponding to the cycled
Ah-throughput (for alignment to the Arrhenius law).

- DOD: the DOD level corresponding to the cycled Ah-throughput.
- Middle-SOC: the average SOC corresponding to the cycled Ah-
throughput.

- Charging C-rate: the charging C-rate corresponding to the cycled Ah-
throughput.

- Discharging C-rate: the discharging C-rate corresponding to the cy-
cled Ah-throughput.

The output of the model was the capacity loss ΔQ corresponding to
the ΔAh-throughput cycled at −T 1, DOD, Middle-SOC, Charging C-rate
and Discharging C-rate conditions.

5.2. Kernel construction

As justified in [4], the framework of compositional kernels is a
suitable solution to develop covariance functions tailored to Li-ion
battery ageing application: a main kernel could be constructed com-
posed of interpretable components, each one related to a specific input
dimension [33]. In order to focus on the behaviour of the composed
kernels, a zero-mean function was defined in this work. This is not a
significant limitation, since the mean of the posterior process is not
confined to be zero [32].

5.2.1. Selecting individual kernel components
As explained in Section 4, the GP framework is a nonparametric

model, and therefore the learning problem is the problem of finding the
suitable properties of the function (isotropy, anisotropy, smoothness,
etc.), rather than a particular functional form [32].

The range of the DOD and Middle-SOC input dimensions is in-
trinsically limited between 0–100%. Furthermore, the operation
window corresponding to the Temperature, Charging C-rate and
Discharging C-rate inputs is also limited by the recommendations of the
manufacturer (e.g. cycling and storage temperatures between -30°C and
55°C), specified in the first paper of the series [4]. This is defined to be a
local modelling problem and therefore the kernel components corre-
sponding to the stress-factors’ input spaces could be represented by
isotropic kernels, as justified in [4]. Among the different isotropic ker-
nels, the 5/2 Matérn kernels imply a suitable smoothness assumption to
represent the physical processes inside the battery (as suggested in [4]),
and were then selected to host independently the input dimensions
corresponding to each stress-factor.

The kernel component related to the −Ah throughputΔ input di-
mension requires several −Ah throughputΔ values to be involved in the
training data, in order to optimise the associated hyperparameter. In
order to limit the training computation time, only three different values
of −Ah throughputΔ were processed in the training data (which are
4000, 8000 and 12000 ΔAh). Table 2 illustrates the structure of the
training data. In this context, the use of an isotropic kernel requires a
large amount of different values of −Ah throughputΔ for long-term
prediction, implying a large quantity of training data and increased
computation times. Therefore, this kernel component should be aniso-
tropic. In the second phase of the Li-ion cells ageing described in Fig. 1,
the capacity loss seems to be linear with respect to −Ah throughputΔ .
Therefore, a linear kernel component was selected for this input di-
mension.

Although the data vectors ‘CELL002 – data vector 1’ and ‘CELL002 –
data vector 4’ in Table 2 have the same inputs values, the target is
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different because both correspond to the capacity loss from a different
starting point, in the capacity curve of the CELL002. The data vectors
with identical input values and different outputs are useful for the de-
termination of the noise hyperparameter of the GP models (see Eq. (7)).

5.2.2. Composing the whole kernel
In the GP framework, the kernel function is also a covariance

function and therefore must be positive semidefinite [32]. Moreover,
positive semidefinite compositional kernels are closed under the addi-
tion and multiplication of basic kernels. Additive kernels assume the
added stochastic processes to be independent [33]. However, as spe-
cified in Section 5.1, the different inputs were assumed to have a strong
interaction on their influence on the capacity loss, and hence an ad-
ditive kernel composition should be avoided. In order to account for the
interactions between the different input dimensions, the tensor product
is suggested within [32,33] and is used in the composed kernel
(Eq. (7)).
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where x and x′ are different input vectors structured
as = x x x x x xx ( , , , , , )1 2 3 4 5 6 , with = −x T1

1, =x DOD2 ,
= −x Middle SOC3 ; = −x Charging C rate4 ; = −x Discharging C rate5

and = −x Ah throughputΔ6 .
θ1, θ2, θ3, θ4, θ5 and θ6 are the hyperparameters related to the

corresponding input spaces. The additional hyperparameters σf2 and σn2
are respectively the signal variance, which plays the role of scaling the
outputs in the dimension of the capacity loss ΔQ, and the noise var-
iance, which models an additive Gaussian noise from the data.

6. Learning from static operating conditions

This section aims to illustrate the ability of the developed GP model
to improve its prediction performances while observing an increasing
number of cycling data. Indeed, as new observations of cycling condi-
tions are presented to the model, the training dataset of the model in-
volves a more comprehensive view of the influence of the different
combinations of stress-factors on the capacity loss. Therefore, for each
prediction, the covariance function is able to find more similar ex-
amples in the stored training dataset, in term of cycling conditions. The
prediction performances of the model improve throughout the whole
operation window of the Li-ion cells.

In this section, the improvement of the model performances was

evaluated in terms of:

i) Accuracy of the prediction: as the training dataset increases, a
reduction of the prediction errors is expected over the whole op-
eration window. The metrics used to evaluate the prediction error
are detailed in Section 6.1.

ii) Confidence in the prediction: as the training dataset increases, the
model disposes of more information about the ageing throughout
the whole operation window. In accordance with the covariance
Eq. (6), the confidence intervals of the predictions are expected to
reduce, signifying that the model is more confident about its pre-
dictions. The metric used to evaluate the accuracy of the confidence
intervals is detailed in Section 6.1.

6.1. Evaluation metrics

Six different metrics were used to assess the prediction perfor-
mances of the two ageing models. The first one was the root-mean-
square error (RMSE) of the output of the model, which was the capacity
loss ΔQ, defined according to Eq. (8).

∑= −
=

RMSE y y
N

y y(^ , ) 1 (^ )Q i i
T i

N
i iΔ 1

2T

(8)

where ŷi is the predicted output, yi is the measured output and NT is the
number of points to be evaluated. The second metric was defined as the
RMSE of the predicted capacity curve:

∑= −
=

RMSE Q Q
N

Q Q( ^ , ) 1 ( ^ )Q i i
T i

N
i i1

2T

(9)

where Q̂i is the predicted capacity calculated by accumulation of the
output and Qi is the measured capacity. This second metric is useful in
order to evaluate the accumulative error of the model.

The RMSE is useful to assess the prediction performances of a
model, with an emphasis on the high deviations which are strongly
penalised. In order to evaluate the ability of the model to capture the
main trends of the data, the analysis was completed with the im-
plementation of the mean-absolute-error (MAE), defined in Eqs. (10)
and (11) in terms of model output and capacity curve, respectively.

∑= −
=

MAE y y
N

y y(^ , ) 1 ^Q i i
T i

N

i iΔ
1

T

(10)

∑= −
=

MAE Q Q
N

Q Q( ^ , ) 1 ^
Q i i

T i

N

i i
1

T

(11)

In the context of this study, the main objective of the model was to
capture the main trends of Li-ion battery ageing in different operating
conditions, rather than achieving a perfect fit of each data point.

Table 2
Example of the training data structure, relating the input data to the corresponding target.

Input vector x Target y

−Ah throughputΔ [Ah] − −T K[ ]1 1 DOD [%] Middle-SOC [%] Charging C-rate [C] Discharging C-rate [C] ΔQ [%]

CELL002 Data vector 1 4000 0.0034 100 50 C/3 1C -0.163
Data vector 2 8000 -0.743
Data vector 3 12000 -1.101
Data vector 4 4000 -0.579
Data vector 5 8000 -0.937

… … … … … … … … …
CELL055 Data vector 1 4000 0.0032 50 35 C/3 1C -0.135

Data vector 2 8000 -0.142
Data vector 3 12000 -0.451
Data vector 4 4000 -0.007
Data vector 5 8000 -0.316
… … … … … …
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Therefore, a 2% MAEQ threshold was defined as acceptable prediction
error.

The final metric was the calibration score, which aimed at quanti-
fying the accuracy of the uncertainty estimates. It is defined as the
percentage of measured results in the test dataset that are within a
predicted credible interval. Within a ± 2σ interval, corresponding to a
95.4% probability for a Gaussian distribution, the calibration score is
given by Eqs. (12) and (13).

∑= − <−
=

CS
N

y y σ1 [ ^ 2 ]·100σ Q
T i

N

i i2 Δ
1

T

(12)

∑= − <−
=

CS
N

Q Q σ1 [ ^ 2 ]·100σ Q
T i

N

i i2
1

T

(13)

Therefore, CS2σ should be approximately 95.4% if the uncertainty
predictions are accurate. Higher or lower scores indicate under- or over-
confidence, respectively [8].

6.2. Training case studies to illustrate the learning of new operating
conditions

Following the method introduced in the first paper of the series, 16
training cases were defined in order to illustrate how the GP model
could learn from new observations and improve prediction perfor-
mances. Each training case involved a different number of training data
from the ageing dataset presented in Section 3. From the training case 1
to the training case 16, the number of training data increased: the data
corresponding to new cycling conditions was included progressively,
revealing one by one the influence of the different levels of the different
stress-factors.

The distinct temperature values were introduced from case 1 to case
2, followed by the DOD levels from case 3 to case 7, the middle-SOC
levels from case 8 to case 11, the charging C-rate levels from case 12 to
case 14 and finally the discharging C-rate levels from case 15 to case 16.
The introduction of each stress-factors level was guided by the fol-
lowing process: the highest level was introduced first, followed by the
lowest level, and then the range was completed adjoining one by one
the levels equidistant to the already known values, alternating the
highest and lowest values. Illustrating the process in the DOD range: i)
100% DOD, the highest value, was already included in cases 1 and 2,
then ii) the lowest value i.e. 20% DOD was included in case 3, iii) the
equidistant would be 60% DOD, then the closest available values 65%
and 50% DOD were included in case 4 and case 5 respectively, and iv)
the highest (%80 DOD) and lowest (35% DOD) remaining levels were
respectively added in cases 6 and 7. Notice that the 10% DOD level was
included later, because the 50% middle-SOC level was not available at
such DOD.

Table 3 indicates the characteristics of each training case. The
different cells and the related cycling conditions involved during the
training process are specified, as well as the corresponding ratio of the
amount of training data with respect to the whole available data.

6.3. Prediction results

6.3.1. Accuracy improvement
The black curves in Fig. 4 indicate the prediction accuracy of the GP

model proposed in Section 5, trained with the different training cases
defined in Section 6.2, in term of MAEΔQ and MAEQ. The corresponding
RMSE values are indicated in Table C1, Appendix C. For each training
case, the error calculation was performed separately for:

i) The training cells: the mean value of the prediction errors obtained
for all the cells involved in the training case was calculated
(Fig. 4(a)). Such errors are informative about the ability of the
model to fit the training data.

ii) The validation cells: the mean value of the prediction errors ob-
tained for all the cells not involved in the training case was calcu-
lated (Fig. 4(b)). Such error is relevant to evaluate the general-
isation ability of the model.

iii) Some targeted validation cells: the mean value of the prediction
errors obtained for the validation cells which operated at un-
observed levels of the partially explored stress-factors (Fig. 4(c)).
For instance, the influence of the DOD is learned from the training
case 3 to 7; in the training case 4, the training data included the
data corresponding to the 20%, 65% and 100% DOD operation.
Then the prediction error corresponding to the training case 4
plotted in Fig. 4(c) was calculated only for the validation cells
corresponding to the 50%, 80% and 35% DOD cycling conditions,
neglecting the errors corresponding to the cells cycled at different
values of the further stress-factors. Such error is relevant to evaluate
the generalisation ability of the model, to the extent of the partially
explored input spaces.

iv) All the cells: the mean value of the prediction errors obtained for all
the cells (Fig. 4(d)). Such error is informative about the global ac-
curacy of the model.

As expected, the predictions errors of the training cells in Fig. 4(a)
fulfil the 2% MAEQ threshold for all the training cases. Regarding the
validation cells, the threshold of the 2% MAEQ is reached for the
training case 4 (see Fig. 4(b)), and the performances of the model seem
not to improve significantly since such training case.

Fig. 4(c) describes the evolution of the generalisation ability of the
model throughout the whole range of each stress-factor. Focussing on
the part related to the learning of the influence of the DOD, the first
points correspond to the mean value of the MAE errors obtained with
the GP model trained with training case 2 and performing predictions
for all the cells tested at the cycling conditions corresponding to the
learning of the DOD in Table 3. At this training stage, the model only
observed the influence of cycling at 100% DOD, and then all the pre-
dictions at lower DOD values were overestimated, resulting in a high
error of 4.89% MAEQ. In the training case 3, the model started to learn
the effect of the DOD by incorporating a 20% DOD condition in the
training data. The mean error of the targeted validation cells improved
drastically, as the model could infer from two different DOD values and
gain a numerical intuition about the effect of the DOD on capacity loss.
In the training case 4, the model possessed capacity loss values corre-
sponding to 20%, 65% and 100% DODs in the training dataset. The
mean error of the predictions corresponding to the cells at the re-
maining DOD values drop below the 2% MAEQ threshold, indicating a
good generalisation of the model throughout the whole available range
of DOD operation. Finally, the inclusion of new DOD values to the
training dataset in the training cases 5 and 6 did not seem to sig-
nificantly improve the generalisation ability of the model throughout
the DOD operation range. Notice that for the training case 7, all the
DOD values available from the dataset were involved in training, and
therefore, there was no validation cells yet to evaluate the evolution of
the generalisation ability of the model, and then the error cannot be
calculated.

Regarding the evolution of the errors from training cases 7 to 10,
which is related to the learning of the influence of the middle-SOC, the
results were unaltered by the inclusion of new middle-SOC values in the
training dataset (Fig. 4(c)). This is explainable by the relatively reduced
influence on the capacity loss assigned by the model to the middle-SOC
stress-factor (more details in Section 6.3.3). Furthermore, concerning
the learning of the charging C-rate, an increase of the error is ob-
servable from training case 11 to 12, before the final reduction in case
13. This is due to the initial inclusion of the 2C charging condition in
training case 12, which presents a faster capacity loss compared to the
remaining levels of charging C-rate (see Fig. 2(h)). At this stage, the
model tends to overestimate the ageing at intermediate charging C-rate
values. This is corrected in the training case 13 by the incorporation of

M. Lucu, et al. Journal of Energy Storage 30 (2020) 101410

8



the 1C charging data.
Fig. 5(a–e) illustrate the capacity loss predictions of the GP model

resulting from the training case 4, for different cycling conditions in-
volved in the training data. The average MAEΔQ and MAEQ errors of the
model corresponding to the training case 4 were 0.68% and 1.12%,
respectively, for the training cells. The average −CS σ2 ΔQ and −CS σ2 Q

were respectively 90.65% and 77.75%. Furthermore, Fig. 5(f–j) depict

the capacity loss predictions of the GP model resulting from the training
case 4, for different validation cycling conditions, which were not in-
volved in the training data. The average MAEΔQ and MAEQ errors of the
model corresponding to the training case 4 were 0.55% and 1.02%,
respectively, for the validation cells. The average −CS σ2 ΔQ and −CS σ2 Q
were respectively 94.02% and 82.01%. Fig. 5(k–o) aims to underpin
the improvement of the generalisation performances of the GP, while

Table 3
Summary of the different case studies, specifying the different cells involved and the related cycling conditions, as well as the ratio of the amount of training data
with respect to the whole available data.
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increasing the number of training values in the input space of the DOD.
To this end, the capacity loss predictions were represented for the cells
#004 to #011 (which operated at 25°C, 80% DOD, 50% middle-SOC
and C/3 – 1C charging and discharging C-rates), using GP models ob-
tained from different training cases.

As previously explained, the models obtained from the training

cases 1 and 2 did not have any information about the effect of the DOD
on the capacity loss, as the training data involved the single input of
100% DOD. At this stage, the prediction at lower DOD levels were over-
estimated (see Fig. 5(k) and (l)), The mean error in such condition was
3.91% and 3.88% MAEQ, respectively. In the training cases 3 and 4, the
integration of the 20% and 65% DOD operating conditions in the

Fig. 4. Prediction results corresponding to each training case, in term of MAE and CS2σ, distinguishing the errors of (a) all the training cells, (b) all the validation
cells, (c) targeted validation cells and (d) all the cells.

Fig. 5. (a–e) Capacity predictions with the GP model trained at training case 4, for the training cells cycled at the Temperature and DOD levels indicated in each
graph. (f–j) Capacity predictions with the GP model trained at training case 4, for the validation cells cycled at the Temperature and DOD levels indicated in each
graph. (k-o) Capacity predictions for the cells cycled at 25°C and 80% DOD, with the GP models trained at (k) training case 1, (l) training case 2, (m) training case 3,
(n) training case 4 and (o) training case 7. Unless otherwise specified, the cells involved in (a-o) were cycled at 50% Middle-SOC, C/3 charging C-rate and 1C
discharging C-rate.
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training dataset allowed improving the predictions at 80% DOD,
reaching 2.34% and 0.42% MAEQ values, respectively (see Fig. 5(m)
and (n)). For comparison, the results obtained with a fully trained GP
(training case 7) were also plotted in Fig. 5(o): there was not significant
improvement in term of error reduction. However, the confidence in-
tervals were slightly reduced, indicating a higher confidence of the
model to perform predictions at 80% DOD, since such operating con-
dition was represented in the training data (more details in
Section 6.3.2). At this point, it is noteworthy that the model corre-
sponding to the training case 7 is only used in this study for a sake of
comparison with the previous cases. In fact, such a model would be
unreliable for deployment, as all the available DOD levels were ob-
served in training and then the generalisation ability of the model could
not be validated in the space of DOD.

6.3.2. Increase of confidence
According to the variance equation Eq. (6), the confidence intervals

of a prediction reduce if the training dataset involves data samples si-
milar to the predicted input values. Informally, this means that the
model feels more confident to do predictions in case it already observed
similar operating conditions in training data. Therefore, the analysis of
the width of the confidence intervals – or equivalently the standard
deviation value - along a large operating range of each stress-factor is
informative about how confident the model feels to perform predictions
throughout a broad operating window. In this sense, the evolution of
the standard deviation throughout the input space testifies about the
learning process of the model.

In Fig. 6, the evolution of the standard deviation of the GP model
predictions is depicted throughout the whole operation window of the
Li-ion cell under study, for the different training cases. For the model
obtained from the training case 1, the standard deviation indicates
lowest values around 25°C and 45°C, Fig. 6(a), which are the only
temperatures experienced at this stage. The observation of the effect of
a 35°C operation in the training case 2 flattened the curve around the
such temperature: at this stage, the obtained model felt relatively
confident to perform predictions within the 20°C–50°C temperature
range. Notice that the model presented high standard deviation values
at low and negative temperatures, due to the lack of information in such
cycling regions. Fig. 6(b) corresponds to the learning of the influence of
the DOD. As expected, the lowest standard deviation stood near 20%
and 100% for training case 3, and the observation of intermediate DOD
levels from the training cases 4 to 7 lead to reduced values in the whole
range, unless below 20% DOD operation which still was an unknown
cycling condition. Identical interpretation could be done from Fig. 6
(c–e) regarding the evolution of the standard deviation in the operation
ranges of the middle-SOC, charging and discharging C-rate, respec-
tively.

The reduction of the standard deviation in Fig. 6 testifies about the
increment of the model's confidence to perform prediction throughout a
broad operating window, as input spaces are progressively explored.
Moreover, the accuracy of the confidence level of the model was
evaluated using the calibration score metric, introduced in Section 6.1.
As previously explained, the CS2σ values should be approximately
95.4% if the uncertainty predictions are accurate. Higher or lower
scores indicate under- or over-confidence of the model, respectively [8].

In Fig. 4, the evolution of the mean value of the calibration scores
are plotted for each training case of the GP model, in term of capacity
loss and accumulated capacity. Since the training case 4, the overall

−CS σ2 Q values converge into approximately 75% (Fig. 4(d)). This tra-
duces a slightly over-confident behaviour of the model in term of the
accumulated capacity. However, regarding the calibration scores values
corresponding to the output the model, the overall −CS σ2 ΔQ values
converge into approximately 90%.

6.3.3. Sensitivity of the capacity loss to the stress-factors
Isotropic covariance functions implement automatic relevance

determination, since the inverse of the length-scale determines how
relevant an input is: if the length-scale has a very large value, the
covariance will become almost independent of that input, effectively
removing it from the inference [8]. Therefore, the sensitivity of the
capacity loss to the different stress-factors could be analysed by ob-
serving the inverse of their respective hyperparameters. Fig. 7 displays,
for each training case, the inverse of the hyperparameters

Fig. 6. Evolution of the standard deviations of the GP model predictions
throughout the whole operation window of the Li-ion cell under study, from
training case 1 to 16. (a) Evolution throughout the temperature space, at con-
stant 80% DOD, 50% middle-SOC and C/3 – 1C charging and discharging C-rate
(b) Evolution throughout the DOD space, at constant 35°C, 50% middle-SOC
and C/3 – 1C charging and discharging C-rate (c) Evolution throughout the
middle-SOC space, at constant 35°C, 20% DOD and C/3 – 1C charging and
discharging C-rate (d) Evolution throughout the space of the charging C-rate, at
constant 35°C, 80% DOD, 50% middle-SOC and 1C discharging C-rate and (e)
Evolution throughout the space of the discharging C-rate, at constant 35°C, 80%
DOD, 50% middle-SOC and C/3 charging C-rate.

Fig. 7. Evolution of the relative relevance of the different stress-factors, from
the training case 1 to 16.
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corresponding to each input dimension, relatively normalised to each
other.

Fig. 7 illustrates the relative relevance of the different stress-factors,
for the GP model corresponding to training case 1 to 16. In the training
cases 1 and 2, only the temperature involved different operating values
in the training dataset, as a single value was available for the remaining
stress-factors. In absence of data to guide the optimisation of the cor-
responding hyperparameters, a high initial hyperparameter value was

imposed to those stress-factors, in order to hinder their optimisation
and then remove their effect from inference. In this context, the unique
relevant stress-factor for the GP model was the temperature.

From the training case 3 to 7, different DOD levels were progres-
sively included in the training dataset, and the corresponding hy-
perparameter was ‘released’ for optimisation. In Fig. 7, it could be
observed that the relative relevance of the DOD input with respect to
the capacity loss increased; however, the temperature variations was

Fig. 8. (a) Normalised capacity (with maximum value Qmax) data and the corresponding ageing predictions for the initial model (training case 4, black line and grey
area) and the updated model (blue line and area), for the cell #124. (b) DOD and middle-SOC profiles and (c) temperature and charging and discharging C-rate
profiles applied to the cell #124. (d) Normalised capacity (with maximum value Qmax) data and the corresponding ageing predictions for the initial model (training
case 4, black line and grey area) and the updated model (blue line and area), for the cell #125. (e) DOD and middle-SOC profiles and (f) temperature and charging
and discharging C-rate profiles applied to the cell #125.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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still considered slightly more impactful on the capacity loss than DOD
variations. From the training case 8 to 11, the evolution of the im-
portance assigned to the middle-SOC is observable, which was still
limited compared to the temperature and DOD. In training case 12, a
reduced impact of the charging rate was inferred, considering the dif-
ference in capacity losses between C/3 and 2C training data. However,
the observation of the 1C and C/2 charging rates in training cases 13
and 14, which both lead to similar capacity loss as C/3 charging rate,
suggested that all such difference stood between 1C and 2C: from this
new perspective, small changes of charging C-rate induces relatively
high changes in capacity loss, traducing a high covariance between
these two variables. Then the GP assigned high relevance to the char-
ging C-rate input in the training case 14. Finally, a reduced dependence
of the capacity loss on the discharging C-rate was captured from the
training cases 15 and 16, which is in accordance with the observations
done in Section 3.

In this way, the fully trained GP classified the relevance of the
different stress-factors with respect to the capacity loss prediction in
this order: 1/ temperature, 2/ DOD, 3/ charging C-rate, 4/ middle-SOC
and 5/ discharging C-rate. At this point, it is important to highlight that
although such comparison could clarify how the GP model understand
the data, it does not imply causality.

7. Learning from dynamic operating conditions

As the operating conditions of Li-ion batteries are barely constant in
real applications, the ageing models developed in the basis of ageing
tests realised at constant operating conditions must be validated at
dynamic operating conditions. Furthermore, as this study focuses on the
development of ageing models oriented to learn from ageing data col-
lected from real-world operation, the analysis of the possibility to infer
about the correlations among the different stress-factors and the capa-
city loss directly from dynamic operation profile is necessary. To this
end, the model developed in Section 5 was employed to perform ageing
predictions for cells #124 and #125, the operating profiles of which
were presented in Fig. 8(b, c) and (e, f), respectively. For the training
case 4 (see Section 6), the GP model reached satisfying prediction re-
sults, achieving errors below the defined 2% MAEQ threshold. In this
section, such training case was therefore selected as initial state of the
model, in order to evaluate the prediction performances of the model at
dynamic operating conditions. The obtained predictions are presented
in black line (mean prediction) and grey area (confidence intervals) in
Fig. 8(a) and (d), for the cells #124 and 125 respectively.

The model obtained from training case 4 achieved 1.13% and 0.46%
errors in terms of MAEΔQ, and 3.76% and 1.46% in terms of MAEQ, for
the cells #124 and #125 respectively. At approximately 90000 Ah-
throughput of cycling, the whole range of the temperature profile was
experienced for the cells #124 and #125. For the cell #124, different
combinations of the remaining stress-factors were also observed, some
of them reproduced on the remaining cycling profiles (e.g the combi-
nations between ca. 11000-43000 Ah-throughput, were reproduced
between ca. 126000-167000 Ah-throughput). Such point was then
deemed to be a suitable updating point for the model, to be able to
evaluate the learning ability of the model at dynamic operating con-
ditions. Therefore, the operating conditions as well as the corre-
sponding capacity loss values observed between 0–90000 Ah-
throughput were included in the training dataset in order to obtain an
updated GP model.

In Fig. 8(a) and (d), the blue curves represent the predictions per-
formed with the updated model, for the cells #124 and #125 respec-
tively. For the cell #125, only the temperature profile was varying, the
remaining stress-factors beeing constant. The initial model predicted
larger confidence intervals at cold temperatures (between 15°C–25°C),
as the coldest temperature experienced in the training case 4 was 25°C.
The observation of the such values increased the confidence of the
model to perform predictions in this range. This is traduced in Fig. 8(d)
by reduced confidence intervals at cold temperatures, compared with
the initial predictions.

The cell #124 was cycled at dynamic temperatures, DOD, middle-
SOC and charging and discharging C-rates profiles (see Fig. 8(b) and
(c)). In Fig. 8(a), it could be observed that while the confidence in-
tervals were reduced at some point (e.g. around 132000 Ah-
throughput), they became larger at some other points (e.g. around
167000 Ah-throughput). In fact, in the training case 4 only different
temperature and DOD values were observed, and the remaining stress-
factors were then neglected from inference by imposing high initial
hyperparameters (as explained in Section 6.3.3). When updating the
model with the different stress-factors combinations observed in the
dynamic profiles, all the stress-factors were involved in the learning
process, and the confidence of the model for predicting throughout the
whole operating window was modified. This is observable in Fig. 9,
which reflects the evolution of the standard deviation of the model's
predictions, for the model corresponding to the training case 4 and the
model updated with the data obtained from dynamic operating profile
until 90000 Ah-throughput. Regarding the range of the cycling tem-
peratures, Fig. 9(a), it is remarkable that the model gained confidence
around approximately 15°C–25°C, which is reflected by a reduction of
the standard deviation in such region. Furthermore, a strong influence
of the charging C-rate was detected from the dynamic profiles, leading

Fig. 9. Evolution of the standard deviations of the GP model predictions
throughout the whole operation window of the Li-ion cell under study, from the
model trained at case 4 to the model updated at dynamic operating conditions.
(a) Evolution throughout the temperature space, at constant 80% DOD, 50%
middle-SOC and C/3–1C charging and discharging C-rate (b) Evolution
throughout the DOD space, at constant 35°C, 50% middle-SOC and C/3–1C
charging and discharging C-rate (c) Evolution throughout the middle-SOC
space, at constant 35°C, 20% DOD and C/3 – 1C charging and discharging C-
rate (d) Evolution throughout the space of the charging C-rate, at constant 35°C,
80% DOD, 50% middle-SOC and 1C discharging C-rate and (e) Evolution
throughout the space of the discharging C-rate, at constant 35°C, 80% DOD,
50% middle-SOC and C/3 charging C-rate.
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to a large variability on the standard deviation even for small charging
C-rate variations, Fig. 9(d). This explains why the confidence intervals
became larger in some prediction point in Fig. 8(a): around 167000 Ah-
throughput, for instance, the updated model predicted larger con-
fidence intervals, because the ~1C charging C-rate value was identified
as an ‘uncertain’ region for prediction due to i) the lack of training data
in such charging rates region and ii) to the high influence of this stress-
factor on the capacity loss, which was inferred from the previously
observed ageing at dynamic operating profile.

8. Discussion, limitation of the study and further works

The model developed in Section 5 demonstrated suitable perfor-
mances to fit the data, independently from the number of training data
and involved stress-factors. This is observable in Fig. 4(a), where both
MAEΔQ and MAEQ curves of the training cells showed a constant level
under the defined 2% threshold, from the training case 1 to 16.

The minimum amount of experimental ageing tests necessary from
the laboratory for the development of the initial ageing model was
determined: the training case 4 seems to present an adequate trade-off
between the performances and the development cost of the model, in-
sofar as the cell is used at the operating conditions recommended by the
manufacturer (specified in the first paper of the series [4]). In fact, the
MAEQ values dropped below the 2%, and the performances of the
model seem not to improve significantly since such training case (see
Fig. 4(b) and (d)). However, the operation at cold temperatures (be-
tween 0°C–25°C) was not contemplated in the experimental tests. The
operating window of such initial ageing model should then be limited
above circa 25°C, at least until the further learning of the influence of
colder temperatures. Furthermore, the predictions of the model ob-
tained from training case 4 are insensitive to the middle-SOC, charging
and discharging C-rate variations. Although this does not seem to
matter regarding the middle-SOC stress-factor, it could be problematic
for the applications involving high charging and discharging C-rates. In
such cases, supplementary laboratory tests could be necessary at several

C-rate values.
The analysis of the uncertainty boundaries corroborates the findings

observed in the first paper of the series: the reduction of the standard
deviation in Figs. 6 and 9 testified about the increment of the model's
confidence to perform prediction throughout a broad operating
window, as input spaces are progressively explored. Again, the devel-
oped GP model turned out to be slightly over-confident, according to
the calibration scores curves represented in Fig. 4. As previously ex-
plained, the CS2σ values should be approximately 95.4% if the un-
certainty predictions are accurate: the obtained −CS σ2 Q and −CS σ2 ΔQ

values converged approximately into 75% and 90% respectively
(Fig. 4(d)). It could be observed that the confidence intervals of the
model output are relatively close to the target value of 95.4%. The
difference between the −CS σ2 Q and −CS σ2 ΔQ suggests that the over-
confidence of the model is induced by the error accumulation of the
iterative prediction process. Therefore, further investigations would be
required in order to study the propagation of model's uncertainty
throughout the long-term ageing prediction [34].

In Section 6.3.3, the evolution of the hyperparameters’ reciprocal
was analysed, in order to illustrate how the model would actually be
learning about the sensitivity of the capacity loss to each individual
stress-factor. Nevertheless, it is noteworthy that, manipulating the
Eq. (7), which corresponds to the developed covariance function, some
terms involving the products among the different stress-factors’ hy-
perparameters appear. Such terms could be interpreted as the covar-
iance components corresponding to the interactions between the dif-
ferent stress-factors. The sensitivity analysis of the capacity loss to the
stress-factors could be extended by involving such covariance compo-
nents, in order to have a feedback about which combinations of stress-
factors levels are most critical according to the GP model. Such analysis
would be difficult to carry out with laboratory data, mainly due to the
large amount of ageing data it would require. However, the in-
corporation of the real-world data collected from the deployed battery-
packs could make such analysis possible. This could provide insightful
inputs for the development of effective energy management strategies.

Fig. 10. Two different approaches for the deployment of ageing models in real applications. The first approach consists on the implementation of the ageing model in
the local hardware device of each battery system. The second approach contemplates the communication and storage of the battery operation data to a data server in
the cloud, in which the ageing model is implemented.
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In Section 7, the developed model was validated at dynamic oper-
ating conditions, and the ability of the model to learn directly from
dynamic operating conditions was illustrated with 2 cells. In Fig. 8(a),
the initial model overestimated the degradation trend, mainly due to a
large cycling step at 100% DOD around 80000 Ah-throughput. In fact,
the cells tested at 100% DOD in static cycling conditions observed in-
creased capacity losses, compared to the cell tested at the same DOD
but within a dynamic ageing test. A similar behaviour was already re-
ported in [35], in which it was suggested that the dynamic character of
the DOD stress-factor's profile may induce reduced ageing rates

compared to static DOD profiles. This observation increases the interest
of ageing models able to learn from the dynamic profiles observed after
deployment, correcting this way the initial model trained with labora-
tory static ageing experiments. Anyway, this observation should be
verified in further work, and the study should be extended involving
more cells cycled at dynamic conditions.

Furthermore, the operating conditions collected from the battery-
packs deployed in the real application are expressed in term of tem-
perature, current and voltage time series. Therefore, algorithms should
be developed to convert the collected time series data into stress-factors

Fig. B.1. Normalised capacity (with initial value Q0), obtained from the experimental static ageing tests at (a) 25°C, 50% middle-SOC, C/3 – 1C, and several DOD
values, (b) 35°C, 50% middle-SOC, C/3 – 1C, and several DOD values, (c) 45°C, 50% middle-SOC, C/3 – 1C, and several DOD values, (d) 35°C, 10% DOD, C/3 – 1C,
and several middle-SOC values, (e) 35°C, 20% DOD, C/3 – 1C, and several middle-SOC values, (f) 35°C, 50% DOD, C/3 – 1C, and several middle-SOC values, (g) 25°C,
80% DOD, 50% middle-SOC, 1C discharging rate, and several charging rate values, (h) 35°C, 80% DOD, 50% middle-SOC, 1C discharging rate, and several charging
rate values, (i) 35°C, 80% DOD, 50% middle-SOC, C/3 charging rate, and several discharging rate values, and (j) 35°C, 80% DOD, 50% middle-SOC and several
symmetric charging and discharging rate values.
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profiles (e.g. SOC estimation algorithms [36]), in order to input them to
the models developed in this paper. Additionally, as the proposed
models are trained under the supervised learning paradigm, the output
of the model also needs to be estimated from real-world application, in
order to obtain a complete training data involving both inputs and the
corresponding output. The target training data could be obtained by i)
periodical characterisation tests, if this is allowed by the application, or
by ii) periodical SOH estimations, performed by dedicated algorithms,
which is also another active research field for Li-ion batteries [37,38].

Finally, the deployment of the cycle ageing model developed in this
study deserves a deeper discussion from the perspective of computa-
tional complexity. In fact, the logging of the current, voltage and
temperature time series, as well as the extraction of the corresponding
inputs variables requires memory and computation considerations.
Furthermore, the inherent time and memory complexity of the GP is

n( )3� and n( )2� , and the required computations rapidly become pro-
hibitive within the context of increasing training datasets. Within this
context, two different approaches could be contemplated for the de-
ployment of ageing models in real applications, considering the im-
plementation of the models i) within the local hardware of each battery
system, or ii) in an external data server (cloud server), connected to a
fleet of battery systems (Fig. 10).

The first approach presents several issues related to the computa-
tional complexity of the ageing model. In fact, the above-mentioned

n( )3� and n( )2� time and memory complexity of the GP questions its
ability to be implemented within a device with limited computation
resources, in the context of increasing training datasets. This implies
that i) approximation methods of the GP algorithm [32] may be re-
quired once the training dataset becomes critically large, and ii) the
model must be implemented in a hardware system presenting minimal

Fig. B.2. (a) Normalised capacity (with initial value Q0), and the corresponding (c) DOD and middle-SOC, and (e) temperature and charging and discharging C-rate
profiles, for the cell #124. (b) Normalised capacity (with initial value Q0), and the corresponding (d) DOD and middle-SOC, and (f) temperature and charging and
discharging C-rate profiles, for the cell #125.

Table A1
Cycle ageing tests matrix, for the tests at static ageing conditions.

Temperature [°C] 25 35 45

C-Rate [C] (charge - discharge) C/3-1C 1C-1C C/3-C/3 C/3-1C C/3-2C C/2-1C 1C-1C 2C-1C 2C-2C C/3-1C
DoD [%] MidSOC [%]

100 50 3 3 3
80 50 8 3 3 8 3 3 3 3 3 8
65 50 3 3 3
50 65 3

50 3 8 3
35 3

35 50 3 3 3
20 80 3

65 3
50 3 3 3
35 3
20 3

10 80 3
65 3
20 3
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requirements in terms of computation power. In case the model would
be implemented in a BMS board, an oversizing of the system could be
necessary, as well as an adequate coordination with the other tasks
performed by the BMS (e.g. measurements, safety-related tasks, SOC
estimations, communications, etc.). However, the first approach pre-
sents the advantage of avoiding the cost corresponding to the im-
plementation of the data server and communication systems with the
local devices. Furthermore, as most of the battery systems commercially
available are oriented to a local operation and lack communication
capabilities, it is likely that such an approach may be the more widely
adopted in the short-term.

The second approach provides many advantages with respect to the
first one. First, it allows a single ageing model to be fed in parallel with
the data obtained from several battery systems, empowering it to learn
simultaneously about the effect of a wide range of operating conditions.
In this way, the learning process of the GP could be significantly ac-
celerated, and the resulting ageing model could provide reliable pre-
dictions on a broader range of the operating conditions, compared to
the different models evolving independently in the context of the first
approach. Furthermore, the observation of the data collected from
several battery systems allows to assess the quality and variability of
the obtained data, from a statistical point of view. This also permits a
correct modelling of the noise induced by the measurement sensors of
the deployed system. From a long-term perspective, this second ap-
proach produces a database traducing the behaviour of the deployed
systems in real applications. This information could be exploited for
further objectives, e.g. to acquire a better knowledge about the de-
ployed systems, carry out further modelling works, extract new insights
for the development of new business models, etc. The main drawback of
such an approach is the implementation cost of the data server and the
communication systems. Moreover, the issue of the computational
complexity of the GP model would be linked to the computation power
of the server, which would determine the necessity to use approxima-
tion methods oriented to reduce the time and memory complexity of the
GP models.

9. Conclusions

In this paper, a cycling capacity loss model was developed based on

the Gaussian Process framework. The model presented 0.58% MAEΔQ
and 1.04% MAEQ average prediction errors for 122 cells operating be-
tween 25°C-45°C, 20%-100% DOD, 20%-80% middle-SOC, C/3-2C
charging C-rates and C/3-2C discharging C-rates, using only 26 cells
tested at 9 cycling conditions for training.

The research works carried out in this paper with cycle ageing data
corroborates the findings observed with calendar ageing data in the first
paper of the series: i) due to their nonparametric character, GP-based
models are capable to learn from progressively observed operating
conditions; this makes the GP framework a suitable candidate to de-
velop ageing models able to evolve and improve their performances
even after deployment in real application, ii) isotropic kernel compo-
nents are suitable to host the features corresponding to the different
stress-factors, in so far as the battery operates within the limited range
of the recommended operating conditions.

The sensitivity analysis shows that, for this dataset, the developed
model tends to classify the influence of the stress-factors’ variation on
capacity loss in this order: 1/ temperature, 2/ DOD, 3/ charging C-rate,
4/ middle-SOC and 5/ discharging C-rate.

Furthermore, the discrepancies between the capacity loss induced
by static DOD profiles and dynamic DOD profiles, observed in this
dataset and reported in the literature, highlight the increased interest of
ageing models capable to evolve after the deployment and learn from
the dynamic profiles observed in real applications.

The first paper of the series provided a detailed description of a
counterpart ageing model, focussed on the storage operation of the
battery. With the cycle ageing model introduced in this second paper,
an overall predictive tool is provided to predict the capacity loss of Li-
ion batteries at both storage and cycling use-cases. Furthermore, the
authors are currently working on the integration of both models for
applications which are sequentially subject to calendar and cycle
ageing. The results are planned to be described in a further publication,
using experimental ageing data corresponding to EV driving load pro-
files, as well as power smoothing renewable energy integration profiles
applied to second life batteries.
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DoD [%] MidSOC [%]

100 50 0.26 0.41 12.826

80 50 0.11 0.03 0.01 0.27 9.292 0.13 7.943 69.894 40.885 1.93
65 50 0.04 0.21 3.26
50 65 0.41

50 0.12 0.29 0.40
35 74.061

35 50 0.01 0.16 0.06
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