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Abstract: For social robots, knowledge regarding human emotional states is an essential part of
adapting their behavior or associating emotions to other entities. Robots gather the information
from which emotion detection is processed via different media, such as text, speech, images, or
videos. The multimedia content is then properly processed to recognize emotions/sentiments, for
example, by analyzing faces and postures in images/videos based on machine learning techniques or
by converting speech into text to perform emotion detection with natural language processing (NLP)
techniques. Keeping this information in semantic repositories offers a wide range of possibilities
for implementing smart applications. We propose a framework to allow social robots to detect
emotions and to store this information in a semantic repository, based on EMONTO (an EMotion
ONTOlogy), and in the first figure or table caption. Please define if appropriate. an ontology to
represent emotions. As a proof-of-concept, we develop a first version of this framework focused
on emotion detection in text, which can be obtained directly as text or by converting speech to text.
We tested the implementation with a case study of tour-guide robots for museums that rely on a
speech-to-text converter based on the Google Application Programming Interface (API) and a Python
library, a neural network to label the emotions in texts based on NLP transformers, and EMONTO
integrated with an ontology for museums; thus, it is possible to register the emotions that artworks
produce in visitors. We evaluate the classification model, obtaining equivalent results compared with
a state-of-the-art transformer-based model and with a clear roadmap for improvement.

Keywords: social robots; natural language processing; ontology; emotion detection; text classification

1. Introduction

Nowadays, the presence of robots are becoming more common in human daily life [1].
Service robots concretely share environments with human beings to actively collaborate
with them in specific daily tasks, such as serving as an assistant to nurses in patient walking
and patient sitting tasks in hospital environments [2] or working as a student receptionist
at a university [3]. Consequently, human–robot interactions (HRI) need to be revised in
order to make the integration of robots into society as seamless and natural as possible.

An emerging approach to modeling social behaviors for service robots is based on emo-
tion recognition. The detected emotion can be used for many purposes, such as dictating a
robot’s behavior and accordingly adapting interactions with humans (in real-time) [4–8] or
associating the emotion to events or objects in specific domains (e.g., opinions about com-
mercial products, emotions produced by artworks in museums, and emotions produced
by plates in restaurants) for further analysis [9,10]. From this perspective, keeping this
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information in semantic repositories offers a wide range of possibilities for automatically
modeling the robot’s behavior or for supporting the implementation of smart applications.

The information from which emotion detection is processed can be gathered for robots
in real-time via different media as they interact with humans, such as text, speeches, images,
or videos [11]. This multimedia content is processed to recognize emotions/sentiments
with proper techniques, for example, by analyzing faces and postures in images/videos
based on machine learning or by converting speech into text to perform the emotion
detection with well-known natural language processing (NLP) approaches [12–15].

In this context, we propose a framework to allow social robots to detect emotions
and to store this information in an ontology-based repository. The detected emotions and
other information are stored in a semantic repository based on an extensible ontology,
called EMONTO (an EMotion ONTOlogy), to represent emotions. EMONTO can be ex-
tended with other specific domain ontologies representing entities with which the emotion
can be related. The detected emotion can be used for many purposes, such as accord-
ingly designing the reactions and actions of robots or combining the semantic information
of emotions with other ontologies related to a robot’s tasks (e.g., SLAM (Simultaneous
Localization And Mapping), navigation, and perception) [16] or with domain-specific
ontologies related to the environment where robots work (e.g., museums, restaurants, and
hospitals) [17].

To show the suitability of our approach, we develop a first version of this framework
focused on emotion detection in text and tested it with a case study of tour-guide robots for
museums. The robots receive the text directly from people or by converting speech to text.
Then, we used NLP transformers to make sentence embeddings, transforming the text to a
vector representation. Thus, the classification problem was solved in this new vector space,
resulting in emotion labels for each text. The first version of the framework relies on (i) a
speech-to-text converter based on the Google Application Programming Interface (API)
and a Python library; (ii) a neural network to label the emotions in texts based on NLP
transformers; and (iii) EMONTO, an ontology to represent emotions integrated with an
ontology for museums; thus, it is possible to register the emotions that artworks produce
in museum visitors for further analysis.

This first version of the framework offers the option for people to communicate with
robots directly by text or for robots to perform an analysis on written sources to which
they have access, such as social networks. In some situations, text may be the best or
only way for people to communicate with robots; for example, in really loud or busy
environments where the robots struggles to identify a single person or cannot properly
hear voice commands, or for impaired people who cannot properly speak and rely on text
messages to communicate their thoughts. Additionally, this approach can be incorporated
in a chatbot to guide the responses according to the detected emotions.

We describe the stacked ensemble of transformer models to detect emotions from
text and experimentally evaluate it. We obtain acceptable results with a clear roadmap for
improvement, compared with the NVIDIA-AI [15], a state-of-the-art transformer-based
model applied in the same task. The results show a micro F1 score of 0.6360, a macro F1
score of 0.4995, and a Jaccard index of 0.5076 overall for the model.

In summary, the contributions of this research are (i) a general framework for emo-
tion recognition in social robots, considering all the sensing capabilities of robots; (ii)
EMONTO, the ontology of emotions integrated to the framework that provides the base for
implementing complex and smart applications from the detected emotions, related to the
environment of the social robot; (iii) a first version of the framework, as a proof-of-concept,
aimed at emotion recognition from text obtained directly or by converting sound to text;
and (iv) an NLP transformer model for emotion recognition in text that behaves similar to
a state-of-the-art approach.

We present our research organized as follows. Section 2 describes the related work
about social robots and emotion detection from speech and from text, and the use of
ontologies to store the recognized information. Our framework for emotion detection
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based on text analysis for social robots is detailed in Section 3. Section 4 presents EMONTO,
an extensible ontology that represents emotions and supports the development of smart
and interoperable applications. An experimental evaluation of the model to detect emotion
from texts is presented in Section 5. We discuss the results obtained in Section 6. Finally,
we conclude in Section 7.

2. Related Work

In this section, we first survey recent studies that show the importance of emotion
recognition in improving HRI for social robots. Then, we describe some works in the field
of emotion detection from text. Finally, we describe recent studies proposing approaches to
recognizing emotion supported by ontologies in the context of social robotics. We highlight
the relation to or difference of the cited works from our research on these three aspects.

2.1. Social Robots and Emotion Detection from Speech

Nowadays, emotion recognition is essential to improving HRI, in particular, for
service robots. Emotion recognition allows us to model the social behavior of robots that
share spaces with humans, thus making social robots a growing area of robotics where
psychology and sociology aspects converge [18]. However, the design and development
of robot’s abilities in acting and interacting physically, emotionally, socially, and safely
with humans has generally been poorly understood so far [19]. Indeed, in order to socially
interact with humans, a robotic system should be able not only to understand user behavior
and intentions but also to estimate their emotional state with a high level of acceptability
and usability [9]. Thus, much more attention should be paid to an assessment of the
feasibility of a social robot in real-life scenarios among different cultures and people [4].

Thus, a growing effort is shown in recent works for natural and seamless integration
of robots into society, supported by emotion recognition to model their social behaviors.
The sensing capabilities of robots allows us to gather several multimedia content, from
which emotions can be recognized. Although our first version of the framework considers
only voice and text, in the future, we aim to implement the capacity to process all other
content. For now, we revise some works dealing with emotion recognition in speech and
text.

In [5], openSMILE, a framework to extract several speech emotion features was
described; it was based on fuzzy C-means to cluster the training set into multiple sub-
classes; then, multiple random forest methods make the decision to identify the emotion
(i.e., angry, fear, happy, neutral, sad, and surprise) from the selected speech features. In [6],
a multi-modal emotion detection model for personal assistant robots was presented. This
model was implemented by means of emotion recognition from voice and images, and both
outputs were merged to achieve the detected emotion using machine learning techniques.
A speech emotion recognition (SER) system based on a combinations of convolution neural
network (CNN) and random forest models was presented in [7]. The CNN model was
used to extract speech emotion features from the normalized spectogram, and the random
forest algorithm performed the classification. SER was used on a NAO robot with recorded
sound commands, working with four basic emotions: happiness, anger, sadness, and joy.

A behavior modulation system (BeMoSys) for social robots was proposed in [8].
BeMoSys provides robots with the capacity for emotional speech recognition based on
signal-processing and machine learning techniques to perform the emotion classifica-
tion. It considered five inputs corresponding to the five emotions extracted from the
speech signal in order to derive the estimated level of happiness. According to this value,
the appropriate robot behavior was set.

We found few recent works that combine speech and text in the context of robotics for
emotion recognition. In [20], a system that combines the analysis of prosodic features of the
speech and sentiment analysis on the text (obtained from the speech) to recognize emotion
and let robots properly express reactive emotions was presented. Sentiment analysis over
the text allows for the identification of the polarity (i.e., negative, neutral, and positive), for
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which the value (−1, 0, or 1) is used in emotion classification, combined with an analysis
of the prosodic features. The considered categories in this study were embarrassment,
unsettling, noticing, remembering, unexpectedness, surprise, hesitation, anxiety, pain,
dislike, disappointment, pleasure, and anger.

These recent works demonstrate the current trend of voice analysis for emotion
recognition in social robots in improving HRI and modeling social behaviors for robots.
However, there are still limitations on the quality and precision of the results; thus, more
accuracy models should be used, such as text analysis.

With our proposed framework, social robots are able to recognize emotions in humans
with whom they interact and accordingly to adapt their behaviors and interactions. Hence,
our work is a contribution to social robotics. Besides that, converting voice into text
represents more benefits is social robotics: robots can analyze writing sources (e.g., social
media) as an alternative for speech-impaired people when communicating with robots,
does not neglect other multimedia sources, and can be used to improve chatbot applications.

2.2. Emotion Detection from Text

For emotion recognition systems, an important aspect to consider is the emotion
models that delimit the classification process [13]. While according to Cowie [21], in
the field of psychology, there are many different theories regarding the representation of
emotions, within the area of NLP, there are two that stand out as the most used: Ekman’s
basic emotions [22] and Plutchik’s wheel of emotions [23]. Ekman’s model consists
of six basic emotions: anger, disgust, fear, happiness, sadness, and surprise. Plutchik’s
model consists of a multi-dimensional approach, where there are four opposing pairs
of axes and emotions are defined as different points along these axis. In this model, an
emotion is determined by an emotion axis and its intensity. These axis pairs are joy–
sadness, anger–fear, trust–disgust, and surprise–anticipation. Figure 1 shows an extraction
of the Plutchik’s model, with these axis and intensity denoted with colors in the concentric
circles; from these emotions, many other emotions can be derived as a combination of other
emotions and intensities. Most works in emotion detection consider a small subset of these
group of emotions.

Figure 1. An extract of Plutchik’s wheel of emotions.



Sensors 2021, 21, 1322 5 of 19

Most common approaches to performing emotion classification and general NLP
tasks are based on recurrent neural networks (RNN) or some variants of them, such
as long short-term memory (LSTM) [24], multiplicative LSTM (mLSTM) [25], or gated
recurrent unit (GRU) [26–28]. However, these approaches suffer from a couple of related
issues: the complex nature of emotion expression and the shortage of quality data for this
task [14]. Finding quality label data for this task is hard to do, at least in order to completely
train these types of models. Nevertheless, these limitations have been overcome by an
attention-based transformers architecture [29], which is inspired by the encoder–decoder
architecture used for sequence to sequence (Seq2seq) tasks. In high-level terms, it consists
of two stacks (one of encoders and one of decoders), where the encoder and decoder use
some form of self-attention (https://jalammar.github.io/illustrated-transformer/ (accessed
on 18 December 2020)) and a feed forward neural network. Each encoder in the stack
receives its input from the previous layer, except the first one that receives a series of
tokens. Then, the final encoder in the stack sends its output to every decoder. Then,
each decoder uses this and the input from the previous layer in the stack to return its
output. Afterward, the output for the final decoder is passed to a linear + softmax function
to finally return the output of the network. Recently, it has become more and more
common to use transformers for NLP in texts, since they have been proven to be effective
in many different tasks (e.g., masked token prediction, next sentence prediction, question
answering, machine translation, summarization, natural language inference, and sentiment
analysis) [30–32]. This is thanks to the fact that they are trained with unsupervised learning
models, diminishing the need for labeled data. Transformers are very effective in transfer
learning, allowing researchers to pretrain these transformers with large amounts of general-
purpose texts and then to finetune these models for their specific tasks with good results,
less effort, and labeled data, such as NVIDIA-AI (currently named Megatron-LM), the
model proposed in [15], by researchers of NVIDIA.

For the classification task, the transformer architecture allows us to test different
types of methods to approach it. An ensemble is a successful approach in reducing the
variance of sub-models by training multiple sub-models to combine the predictions from
them [33]. There are many ways to implement an ensemble (e.g., stacking, boosting, and
bagging). Recently, many experiments were conducted with ensemble neural networks
using transformers. For example, boosting bidirectional encoder representations from
transformers (BERT) proposed in [33] is a model to introduce the multi-class boosting into
BERT [32]; the classifier for detecting aggression in social media posts by bagging BERT
models presented in [34]; and a stacked ensemble with 25 BERT to classify fake news,
described in [35].

Currently, there are many available implementations of these transformers, such as
the Hugging Face Transformers library [36], which provides a wide variety of implemented
pretrained transformers that work with a classic NLP workflow; the Simple Transformers
library (https://github.com/ThilinaRajapakse/simpletransformers (accessed on 18 Decem-
ber 2020)), which is a simplification of the previous one, suitable for non-expert researchers;
and the Sentence Transformers library [37].

Our classification model is based on a transformer architecture, supported on the
Simple Transformers library.

2.3. Social Robots, Emotion Detection, and Ontologies

In the domain of social robots and emotion detection, ontologies have been applied
in order to represent the emotional knowledge. The authors of [38] proposed a cognitive
architecture for an emotion-aware robotic system by using a multilayer perceptron neural
network and several features associated with facial expression (e.g., brows, lips, and
face muscles motions) and emotions on speech (e.g., words used, syntactic structure,
and meaning). They used an upper ontology to cover all common-sense concepts of
human states and robotic systems (EmUO) and HTemp ontology to represent the complex
context using its n-ary schema. In [39], OntCog that is based on IEEE 1872-2015—IEEE

https://jalammar.github.io/illustrated-transformer/
https://github.com/ThilinaRajapakse/simpletransformers
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Standard Ontologies for Robotics and Automation, was proposed. The main concept in
OntCog was RobotSense that is related to all concepts in this ontology. Other properties
such as IRI_Emotion to associate an emotion to a smell were also defined. The same
authors propose in [40] an architecture, called cognitive model development environment
(CMDE), to capture and process data collected by sensors present in the robot and to store
the perception of the environment using an ontology. This ontology is the one proposed
in [39]. Other works have used ontologies to store information in the context of robots but
for activity detection [41], user-intention recognition [42], object detection [43], etc.

These studies used semantic knowledge representation in different aspects of emotion
sensing for social robots; however, the ontologies proposed neither represent emotions
nor are extensible to be able to relate such emotions to robots’ tasks or to other entities.
We propose EMONTO, an extensible ontology of emotions, and we incorporate it into the
framework; thus, this semantic information can be used for many proposes in the context
of social robotics.

3. A Framework for Emotion Detection for Social Robots

The proposed framework is a process divided into five sequential steps, as shown
in Figure 2: (1) human–robot interaction; (2) multimedia capturing; (3) multimedia processing:
image/video processing, audio processing, and text processing (text obtained directly or con-
verted from audio); (4) emotion detection; and (5) storage in a semantic repository. From the
human–robot interaction (step 1 in Figure 2), multimedia content is gathered from the
robot’s sensory capacity; these raw data are saved in a repository (step 2 in Figure 2). The
following steps imply transformations of the obtained data from the previous step, starting
with the conversion of raw input obtained from the user to proper representations for
emotion analysis (e.g., feature vectors and text) (step 3 and step 4 in Figure 2) and finishing
with the population of an emotion ontology that can be used for different purposes (step 5
in Figure 2).

This framework can be instantiated in social robots systems, taking advantage of all
the sensing capacities of robots. As a proof-of-concept, in this work, we implement the
whole pipeline taking into account only text and sound for a service robot in a museum
getting feedback from users regarding the artworks. In this section, we detail the steps
related to emotion recognition for this first implementation of our proposed framework.
The next section presents EMONTO and its instantiation.

Figure 2. General overview of the framework.
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3.1. Human–Robot Interaction

In this phase, the social robot interacts with people in the museum, starting conversa-
tions with a neutral tone, but eventually, after engaging with the person or group of people,
it can adjust its tone to act according to the detected emotions (e.g., excited, energetic, and
comprehensive).

The robot must attempt to get, via a series of questions, the visitor’s opinion regarding
the artworks; name; and, if possible, some unique identifier such as a social media handle.
With these data, it is possible to identify registered/frequent visitors (possible facial and
posture recognition if images and videos are considered); thus, the robot can remember
them and choose how to initiate contact or a different type of conversation. Moreover, data
mining in social media is also possible in determining users’ profiles. According to the
detected emotion in step 4 (see Figure 2), the robot can adapt its behavior (e.g., change the
tone to fit the mood of the user and decide whether to continue the conversation).

3.2. Multimedia Capturing

During the interaction with the visitor, the robot records and saves all multimedia
content captured by its sensors. For the case of speech, the robot keeps in the audio files all
answers and comments it receives from the user. Although, the emotion is detected from
the extracted information from the multimedia raw data, keeping the original data (e.g.,
images, videos, and audio) permits additional analysis, for example to extract prosody
features from speech or to extract context information from images, for further experiments.

For the first version of our framework, in this step, we implemented speech capturing
with an ambient noise reduction algorithm to record audio and for speech-to-text conver-
sion in order to reduce noises that can interfere with the results. According to the sensors’
capabilities, robots can also gather images and videos and can use facial and body posture
recognition to extract the related features for emotion detection.

3.3. Multimedia Processing

In this step, the robot converts the multimedia raw data into proper representations
for emotion analysis. For example, feature vectors from images and videos, normalized
spectograms from audio, and text from speech.

For the first version of our framework, in this step, the robots can receive text directly
or by converting audio to a text format. We developed a speech-to-text algorithm using the
available Google API [44] and the SpeechRecognition Python library, which is specialized
in speech processing, audio reading, and noise reduction, based on a Hidden Markov
Model for speech recognition and an RNN to tackle the sequence problems, where the
timing is variable.

For the case of images and videos, features extracted can obey traditional machine
learning models as well as more complex models such as multimodal-based ones that are
becoming popular for emotion recognition in images and videos. We plan to incorporate
such techniques to improve the implementation of our framework.

3.4. Emotion Detection

According to the multimedia data considered, a wide range of emotion detection
techniques can be implemented, mostly based on machine learning models.

For the first version of our framework, in this step, we approached the emotion detec-
tion task as a multi-label classification problem, modeled with a Transformer architecture
and meta-learning. We considered eleven emotions: anger, anticipation, disgust, fear, joy, love,
optimism, pessimism, sadness, surprise, and trust. The classification task consisted of labeling
a text as “neutral or no emotion” or as one or more of the previously mentioned emotions,
i.e., a binary vector indicating if each emotion was detected (1) or not (0).

Based on the available pretrained transformers, we designed a stacked ensemble
architecture, as shown in Figure 3. Each weak learner classifier consists of a transformer,
used to create a sentence embedding and a Multi-Layer Perceptron (MLP), with two hidden
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layers of sizes 500 and 300 (see Figure 4). To avoid overfitting of our MLP, we used an
early stop in the training, using 10% of the training data to validate in each iteration if the
training is still effective. For implementation of the transformers, we used the Sentence
Transformers library (https://github.com/UKPLab/sentence-transformers (accessed on
18 December 2020)) [37], since they are specifically pretrained transformers to perform
semantic textual similarity tasks, leading to sentence embeddings. This is a mapping of
sentences to a vector space such that sentences with similar semantic meanings are close in
this new space. From the Sentence Transformers library, we used the roberta-large-nli-stsb-
mean-tokens, distilbert-base-nli-mean-tokens, and bert-large-nli-stsb-mean-tokens transformers
to perform the sentence embeddings. Therefore, we use a stacked ensemble with three
different weak learners.

Figure 3. Stacked ensemble architecture implemented.

Figure 4. Structure of each weak learner in our model.

The meta-learning consists of an MLP with one hidden layer of 10 neurons. All MLPs
were implemented using sklearn (https://scikit-learn.org/stable/index.html (accessed on
18 December 2020)) [45] and using the default adam solver, the cross-entropy loss function,
the RELU activation function, a regularization term set at 0.0001, and a random_state
initialized in 1.

Previously, word embedding was used for emotion detection in text and for the
general NLP task [14]. One common approach to processing a given sentence is to tokenize
the sentence with word embeddings and to then pass the sequence of tokens to a RNN.
However, with transformers, we have a simple way to directly create embeddings for
whole sentences.

4. Emotion Ontology and Instantiation

Data provided by the recognition methods are normally stored for analysis, which
can generate a complex network of knowledge. The ontologies are well-defined and
standard models to represent the knowledge managed by these applications. In this work,
we propose EMONTO, an ontology to represent emotions and to support the development
of smart and interoperable applications.

4.1. EMONTO: An Extensible Emotion Ontology

EMONTO is an extensible ontology that represents emotions under different catego-
rization proposals. We adopted some concepts from several emotion ontologies [46,47]
to provide compatibility. Figure 5 shows the main classes of EMONTO. The central

https://github.com/UKPLab/sentence-transformers
https://scikit-learn.org/stable/index.html
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class is emo:Emotion, which has a category (hasCategory) according to a Category class.
The current version of EMONTO considers archetypal [46], Douglas Cowie [46], and Robert
Plutchik [48] emotion categorizations, which group emotions into 6, 25, and 56 (8 basic emo-
tions) values, respectively. Nevertheless, any other categorization model can be integrated
as a subclass of emo:Category.

Figure 5. EMONTO: an extensible emotion ontology.

EMONTO has emo:Event as a class that connects the emo:Object, emo:Person, and
emo:Emotion entities. An emotional Event is produced by (isProducedBy) a Person and is
caused by (isCausedBy) an Object (e.g., artworks, candidates, and plates). An Event can
produce several Emotions. The entities emo:Object and emo:Person are general classes that
can connect other ontologies, such as museum and artwork ontologies [17] as Object or user-
profile ontologies [49] as Person. The idea is to make EMONTO extensible and flexible to be
easily adopted in scenarios where data related to the recognized emotions need to be stored
for further analysis. The ontology provides the modality (emo:Modality) of the information
used to recognize the emotion (e.g., emo:Gesture, emo:Face, emo:Posture), and the type
of annotator (emo:AutomaticAnnotator and emo:HumanAnnotaton). Moreover, a datatype
property emo:hasIntensity is associated to the category to express the level of confidence
(a float value between 0.0 and 1.0).
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4.2. Instantiation of our Emotion Ontology

Once the emotions are recognized by our multi-modal recognition method, an Event
is created to represent the emotional event (<E0001 rdf:type emo:Event>), associated to
some datatype properties (e.g., <E0001 emo:createdAt 1607984678>). Then, the Event is
associated to either new instances of Person and Object (<E0001 emo:isProducedBy P0001>
and <0001 emo:isCausedBy O0001>) or to existing values. Person and Object should be
also recognized by using other models that can be combined with our multi-modal method
in the proper data acquisition phase. For example, by applying facial recognition to identify
registered or new users in the system and object detection to recognize specific objects
(e.g., artworks in museums and plates in restaurants). This work is focused on emotion
recognition; Person and Object detection is beyond the scope of this research.

According to the results of the emotion recognition method, one or more emotion en-
tities are created (<EM0001 rdf:type emo:Emotion>, <EM0002 rdf:type emo:Emotion>,
<EM0003 rdf:type emo:Emotion>, etc.) and associated to the Event (<E0001 emo:produces
EM0001>, <E0001 emo:produces EM0002>, <E0001 emo:produces EM0003>). Each emo-
tion has a category (<EM0001 emo:hasCategory C0001>, and <EM0002 emo:hasCategory C-
0002>, <EM0003 emo:hasCategory C0003>) which can be archetypal, Douglas Cowie, or
Robert Plutchik classifications (<C0001 rdf:type ArchetypalCategory>, <C0002 rdf:-
type ArchetypalCategory>, and <C0003 rdf:type ArchetypalCategory>). The datatype
properties emo:hasIntensity and emo:emotionValue are added to the category (<C0001
emo:hasIntensity 0.13> and <C0001 emo:emotionValue "anger">) with the values ob-
tained by the emotion recognition method (e.g., 0.13 as intensity and “anger” as emotion).
Modality and annotator are also instantiated. A pseudocode of creating triples is shown
in Algorithm 1. First, libraries related to Resource Description Framework (RDF) man-
agement have to be import (line 1), then a new graph, which contains the RDF triples, is
created (line 2). Namespaces of the ontology are added (lines 3–5). From line 6 to line 17,
new RDF triples are added to the graph.

Algorithm 1: Creating RDF triples.

1 import RDF libraries
2 g = Graph()
3 EMO = Namespace(“http://www.emonto.org/ (accessed on 18 December 2020)”) //Creating a Namespace.
4 g.add_namespace(“emo”, EMO) //Adding the namespace EMO.
5 g.add_namespace(“foaf”, FOAF) //Adding the namespace FOAF, which is already defined in the libraries.
6 g.add_triple((EMO.E0001, RDF.type, EMO.Event)) //Creating an Event.
7 g.add_triple((EMO.P0001, RDF.type, FOAF.Person)) //Creating a Person.
8 g.add_triple((EMO.O0001, RDF.type, EMO.Object)) //Creating a Object.
9 g.add_triple((EMO.EM0001, RDF.type, EMO.Emotion)) //Creating an Emotion 1.

10 g.add_triple((EMO.EM0002, RDF.type, EMO.Emotion)) //Creating an Emotion 2.
11 g.add_triple((EMO.EM0003, RDF.type, EMO.Emotion)) //Creating an Emotion 3.
12 g.add_triple((EMO.E0001, EMO.produces, EMO.EM0001)) //Associating E0001 to EM001.
13 g.add_triple((EMO.E0001, EMO.produces, EMO.EM0002)) //Associating E0001 to EM002.
14 g.add_triple((EMO.E0001, EMO.produces, EMO.EM0003)) //Associating E0001 to EM003.
15 . . .
16 g.add_triple((EMO.C0001, EMO.hasIntensity, Literal(0.13))) //Intensity value.
17 g.add_triple((EMO.C0001, EMO.emotionValue, Literal(“anger”))) //Recognized emotion.
18 . . .

4.3. Querying Our Emotion Ontology

The semantic repository enables the possibility of implementing simple and advanced
queries in order to retrieve specific values or to infer new knowledge, in both cases for
data analysis. For example, a simple query can retrieve information about the emotions
produced by a specific artwork. The pseudocode presented in Algorithm 2 retrieves the
emotions produced by the artwork The_Starry_Night: in line 1, libraries related to the RDF

http://www.emonto.org/
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manipulation are imported; then, a graph should be initialized to read the RDF triples
(lines 2 and 3); the namespaces used in the ontology have to be added (line 4); and finally,
following the SPARQL syntax, a query is performed (lines 5–15).

Algorithm 2: Obtaining the artwork The_Starry_Night.

1 import RDF libraries
2 g = Graph()
3 g.read(“database_emotions.ttl”, format=“ttl”)
4 g.add_namespace(“emo”, “http://www.emonto.org/ (accessed on 18 December 2020)”)
5 qres = g.query(“SELECT ?emotion_l
6 WHERE {
7 ?emotion a emo:Emotion ;
8 ?emotion emo:emotionValue
9 ?emotion_l .

10 ?event a emo:Event ;
11 ?event emo:produces ?emotion ;
12 ?event emo:isCausedBy
13 ?object.
14 ?object a emo:Object ;
15 ?object rdfs:label “The_Starry_Night” .
16 }”)

Other information such as the artworks that produce the emotion “surprise” can be
also obtained (see Algorithm 3).

Algorithm 3: Obtaining the emotion surprise.

1 “SELECT ?object_l
2 WHERE
3 ?emotion a emo:Emotion ;
4 ?emotion emo:emotionValue “surprise”.
5 ?event a emo:Event ;
6 ?event emo:produces ?emotion ;
7 ?event emo:isCausedBy ?object.
8 ?object a emo:Object ;
9 ?object rdfs:label ?object_l .

10 ”

In these examples, the Object entity is an artwork, but an object could also be plates in
restaurants, movies, or any entity that produce emotions. The extensibility of EMONTO
allows researchers to integrate any specific domain ontology.

5. Experimental Evaluation of the NLP Transformer Model

In this section, we show the performance of our transformer-based method compared
with the NVIDIA-AI model [15], which is also based on a transformer architecture. We
detail the procedures for obtaining adequate data for training and testing, some important
implementation details, and the comparative results.

We used the dataset for SemEval-2018 Task 1 [28], specifically the dataset E-c. This dataset
contains tweets in English, each with its own ID and contents, that are labeled with a
vector of eleven binary numbers, corresponding to the eleven considered emotions (anger,
anticipation, disgust, fear, joy, love, optimism, pessimism, sadness, surprise, and trust). If the
value at position k is 1, the tweet contains the emotion k; otherwise, the value is 0. Table 1
illustrates some samples taken from the dataset in which the first text presents the emotions
anger, fear, and sadness.

http://www.emonto.org/
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Table 1. Examples of tagged text in the dataset.

Text Target

Has anyone else had a bad experience with Poun. . . [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0]
#America finding #gratitude amidst the sadness. . . [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0]

Let us not burden our remembrances with a heav. . . [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]
@AdsByFlaherty And you’re cheerfully defending. . . [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

The irony and hilarity of making Taylor Lautne. . . [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0]

Training of the model was performed with the 2018-E-c-En-train file that contains
6838 tweets labeled as indicated previously, and all the result metrics were calculated
using 2018-E-c-En-test-gold that contains 3259 tweets. Training was performed using all
6838 samples of the 2018-E-c-En-train dataset, since validation was done on the 2018-E-c-
En-test-gold dataset; thus, there was no need to split the data used for training. In Table 2,
we present the number of positive values per emotion among the samples of the dataset;
there is some class imbalance as the surprise and trust labels are poorly represented. How-
ever, since this is a multi-label classification, this is not a trivial issue to handle and we
ended up finding better results without upsampling the data.

Table 2. Number of occurrences of the tested emotions in the samples of the training dataset.

Anger Anticipation Disgust Fear Joy Love Optimism Pessimism Sadness Surprise Trust

1101 425 1099 485 1442 516 1143 375 960 170 153

For metrics, as per the official competition rules, we used the Jaccard index to measure
accuracy as this is a multi-label classification task, based on Equation (1), where T is the
set of tweets in the dataset and where, for any given tweet t, Gt is the set or the expected
labels for t and Pt is the set of predicted labels for t.

Accuracy =
1
|T| ∑

t∈T

|Gt ∩ Pt|
|Gt ∪ Pt|

(1)

Algorithm 4 shows the general process of training: the implementations needed
for both the transformers and the MLPs are imported (line 1 and line 2, respectively);
they can be either user-made libraries or publicly available ones; then, the training samples
as well as their expected labels are loaded (line 4 and line 5); the transformer models
that will be used for each of the weak learners are also loaded (line 7); afterward, the
training of the weak learners is done (lines 8–15); once the training cycle is performed,
all predictions made by the weak learners are combined (line 17) to be used to train the
meta-learner MLP; and this final classifier is created (line 19) and trained (line 20). This
algorithm is available in Python (https://colab.research.google.com/drive/16Ja5MUFb_
A0RmaBVKvcjYxGSmvmSTtMN?usp=sharing (accessed on 18 December 2020)).

https://colab.research.google.com/drive/16Ja5MUFb_A0RmaBVKvcjYxGSmvmSTtMN?usp=sharing
https://colab.research.google.com/drive/16Ja5MUFb_A0RmaBVKvcjYxGSmvmSTtMN?usp=sharing
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Algorithm 4: Training process.

1 include transformers; //Import the implementation of transformers being used
2 include MLP; //Import MLP that will be used
3 // Load the data that will be used for training
4 Data x_train = data_read(training_samples);
5 Data y_train = data_read(training_results);
6 // Define the set of transformers to use (non empty set)
7 Set models = Set of transformers in ensemble;
8 List train_embeddings = [];
9 // For each transformer, train the weak learner associated

10 foreach transformer model in models do
11 MLP clf;
12 List embbedding = model.generate_embeddings(x_train);
13 clf.train(embbedding,y_train);
14 // Store the created embeddings created by the weak learner
15 train_embeddings.append(clf.predict(embbedding))

16 // Concatenate the outputs of each sample from the weak learners
17 train_embeddings = concatenate_elementwise(train_embeddings)
18 // Use that to train the final meta-learning
19 MLP clf;
20 clf.train(train_embeddings, y_train)

In Figure 6, we show the accuracy evolution plot of the final meta-learning. This network
finished training with only two epochs, which is expected given the difference in size of
the number of free parameters in the network and the size of the training size.

Figure 6. Validation curves for the final meta-learning.

Table 3 shows the obtained results using the sklearn built-in functions. We include
the results of F1 score, precision, and recall from our model, both the micro average (i.e.,
calculating the number of positives and negatives globally among all classes) and the
macro average (i.e., calculating the metric for each label and then finding their unweighted
mean (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html)
(accessed on 18 December 2020)). The best results are in precision, which means that
the model is good at avoiding false positives. The F1 scores show an overall ability for
detecting true positives, up to 76%. However, it struggles when it comes to accurately
detecting negative values, as shown by the recall scores. This statement is further confirmed
by looking at the results of the confusion matrix in Table 4, that shows that the amount of
false positives produced is consistently lower than the number of false negatives produced.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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The relatively big difference between macro and micro scores may be caused by a class
imbalance in our training set. Table 2 shows that the labels surprise and trust have around
one tenth of the samples that the most represented one (i.e., love) has. Thus, the values
from the confusion matrix in Table 4 show that these poorly represented labels are the ones
with the least amount of positive labels predicted, meaning that our model is not learning
any pattern to classify them and is labeling most of the samples as not containing those
emotions. Accuracy on the other hand seems to indicate that our model, on average, strays
around 47% from the expected emotions per instance.

Table 3. Overall results of the the model on the 2018-E-c-En-test-gold dataset.

Average Type F1 Score Precision Recall Accuracy

Micro 0.664 0.761 0.589 0.535
Macro 0.481 0.650 0.432

Table 4. Tabulated results of the confusion matrix for each emotion. We show the percentage of true negatives (TN),
false positives (FP), false negatives (FN), and true positives (TP) per label.

Anger Anticip. Disgust Fear Joy Love Opt. Pessim. Sadness Surprise Trust

TN 58.852 85.947 58.515 83.431 50.967 80.853 55.784 86.683 63.025 94.692 95.121
FP 7.364 1.013 7.763 1.688 4.787 3.314 9.144 1.810 7.518 0.092 0.184
FN 9.481 12.059 9.604 6.935 10.954 8.315 10.341 9.880 12.010 5.002 4.664
TP 24.310 0.982 24.118 7.947 33.292 7.518 24.732 1.626 17.367 0.216 0.031

Compared with the NVIDIA-AI model, the results presented in Table 5 show that
our model is behind the other by at most 7% across all evaluated metrics. This leaves
us at a good starting point as. Unlike the NVIDIA-AI model which was fine tuned for
the tweet dataset, fine-tuning our Transformers for this task and possibly changing our
MLP classifiers for more refined models could lead to better results. We explore these
possibilities further in the Discussion section.

Table 5. Comparison of our model with NVIDIA-AI.

Model Accuracy Micro F1 Macro F1

Stacked Ensemble (ours) 0.535 0.664 0.481
NVIDIA-AI 0.577 0.690 0.561

6. Discussion

The first version of our framework, as a proof-of-concept, demonstrates the feasibility
and suitability of a robot system able to recognize emotions from interactions with humans,
which can be used to adapt the robot’s behavior and to instantiate a semantic repository, for
further analysis. This experience also gives the opportunity to extract its current limitations
and some lessons learned.

6.1. Improvements for the Classification Model

The classification method can be improved in several aspects. One of them is in the
transformers. The ones we used were fine-tuned for semantic textual similarity of tweets,
in which a lot of emojis and abbreviations are present. Conversations in museums are quite
different; thus, a more appropriate dataset, with more appropriate texts, can be used to
fine-tune the transformers.

As explained in Section 5, an imbalance in the dataset generates some problems
when it came to training the model, as some emotions could not be correctly detected.
While in single-label classification problems, there have been many techniques developed
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to mitigate this, in the multi-label case, there are not many solutions available to solve this.
For example, one common technique in the single-label case is to randomly upsample the
data. In the multi-label case, doing this could generate more instances of the other labels,
generating even more imbalance. However, there have been some algorithms developed in
recent years to approach this problem that were not used in this instance of our framework,
such as multilabel synthetic minority over-sampling technique (MLSMOTE), that we plan
to try in the future.

The ensemble method and the classifiers used for the weak learners could be also
improved. As mentioned before, both boosting and bagging are other ensemble methods
that have shown good performance in other tasks when used with transformers [33,34];
thus, it would be worth evaluating these methods for our model. We used MLP for the
classifiers, as they tend to perform well in some classification tasks and are easy to use
for multi-label classification. Nevertheless, there have been works attempting to classify
sentences with other architectures, such as CNNs [50]; hence, this is another part of the
current model that could be tweaked.

6.2. Extending the Framework’s Functionalities

Most social robots have the ability to record video and to capture images, along with
the ability to record audio. Hence, the framework can be extended to be able to perform
a multi-modal classification, considering different modalities, such as text, voice, face
expressions, and body postures and gestures. Although this modification implies the
design of a more complex classification model, the results would be improved and offer
a wide range of applicability in the area of social robotics. As developed, our framework
allows for a straightforward way to add different media to the learning process, as it would
be a matter of simply creating a classifier for it and adding it to the stack, making it simple
to continue development on it.

This framework is mainly useful for two purposes: enhancing social behavior for
service robots and collecting data for more complex analysis. The ontological repository
enables enlarging the possibilities to improve both purposes. It can be used as direct
feedback to record internal statistics of what emotions are evoked by entities (e.g., pieces of
art in the museum, plates in a restaurant, and candidates in elections). That way, the robot
can adjust its tone and interactions to fit the mood according to the specific entity, instead
of using a default tone.

Moreover, the capability of social robots in analyzing texts enable the opportunity to
analyze social media to infer what types of people come to the place and what types of
stimuli they are attracted to. Thus, with the gathered data and the inference capability of
ontologies, the knowledge can be used for decision making. For example, in the museum
case, we can obtain a clear rating of artworks, which can help the museum managers decide
what pieces to display at any given moment or to decide how to dispose exhibitions.

As it is, this version of our framework can complement chatbot systems by guiding
responses according to the detected emotion.

6.3. HRI Improved with Emotion Detection

In some scenarios for service robots, they have to choose the person to interact with
and start the interaction; thus, a selection algorithm is needed. We suggest a selection
algorithm tending to choose people that are alone or in “small" groups (“small", in this case
is implementation dependent), since this makes it easier for social robots to attract their
attention. Selecting a small group of people should also help the speech-to-text component
of the framework as it would mean less chatter noise around the robot when it records the
person’s speech.

Once the person or group of persons is selected, the robot should try to start a
conversation. If the robot fails to engage a conversation with the user because, for example,
the user ignored it, then it can repeat this step until it finds a person to engage with.
Once this happens, a conversation is started. Initially, the robot should start with a neutral
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tone for all engaged persons, but once it has obtained enough data regarding the emotions
people have within its context, it can adjust itself to make the interaction as natural
as possible. For example, suppose this framework is implemented in social robots in
an amusement park that has a roller coaster and a haunted house. Initially, all robots
would start with neutral tones, but eventually, after engaging with many excited people,
the ones on the roller coaster, they will adjust their tone to act excited and energetic as
well. Meanwhile, after engaging with many scared people, the ones in the haunted house,
they should start to act afraid as well.

6.4. EMONTO Extensibility

The output of the classification process strongly depends on the emotion represen-
tation model. For example, Ekman’s basic emotions model [22] supports a one versus
all classification problem, while Plutchik’s wheel of emotions [23] implies a multi-label
classification problem for a subset of possible emotions or a polarity problem among each
of the axes of the wheel. EMONTO supports both approaches and can be extended with
other emotion models without affecting the implementation of the framework. Moreover,
the entities Person and Object of EMONTO can be replaced by entities defined in user-profile
ontologies for Person and specific domain ontologies representing entities to which the
emotions can be associated (e.g., artworks, museums, and dish) for Object. Moreover,
EMONTO can be extended with other ontologies that model the specific task of the service
robots (e.g., SLAM ontologies). Hence, EMONTO is flexible and extensible for any scenario
in social robotics.

7. Conclusions

The need for interaction between machines and humans is becoming more common in
people’s daily lives. The effort to improve these relationships through the interpretation of
social behaviors are more and more frequent among research developed in the area of social
robotics. The interpretation of the feelings of a human being is an important tool that a robot
must know how to use to enact correct behavior in a social environment. Our framework
is a clear contribution in this area, since it allows robots to interpret a person’s basic
feelings and emotion recognition algorithms. Besides that, the information gathered by the
robots and the outputs of the classification process can finally be organized in an ontology,
leading to more complex analyses and uses of the data. The results obtained with a first
implementation of our framework, as a proof-of-concept, show that the integration of
speech-to-text and emotion detection algorithms with an ontology was a success despite
the fact that there is still the possibility of being improved.

Our future research is focused on improvements of the framework, starting with
the suggestions from Section 6 to provide a robust architecture in the community to
develop third-party applications in social robotics. We realize the need to incorporate more
interpretation characteristics that can complement the detection of a person’s feelings in
our framework, such as detection of the face, posture, and context in which the person is
involved. Thus, a new classification model that integrates all these characteristics to have
more veracity in detecting the feeling will be developed. Once this extension is done, we
could make another comparison to Megatron-LM to put in perspective how much value
these new features add to our framework. In addition, the framework could be part of
an autonomous navigation system applied to a social robot, which would complement
decision-making in these processes as well as assuming better socially acceptable behavior
towards humans.
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