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Abstract: Rare diseases, especially monogenic diseases, which usually affect a single target protein,
have attracted growing interest in drug research by encouraging pharmaceutical companies to design
and develop therapeutic products to be tested in the clinical arena. Acute intermittent porphyria
(AIP) is one of these rare diseases. AIP is characterized by haploinsufficiency in the third enzyme of
the heme biosynthesis pathway. Identification of the liver as the target organ and a detailed molecular
characterization have enabled the development and approval of several therapies to manage this
disease, such as glucose infusions, heme replenishment, and, more recently, an siRNA strategy
that aims to down-regulate the key limiting enzyme of heme synthesis. Given the involvement
of hepatic hemoproteins in essential metabolic functions, important questions regarding energy
supply, antioxidant and detoxifying responses, and glucose homeostasis remain to be elucidated.
This review reports recent insights into the pathogenesis of acute attacks and provides an update
on emerging treatments aimed at increasing the activity of the deficient enzyme in the liver and
restoring the physiological regulation of the pathway. While further studies are needed to optimize
gene therapy vectors or large-scale production of liver-targeted PBGD proteins, effective protection
of PBGD mRNA against the acute attacks has already been successfully confirmed in mice and large
animals, and mRNA transfer technology is being tested in several clinical trials for metabolic diseases.

Keywords: rare metabolic diseases; hemoproteins; liver function; mitochondrial cytochromes;
antioxidant and detoxifying responses; glucose homeostasis; systemic messenger RNA therapy;
AAV-mediated liver-directed gene therapy; enzyme replacement therapy

1. Introduction

Heme is a porphyric ring composed of ferrous iron (Fe2+) and protoporphyrin IX.
Although it is produced in all nucleated cells, the bone marrow and liver are the main
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organs for heme synthesis, producing 80% and 15% of total heme, respectively [1]. In the
liver, heme is an essential component of hemoproteins which participates in the removal of
waste products and poisonous substances from the blood, regulating glucose homeostasis,
and facilitating the antioxidant response, cell proliferation, and energy supply of cells
through the cytochromes of the mitochondrial respiratory chain.

Maintaining an appropriate intracellular heme level is crucial, since excess heme is
toxic, and its deficiency is detrimental to cell metabolism. The first enzyme of the pathway,
δ-aminolevulinic acid synthase (ALAS, EC 2.3.1.37), tightly regulates heme biosynthesis
(Figure 1). However, loss-of-function mutations in any of the following seven enzymes
cause specific metabolic disturbances, which contribute to a heterogeneous group of orphan
diseases called porphyrias (Table 1) [2–4]. The management of porphyrias is challenging
as their pathogenesis is not sufficiently understood and their treatment is still an unmet
medical need because current drugs do not fully restore the disease in either biochemical
or clinical terms. The knowledge generated in reference centers is of great value to better
describe the natural history of rare diseases and to leverage the efforts of pharmaceutical
companies in the design and development of innovative orphan drugs to be tested in the
clinical arena.
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Figure 1. Heme biosynthesis pathway in mammalian cells. The pathway involves eight enzymes,
four located in the cytoplasm and the other four in the mitochondria. The first and limiting step is
the decarboxylative condensation of the non-essential amino acid glycine with succinyl-CoA coming
from the tricarboxylic acid (TCA) cycle, which is catalysed to form δ-aminolevulinic acid (ALA)
by ALA-synthase (ALAS). Eight ALA molecules are required to synthesize four porphobilinogen
(PBG) molecules that, subsequently, are used for the synthesis of a single hydroxymethylbilane
molecule that is promptly converted to cyclic tetrapyrroles known as porphyrinogens, and finally to
a heme prosthetic group [5]. ALAD = δ-aminolevulinic acid dehydratase; PBGD = porphobilinogen
deaminase; UROS = Uroporphyrinogen III synthase; UROD = Uroporphyrinogen III decarboxylase;
CPO = coproporphyrinogen oxidase; PPO = protoporphyrinogen oxidase; FC = ferrochelatase.
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Table 1. Type of porphyria associated with the abnormalities in each specific enzyme in the heme
synthesis pathway. Porphyrias are characterized by loss-of-function mutations in any of the last
seven enzymes, except X-linked Protoporphyria, which is associated with gain-of-function mutations
in erythroid ALAS2. In contrast, ALAS2 deficient activity is associated with X-linked sideroblastic
anemia (OMIM 300751) [6,7]. Pathogenic mutations in the housekeeping ALAS1 gene have not
been reported. Hepatoerythropoietic porphyria refers to a homozygous form of PCT, which has a
childhood onset. GoF = gain-of-function mutation. LoF = loss-of-function mutation.

Enzyme Mutation Disease OMIM

δ-Aminolevulinic acid synthase 2 (ALAS2, EC 2.3.1.37) GoF X-linked Protoporphyria (XLP) 300752

δ-Aminolevulinic acid dehydratase (ALAD, EC 4.2.1.24) LoF ALAD Deficiency Porphyria (ADP) 612740

Porphobilinogen deaminase (PBGD, EC 2.5.1.61) LoF Acute Intermittent Porphyria (AIP) 176000

Uroporphyrinogen III synthase (UROS, EC 4.2.1.75) LoF Congenital Erythropoietic Porphyria (CEP) 263700

Uroporphyrinogen III decarboxylase (UROD, EC 4.1.1.37) LoF Porphyria Cutanea Tarda (PCT)
Hepatoerythropoietic porphyria (HEP) 176100

Coproporphyrinogen oxidase(CPO, EC 1.3.3.3) LoF Hereditary Coproporphyria (HCP) 121300

Protoporphyrinogen oxidase(PPO, EC 1.3.3.4) LoF Variegate Porphyria (VP) 176200

Ferrochelatase(FC, EC 4.99.1.1) LoF Erythropoietic Protoporphyria (EPP) 177000

2. Acute Intermittent Porphyria

Acute intermittent porphyria (AIP) is caused by haploinsufficiency of porphobilinogen
deaminase (PBGD) and is characterized by disabling neurovisceral attacks and chronic
disease symptoms. The prevalence of AIP is estimated to be 5–10 per million in the US,
UK, and western Europe. In Sweden (100 per million), and in two valleys in the Murcia
region in Spain (53.8 per million), it appears with a very high prevalence due to founder
mutations [8]. However, the prevalence of genetic defects in the general population is much
higher (1 in 1780 Caucasian individuals in USA [9], or 1 in 1675 in a study of the French
population [10]), implying low penetrance of the disease.

In classical AIP, both the non-erythroid and erythroid-specific enzymes have reduced
activity (50%), whereas in the so-called variant AIP, the enzymatic defect is present only
in non-erythroid cells and is caused by defects in exon 1. Treatment of patients with the
classical or erythroid AIP variant is based on the restoration of the liver heme synthesis
pathway, since this organ is the main source of the toxic porphyrin precursors associated
with the pathogenesis of acute attacks: δ-aminolevulinic acid (ALA) and porphobilinogen
(PBG). This therapeutically relevant notion is supported by experimental and clinical
evidence that is explained below.

Bone marrow transplantation restored erythrocyte PBGD activity in AIP mice, emulating
the AIP variant [11]. However, phenobarbital administration in these mice reproduced key
features of acute attacks, such as a massive increase in urinary porphyrin precursors excretion
and impaired motor coordination. In humans, complete biochemical and symptomatic
resolution of AIP was observed in all patients after orthotopic liver transplantation (OLT) [12].
In contrast, domino liver transplantation of AIP livers was sufficient to cause acute attacks in
nonporphyric recipients with normal heme synthesis in the other organs [13]. Therefore, these
data point to the liver as the major etiologic site of this disorder.

Acute Neurovisceral Attacks

A secondary up-regulation of the first and rate-limiting enzyme in hepatic heme syn-
thesis ALAS1 results in an overproduction of the potentially neurotoxic heme precursors
ALA and PBG, closely associated with neurovisceral attacks. Indeed, the first acute attack
emerges in most patients after exposure to precipitating factors such as drugs or other chem-
icals (Drugs database: http://www.drugs-porphyria.org, accessed on 11 November 2022),
alcohol intake, acute illness, infection, stress, physical exhaustion, calorie deprivation, and

http://www.drugs-porphyria.org
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steroid hormones, mainly oestrogens and progesterone, that regulate the reproductive
cycle in women [2,3]. All these triggering factors have in common the induction of liver
ALAS1 mRNA expression either directly through the peroxisome proliferator-activated
receptor-gamma coactivator (PGC1α, e.g., fasting) [14] by positive feedback caused by
excessive heme consumption to form hemoproteins (for example, CYP450), or by increasing
its degradation through the induction of heme oxygenase-1 (HO-1), the key enzyme of
heme catabolism [15,16]. HO-1 is up-regulated in the event of the hypoxia, inflammation,
or oxidative stress associated with acute illness, infection, stress, or physical exhaustion,
among other factors [17].

The two main hypotheses proposed for the physiological origin of acute attacks are
the potential neurotoxicity of ALA/PBG accumulation, or heme deficiency leading to
decreased hemoprotein function [18] and energy production in the mitochondria. The
first is the most widely accepted hypothesis, as the onset of acute attacks has always been
associated with the accumulation of porphyrin precursors. Specifically, symptomatology
has been attributed to ALA because (i) patients with other diseases, such as hereditary
type I (OMIM 276700), lead poisoning, or the ultrarare hepatic ALAD deficiency porphyria
(Table 1), are associated with neurological diseases similar to acute attacks but only ac-
cumulated ALA; (ii) in vitro assays confirm the association of ALA with oxidative stress;
(iii) ALA selectively competes for the binding of γ-aminobutyric acid (GABA) to synaptic
GABA receptors in the postsynaptic membrane of neurons [19]. Furthermore, some authors
suggest that polymorphisms in peptide transporter 2 (PEPT2), particularly PEPT2 * 1 * 1,
greatly increase serum ALA affinity, which could be related to the passage of toxic ALA
to the brain through the choroid plexus, and an increased susceptibility to developing
neuropsychiatric symptoms [20].

Despite all of this, the relationship between porphyrin precursor levels and prodrome
symptoms is still unclear. Different authors have also pointed out that in porphyria, eleva-
tion of ALA may be necessary but not sufficient for the development of an acute attack [21],
since ALA administration in a male volunteer [22] and in mice [23] did not produce acute
symptoms. In fact, a large urinary loss of liver succinyl-CoA and glycine (used for the
production of ALA and PBG) during the acute porphyria attack supports the hypothe-
sis of a profound, although reversible, impact of acute attack on mitochondrial energy
metabolism [24]. More recently, preventive treatment with experimental liver-targeted
insulin (the fusion protein of insulin and apolipoprotein A-I, Ins-ApoAI) in AIP mice
improved pain and motor coordination although excretion of ALA and PBG remained
high [25]. This insulin-ApoAI showed an increased serum half-life and high hepatic tropism
compared to unconjugated insulins, which improved the mobilization of adipose tissue
energy stores and increased hepatocyte glucose uptake [26]. In addition to increasing the
energy supply to the liver of porphyria mice, the ApoAI component induced mitochon-
drial biogenesis [27], which secondarily protected against the porphyrinogenic effects of
phenobarbital administration [25]. These data support that low energy production, caused
by cataplerosis of the TCA cycle and the reduced availability of energy metabolites during
acute attacks, could play a role in modulating the severity of porphyria attacks.

3. Current Treatments

Current treatments are based on down-regulation of hepatic ALAS1 expression using
carbohydrate loading, intravenous (iv) hemin therapy, or the subcutaneous (sc) adminis-
tration of a small interfering RNA (siRNA) targeting ALAS1 mRNA. The frequency and
severity of acute attacks determine the classification of patients into different groups, which
can condition their treatment.

1. Latent porphyria

After a first attack, the precipitating agent is identified and, if possible, removed.
Although most patients may not experience an acute attack again, they may maintain high
urinary excretion of ALA and PBG for years and are called Asymptomatic High Excretors
(ASHE). These patients do not receive treatment, although a recent study shows that 46.4%
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report chronic symptoms associated with porphyria, such as abdominal pain, fatigue,
muscle pain, and insomnia [28].

2. Patients suffering sporadic acute attacks (1 to 3 per year)

Symptoms are very heterogeneous and include autonomous (intense pain typically
in the abdomen that can also affect the back, legs, arms, or chest; nausea; vomiting;
diarrhea/constipation; hypertension; and/or tachycardia), central (seizures, anxiety, de-
pression, reduced consciousness, psychosis, insomnia, hallucinations or posterior reversible
encephalopathy syndrome (PRES) on MRI scan, among others) and peripheral (muscle
weakness, paralysis, reduced tendon reflexes) nervous system involvement. Severe neu-
rological complications may cause death due to respiratory and bulbar paralysis [29–31].
Acute attacks can be classified according to their clinical severity:

2.1. Mild pain and no paresis

Carbohydrate overload (300 to 500 g/day, based on oral or iv glucose infusions)
is recommended for the treatment of these patients. Hemin therapy (3–4 mg/kg/day,
iv hemin arginate, Normosang® in Europe and lyophilized hematin, Panhematin® in
the US, both from Recordati, Milan, Italy) is more effective than glucose in reducing the
formation of porphyrin precursors but is more expensive and is not available in all countries.
Hemin therapy acts through retroinhibition of the ALAS1, which reduces production and
accumulation of PBG and ALA (Figure 2). Hemin treatment lasted from one to four
days, and biochemical remission of ALA and PBG is typically not produced until two or
three days after the beginning of treatment. The reduction in abdominal pain is typically
observed on the third day of treatment [32].
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Figure 2. Sites of action of current and innovative therapeutic options for AIP. Current approved
therapies are represented in round outlines. Emerging innovative therapies are represented in square
outlines. Therapies that inhibit ALAS1 are in red. Therapies that increase PBGD activity are in blue.

2.2. Severe attacks

A mild attack can quickly become a severe attack, characterized by severe neuropathic
abdominal and muscle pain, significant hyponatremia, urinary retention or incontinence,
peripheral neuropathy (85% of sporadic AIP), or central nervous system (CNS) involvement.
The treatment recommended for severe porphyria attacks consists of daily administration
of hemin for a period of 4 days (3–4 mg/kg of hemin/day). The efficacy of the treatment is
very difficult to assess due to significant variability among patients and the low number
of patients included in each treatment group. In a review conducted by The American
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Porphyria Foundation in which all porphyria cases published between 1976 and 2004 were
included (71 publications involving approximately 1000 patients), the main conclusion was
that the efficacy of hemin therapy depends on the early initiation of iv administration of
this compound [33]. In a double-blind, placebo-controlled trial conducted with 12 patients
in which hemin treatment was delayed for two days, no statistical benefit was associated
with hemin treatment [34].

2.3. Patients suffering frequent acute attacks (≥3 attacks per year)

This group of AIP patients represents approximately 5% of symptomatic patients, mainly
women (80%). This group of patients usually requires hospitalization and experiences chronic
symptoms that adversely influence daily functioning and undermine their quality of life [35,36].
Chronic opiate therapy is often needed to control pain [37]. Furthermore, these patients are
chronically exposed to the potential toxicity of heme precursors when passing through the
kidney, especially ALA, which has been identified as being responsible for progressive renal
failure [38,39], or to an increased risk of developing hepatocellular carcinoma [40–43], the
long-term complications associated with acute hepatic porphyrias.

Of the registered patients who experienced frequent acute attacks (>2 attacks/year)
in the USA and the EU, 75% had 3.5 attacks per year and were treated with four doses of
hemin per attack, while the other 25% received one or two doses of preventive hemin per
month [36]. Although there are no reports confirming the efficacy of hemin administration
in preventing acute attacks, off-label administration of prophylactic iv heme infusions
is commonly used [44]. An audit report by the National Acute Porphyria Service in
England concluded that prophylactic hemin arginate appears to be beneficial in patients
with recurrent acute porphyria symptoms, but more studies are required to support its
use [44]. However, repeated administration of hemin therapy can cause unwanted effects
and complications, such as thrombophlebitis at the peripheral vein infusion site (requiring
administration through a central vein), iron overload (each 250 mg dose of hemo contains
22.7 mg of iron), or induction of the HO-1 enzyme, causing the reduction of the regulatory
free heme level in hepatocytes [45]. This situation re-induces the regulatory feedback
mechanism of heme in cells through the activation of ALAS1 expression, reducing the
therapeutic efficacy of hemin administration over time [45]. Finally, hemin therapy is
not recommended in patients since administration of large amounts of hemin has been
associated with transitory renal failure [46].

Recently, sc administration of an ALAS1 siRNA (givosiran, givlaari®, Alnylam Thera-
peutics, Cambridge, MA, USA) has been approved for the treatment of severely affected
patients who experience recurrent porphyria acute attacks (Figure 2). Givosiran therapy
is based on the fact that the accumulation of ALA and PBG precursors is the sole cause
of the pathophysiology of the disease. The Phase III clinical trial (NCT03338816) and a
24 month interim analysis of efficacy and safety have shown good results in preventing
ALA/PBG accumulation and reduced the frequency of acute attacks by 87%. Although
givosiran had an acceptable safety profile and was generally well tolerated in patients with
acute hepatic porphyrias in clinical studies [47], adverse events (AE) (90% vs. 80%), severe
AEs (17% vs. 11%), and serious AEs (21% vs. 9%) were more common with givosiran than
with placebo in the ENVISION trial [47]. Among AEs, injection site reactions (25% vs. 0%),
nausea (27% vs. 11%), chronic kidney disease (10% vs. 0%), decreased estimated Glomeru-
lar Filtration Rate (eGFR) (6% vs. 0%), rash (6% vs. 0%), increased levels of alanine
transaminase (8% vs. 2%), and fatigue (10% vs. 4%) were more frequent among the patients
receiving givosiran than in the placebo group. Interpreting the safety data is complicated
by the fact that chronic kidney disease and liver damage are common coexisting illnesses
and long-term complications of acute hepatic porphyria [38,39,41,48].

Hepatic targeting of givosiran is mediated by interaction of N-acetylgalactosamine
linked to siRNA with the asialoglycoprotein receptor (ASGPR). However, ASGPR is also
expressed in renal tubular cells, and its ligation could be related to changes in serum
creatinine and kidney function complications, assessed by decreased eGFR [47]. A recent
report of patients followed for two years concluded that givosiran is associated with a
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moderate transient increase in serum creatinine without signs of kidney injury. However,
the long-term deleterious impact of ALAS1 inhibition on renal function cannot be ruled
out [49].

Interestingly, abdominal pain was more common as an adverse effect in patients re-
ceiving givosiran than in those given placebo. Since these patients exhibited a substantial
reduction in ALA levels, this observation could indicate that, in addition to excess ALA,
other factors may also play a role in this clinical characteristic. Given that givosiran intro-
duces a second block in the pathway, it cannot be excluded that a further reduction in heme
availability could hamper the activation of multiple biological processes that take place in
the liver in situations of stress (antioxidant response, inflammation, hypoxia), important
detoxification processes, or adequate energy supply for natural hepatocyte proliferation or
liver regeneration. Therefore, reduced availability of heme in the liver could be associated
with the reported AEs associated with ALAS-1 iRNA, such as bile acid disorders [50], re-
duced drug metabolization rates [51,52], or dysregulation of one-carbon metabolism [53,54].
Concomitant hypermethioninemia and hyperhomocysteinemia resembling classic homo-
cystinuria have been associated with givosiran treatment. These are likely to be attributable
to an impairment in the trans-sulfuration pathway catalyzed by cystathionine β-synthase.
This enzyme uses vitamin B6 as a cofactor [55] and S-adenosylmethionine as an allosteric
activator of enzyme activity [54].

Heme is not only required for the synthesis of hemoproteins (such as the cytochromes
of the mitochondrial respiratory chain and those involved in drug metabolism); it is also
essential as a substrate for inducible HO-1. This enzyme converts heme to biliverdin and
carbon monoxide. The latter is a potent vasodilatory, anti-inflammatory, and immunomod-
ulatory agent. Thus, low HO activity resulting from decreased substrate availability would
increase vulnerability to pro-inflammatory insults in the liver [56]. Given that ASGPR is
also expressed in peripheral monocytes, peritoneal macrophages, endometrium, placenta,
and renal tubular cells, givosiran could affect the anti-inflammatory activity of these cells.
Thus, biodistribution studies of givosiran in humans would be helpful in evaluating its
presence in extrahepatic tissues.

In summary, available evidence indicates that givosiran is an efficient therapeutic option
to prevent acute attacks with recurrent porphyria in severely affected patients. However, there
is still room for improvement in AIP therapy to cover the full spectrum of the disease, from
sporadic to recurrent attacks, regardless of their severity; and to prevent the appearance of the
AEs and severe AEs associated with recurrent administrations of givosiran.

4. Innovative Therapies

Current approved treatments for acute porphyria do not provide an etiological solution
to the disease. The current prevalent R&D trends related to AIP therapy focus on increasing
hepatic PBGD activity (Figures 2 and 3) and restoring the physiological regulation of the
heme synthesis pathway.

1. Oral administration of pharmacological chaperones with the aim of prolonging the
half-life of a mutated protein [57]. However, this approach is in the preclinical stage and
may only be applied in those patients in whom the PBGD mutation produces a partially
active protein with a short half-life.

2. Subcutaneous administration of enzyme replacement treatment could be an option
to reduce porphyrin precursors during an acute attack, as demonstrated in a murine
model (Figure 2). However, a clinical trial with an rh-PBGD administered twice a day was
discontinued due to the instability of the enzyme in the circulation and a lack of efficacy to
protect against acute attacks [58].
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The recombinant adeno-associated virus 2/5 (rAAV2/5) is the vector used for gene therapy studies.
It contains the PBGD complementary DNA sequence (PBGD cDNA) and targets the liver through
specific receptors (AAVR). PBGD messenger RNA (PBGD mRNA) formulated in lipid nanoparticles
is incorporated into hepatocytes through LDL receptors. The recombinant protein PBGD linked to
apolipoprotein AI (ApoAI-PBGD) is transported by HDL particles and internalized in hepatocytes by
the centripetal transport of cholesterol through the class B type 1 (SRB1).

Recently, we developed a recombinant PBGD protein conjugated to Apolipoprotein AI
(rApoAI-PBGD) that targets the liver [59] (Figure 3). The administration of this fusion pro-
tein via iv and sc injection efficiently prevented and abrogated acute attacks in AIP mice [59].
The conjugated PBGD protein had an increased serum half-life (from 45 min to almost 10 h)
and persisted in serum for up to 6 days incorporated into high-density lipoprotein (HDL)
particles. Furthermore, the administration of a high dose of fusion protein (300 nmol/kg)
increased liver PBGD activity, providing rapid protection against the accumulation of
porphyrin precursors during an ongoing acute attack [59].

The main advantage of this enzyme replacement therapy (ERT) approach is that it acts
in the three compartments involved in the acute attack, liver, serum, and brain. Furthermore,
it can be administered by sc injection, thereby being less constraining than iv administration.
As tested, rhApoAI-PBGD administration did not lead to any immunological anaphylactic
reactions or antibody formation in preclinical studies [59], which are typical limitations of
protein-based ERT. However, recombinant proteins have a high production cost and the
design of large-scale production processes is required.

A prokaryotic cell factory was used for proof of concept (PoC) in AIP mice due to its
fast growth, ease of handling, and cost-effectiveness [60]. However, antibiotic resistance to
clone selection and the use of the polyhistidine tag at the N-terminal region to facilitate the
purification process are not recommendable for obtaining Good Manufacturing Practice
(GMP) requirements. The large-scale production of rApoAI-PBGD was also assessed in
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the Chinese Hamster Ovary (CHO)-K1SP cell line as eukaryotic host. The histidine tag
was replaced by a signal peptide sequence that allows the protein to be secreted into the
supernatant. Although this cell line increased the production yield by a factor of 4 × 106

(50–60 mg of rhApoAI-PBGD per L of supernatant), 99% of the production was obtained in
the form of aggregates. In fact, protein aggregates were ineffective in protecting against
acute attack in AIP mice. Further studies are required to optimize the rhApoAI-PBGD
sequence to avoid aggregate formation.

3. Gene therapy (GT) aiming at a long-term supply of PBGD protein to hepatocytes
represents a promising therapeutic option for those patients with AIP who experience
frequent and severe acute attacks, which require repeated administration of hemin or
liver transplantation (Figure 3). Liver-directed GT can prevent the occurrence of acute
crises and neurologic complications and therefore may improve quality of life and reduce
hospitalization and health care costs.

Liver-directed GT using a vector rAAV2/5 encoding human PBGD cDNA under the
control of a liver-specific promoter (rAAV2/5-PBGD) was able to restore liver PBGD activity
to average values and protected AIP mice against the accumulation of porphyrin precursors
after phenobarbital challenge [61]. PoC in AIP mice confirmed that overexposure to PBGD
protein was safe, and partial recovery of liver PBGD levels was sufficient to prevent acute
crises. However, in a clinical trial (NTC020082860), this strategy failed to reduce the levels
of porphyrin precursors due to insufficient liver transduction at the doses tested (up to
1.8 × 1013 genome copies/kg) [62]. Ongoing efforts are focusing on improving the efficacy
of AAV-GT vectors [63,64].

4. mRNA-based therapies formulated in lipid nanoparticles (LNPs) are starting to
be used in clinical trials of inborn metabolism errors [65] and, also preclinically, in acute
porphyrias [66,67]. LNPs are multicomponent spherical vesicles (~100 nm) consisting of
phospholipids, cholesterol, polyethylene glycol (PEG) conjugated lipids, and mainly amino
lipids [68–70]. Intracellular delivery and endosomal escape are the main challenges for the
success of therapeutic mRNA and, together with tolerability, are addressed by the amino
lipid components [71]. Phospholipids also aid in endosomal escape and mRNA release
into the hepatocyte cytosol by providing fusogenicity with the target cell membranes [71].
Cholesterol improves particle stability by modulating membrane integrity and stiffness,
and PEG inhibits interactions with plasma proteins allowing greater circulation time and
escape from phagocytic cells [72]. The natural tropism of these LNPs for the LDL receptor
has facilitated applications focusing on the liver [73].

The iv administration of hPBGD mRNA formulated in LNPs (Figure 3) showed a
rapid increase in PBGD activity in hepatocytes and a fast normalization of urine porphyrin
precursors in ongoing attacks in AIP mice [66]. In fact, hPBGD mRNA maintained the
same degree of protection after repeated administrations. Rapid effect is a very important
aspect in acute presentations of the disease, while sustained efficacy after repeated dosing
is necessary for chronic presentations. Proven safety and translatability after multiple
administrations would allow mRNA formulated in LNPs and rhApoAI-PBGD ERT to treat
chronic presentations, where re-administration and individual dosage decisions could be
taken according to the clinical and biochemical status of the patient. These features are
crucial for a new era of personalized and precision medicine.

5. Effect of Increased Hepatic PBGD on Poorly Described Disease Parameters
Associated with Acute Hepatic Porphyrias

Ventricle enlargement and reduced perfusion of the brain in the central nervous system.
Among CNS-related abnormalities, structural changes and brain perfusion have been
poorly characterized in patients with acute liver porphyria. Recently, neuroradiological
studies have described an enlargement in the brain ventricles in eight patients with severe
AIP and recurrent acute attacks without posterior reversible encephalopathy syndrome [74].
In addition, a decrease in brain perfusion during acute attacks was also reported in two of
the patients in whom perfusion imaging data were acquired [74].
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The effect of therapy to increase liver PBGD levels in response to these brain changes
was studied in the AIP mouse model [74]. AIP mice developed chronic brain ventricle
dilatation even in the presence of slightly increased porphyrin precursors. In fact, en-
largement was exacerbated after repeated phenobarbital challenges that caused increased
ALA and PBG accumulation. However, a direct neurotoxic effect of ALA and PBG is
an unlikely factor because porphyrin precursors accumulate markedly in their liver and
plasma, but less in the CNS as previously reported in AIP mice by Yasuda et al. [75], and
in a variegate porphyria (VP) model in rabbits described by Jericó et al. [67]. In this study,
a rAAV2/5-PBGD vector was used to obtain sustained hepatic PBGD over-expression in
the liver of AIP mice for several months after a single injection [61]. It is noteworthy that
vectors with hepatic tropism, such as PBGD mRNA formulated in LNPs, could obtain the
same effect as long as an adequate dose is found.

AIP mice not exposed to phenobarbital challenge also exhibited reduced cerebral
blood flow with normal systolic blood pressure [74]. Of interest, correction of liver PBGD
deficiency reversed brain perfusion reduction and prevented progressive brain ventricle
enlargement in AIP mice subjected to repeated acute porphyric attacks (Table 2) [74]. The
authors suggested that constitutive small vessel dysfunction associated with the systemic
arterial hypertension that occurs during acute porphyria attacks could cause an imbalance
in cerebrospinal fluid resulting in brain ventricle enlargement. Similarly, a previous report
showed increased local vasoconstrictor responses in the mesenteric arteries in this mouse
model with significant vasodilation after hemin administration [76].

An increase in systolic blood pressure associated with acute attacks was described in AIP
mice [66] and in a VP model in rabbits [67]. The latter is a pharmacological model developed
in a large animal by administering two porphyrinogenic drugs (2-allyl-2-isopropylacetamide
(AIA) and Rifampicin) [67], which reproduces the characteristics of acute attacks in the
context of VP (the second most frequent acute hepatic porphyria after AIP) [77]. Notably,
hemin administration in both AIP mice and VP rabbits protects against increased systolic
blood pressure, although recurrent administration did not effectively protect against the
accumulation of porphyrin precursors. Therefore, these data suggest that hypertension
might be related to heme availability during porphyria attacks rather than the accumulation
of porphyrins and porphyrin precursors that persist after hemin therapy in both of these
animal models.

Regarding liver status, VP rabbits also reproduced some of the signs and symptoms
associated with acute attacks of porphyria, such as inflammation, oxidative stress, and
altered energy supply caused by disturbed OXPHOS activities [67] (Table 2). VP rabbits
showed overexpression of the Ho-1, Hsp70, and Hepcidin genes, biomarkers of inflammation
and oxidative stress. VP rabbit urine also showed increased excretion of urinary thiobarbi-
turic acid reactive substances (TBARS), which is a biomarker of lipid peroxidation, and is
highly correlated with urinary ALA accumulation. mRNA-based therapy showed more
efficient protection against inflammation and oxidative stress than hemin [67].

Finally, porphyria models also showed disturbed energy supply, as AIP mice exhibit
altered glucose metabolism and glucose tolerance tests (GTT) during fasting [25,67,78,79]
and showed a reduced oxygen consumption rate (OCR) in the liver [66]. In VP rabbits,
the liver activity of the mitochondrial respiratory chain complex was also reduced [67].
Administration of hPBGD mRNA was able to counteract all these biochemical disturbances
in both models, while treatment with hemin only partially protected against OCR in AIP
mice (Table 2).



Life 2022, 12, 1858 11 of 15

Table 2. Summary of symptoms and characteristics of human patients with severe AIP and experi-
mental models of acute liver porphyria. The color code represents the degree of protection against a
particular symptom of hepatic augmentation PBGD therapy in experimental models. Green, orange,
and red indicate effective, partial, or no protection offered by the therapy, respectively.

Human Patients with Severe AIP Experimental Model
Therapy

Augmenting Hepatic PBGD (rAAV-Mediated GT)

Central NervousSystem Ventricle enlargement [74] AIP
mouse

Present; Exacerbated
after recurrent attacks

Effective protection but not reverse alterations
previous to therapy

Reduced brain perfusion during the
acute attack [74] Present Effective protection

Augmenting hepatic PBGD
(mRNA therapy) Hemin

Peripheral Nervous System Motor impairment [2,3]

VP
rabbit

Present Effective protection Partial protection
Autonomic Nervous System Chronic hypertension [2,3] Present Effective protection Effective protection

Liver metabolism Altered glucose homeostasis [25] Present Effective protection No protection

Liver function

Lipid peroxidation [2,3] Present Effective protection Partial protection
Inflammation [15] Present Effective protection Partial protection

Cytoplasmic Stress [80] Present Effective protection Exacerbated

Altered hemoprotein function [66] Reduced mitochondrial
respiratory chain Effective protection No protection

6. Conclusions

Based on the PoC obtained in animal models, increasing PBGD levels appears to be a
promising strategy for the etiological treatment of AIP, regardless of whether it is achieved
by the administration of a recombinant rApoAI-PBGD protein, an rAAV-mediated GT, or
mRNA encapsulated in LNPs. Indeed, a single administration of the rApoAI-PBGD protein
or PBGD-mRNA induced a rapid and efficient overexpression of a functional PBGD protein
in the liver of mice and large animals. Therefore, these approaches can be used to treat
ongoing acute attacks. However, further studies are needed to optimize the AAV vector
and large-scale production of the rApoAI-PBGD protein.

The messenger RNA technology is being successfully tested in several clinical trials for
five metabolic diseases (NCT 05095727: Glycogen storage disease Type 1A; NTC 04574830:
Glycogen storage disease Type 3; NCT05130437: Propionic Acidemia; NCT 04899310:
Methylmalonic Acidemia; NTC 04442347: Ornithine transcarbamilase deficiency) so that
experience could quickly be transferred to patients with porphyria. Furthermore, this
product could be applied to all patients regardless of clinical course, both chronic and
sporadic presentations, as well as ASHE until normalization of the urinary excretion of
porphyrin precursors.
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