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Abstract: The increasing evolution of computing technologies has fostered the new intelligent concept
of Ubiquitous computing (Ubicomp). Ubicomp environments encompass the introduction of new
paradigms, such as Internet of Things (IoT), Mobile computing, and Wearable computing, into
communication networks, which demands more efficient strategies to deliver tasks and services,
considering heterogeneity, scalability, reliability, and efficient energy consumption of the connected
devices. Middlewares have a crucial role to deal with all these aspects, by implementing efficient
load balancing methods based on the hardware characterization and the computational cost of the
queries and tasks. However, most existing solutions do not take into account both considerations in
conjunction. In this context, we propose a methodology to characterize distributed servers, services,
and network delays in Ubicomp environments, based on the Server Ability to Answer a Query
(SAAQ). To evaluate our SAAQ-based methodology, we implemented a simple middleware in a
museum context, in which different IoT devices (e.g., social robots, mobile devices) and distributed
servers with different capabilities can participate, and performed a set of experiments in scenarios with
diverse hardware and software characteristics. Results show that the middleware is able to distribute
queries to servers with adequate capacity, freeing from service requests to devices with hardware
restrictions; thus, our SAAQ-based middleware has a good performance regarding throughput
(22.52 ms for web queries), end-to-end delay communications (up to 193.30 ms between San Francisco
and Amsterdam), and good management of computing resources (up to 80% of CPU consumption).

Keywords: middleware; load balancing; Ubicomp; IoT

1. Introduction

The introduction of advanced paradigms, such as Internet of Things (IoT), Mobile and
Wearable computing, into communication networks has set the Ubiquitous computing (Ubi-
comp) as the new era in the history of computing technologies [1]. Ubicomp environments
allow objects and people to be connected anytime and anywhere, to anything and anyone,
by any-network on any-service [2]. Therefore, many applications in many areas have been
developed in order to allow different kinds of devices and technologies to communicate
with each other and integrate them into one ecosystem [3]. Consequently, achieving inter-
operability of heterogeneous networks becomes a complex challenge [4], that demands the
development of integration systems to provide efficient and fast communications among
all Ubicomp network instances.

In Ubicomp systems, any device connected to the network could act as a server in some
specific scenarios (e.g., sensor interchanging data in a Wireless Sensor Network, a robot
sending data to another one); thus, any query could be responded by any client/server
in the Ubicomp ecosystem. For that, the design of efficient scheduling and dispatcher
mechanisms able to distribute the service requests is crucial. These mechanisms have to take
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into account different factors related to the computational capabilities of all instances of the
network (hardware configuration of devices) and the computational resources demanded
to satisfy the request (complexity of the query). For instance, processing image queries,
which require high computational power [5,6], cannot be assigned to a robot because it has
low computational capabilities, and its tasks should be optimized for saving energy.

Middlewares, as intermediate pieces of software, have appeared as solutions to man-
age such heterogeneity, scalability, and interoperability issues in Ubicomp environments [7].
A middleware abstracts the vast of different technologies and communication protocols
by integrating them into a universal communication layer [3]. In the context of IoT sys-
tems, among the communication middlewares that have been developed, there are general
open-source solutions, such as OpenIoT [3,8], OpenRemote [9], Kaa [10], Xively [11],
and ThingBroker [12], and others have been proposed and applied in specific fields, such as
e-health [13], smart cities [8,11], early fire detection [10,14], water supply [9,10], intelligent
car parking [15], agriculture [10], home appliances [9,10], and museums [4]. However,
existing general and customized middlewares do not take into account either the server
capabilities and energy saving needs or the computational cost of the queries. Non-efficient
distribution of requests can lead to the wasting of resources by assigning and making busy
high-performance servers deal with simple tasks, such as web information requests, or to
the overcharging of devices with low computational capacities and battery restrictions by
dispatching them for high power computing tasks.

To overcome these limitations, we propose a methodology to characterize distributed
servers, services, and network delay, based on the Server Ability to Answer a Query
(SAAQ). This SAAQ-based methodology is defined in two phases:

• The configuration phase comprised of characterization methods to represent: (i) servers,
considering CPU, RAM, and GPU capabilities; (ii) queries, considering CPU, RAM,
and GPU requirements; and (iii) the network delay.

• The assignment phase which manages: (i) an SAAQ score, that represents the result
of calculating capabilities of servers with respect to queries and network delay; and
(ii) a distribution query process, considering the SAAQ score values.

The distribution process assigns queries to the servers with the minimum resources
that satisfy the queries in order to save resources for more complex queries, and thus,
an adequate energy management. By following this methodology, a query can be assigned
to a specific server according to the computational cost of the query and the computational
capabilities of the server, as well as the network delay. To validate our method and show its
suitability, we integrate this methodology into a simple middleware in a museum context
in which different IoT devices (e.g., social robots, mobile devices) and distributed servers
of different capabilities can participate. We defined six queries in this context with different
computational costs and let the middleware perform workload balancing, considering
different scenarios related to server capabilities and client locations. Results show that
considering our SAAQ-based methodology, local servers (temporal/permanent IoT devices)
obtained up to 80% maximum use of CPU, since they are the most suitable servers due to
the impact of network delay on response times. Moreover, experiments demonstrate the
remote servers close to clients improve response times. Our SAAQ-based middleware has
a good performance regarding throughput, end-to-end delay communications, and good
management of computing resources.

The remainder of this paper is organized as follows. Section 2 presents a motivat-
ing scenario on the need to develop a characterization method for distributed servers
in Ubicomp environments. In Section 3, we survey relevant and recent related work.
In Section 4, our characterization method is described. Section 5 reports the experimental
evaluations and the obtained results. Finally, in Section 6, we conclude the paper with
some considerations and future work.
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2. Motivating Scenario

In order to illustrate the motivation behind the design and implementation of a
methodology for load balancing among distributed servers and IoT devices in a Ubicomp
context, let us consider a museum scenario, where several types of devices (e.g., robots,
smartphones, computers) generate different types of requests (e.g., image processing,
web-page information, robot location). In this context, internal and external devices are
considered, such as a robot in the museum (internal device), which consumes location and
image processing services, and a tourist personal device (external device), which accesses
services of a tourism information web page. When an internal device requires information,
it acts as a client, but it also can act as a local server in some cases. For example, a robot
(local device) which has location information about a room, can provide this information to
other robots (other local devices) for a fast route planning. Note that a robot uses limited
range sensors (e.g., cameras) in order to map the rooms, and this task requires time to
be completed.

Figure 1 shows our motivating scenario, which contains: (i) a medium-performance
server (external device) acting as a Master Server (a common centralized middleware)
and located close to the museum; (ii) a local low-performance server (Local Server) in
the museum; (iii) a remote high-performance server located in another country (Remote
Server I); (iv) a remote medium-performance server also located in a different country
(Remote Server II); (v) a Robot I and a Robot II in the museum, acting as local devices
and clients; and (vi) a user searching for information about the museum (external device),
in another country next to a remote server.

Figure 1. A museum scenario with IoT devices.

Considering that Robot I in the museum (acting as a client) requires image processing
for its onsite location, which demands a lot of computational resource [5,6,16–18], it is
appropriate that a powerful server attend to this request for better response times, taking
into account its location due to the delay of the network. Therefore, the remote high-
performance server (Remote Server I) responds faster than the local low-performance
server even if there is a network delay. Later, Robot II requires the same image processing.
Then, since Robot I already made the same query and has the response, the middleware in
the Master Server assigns that request to Robot I, acting as server in this scenario.

In the case of the external client (User’s device in Figure 1) who makes requests about
the museum located at the same country as one of the remote servers, it is adequate that
the remote server (Remote Server II) responds to the request to reduce the network delay
(if the server is able to perform it).
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By this motivating scenario, the following requirements are necessary to ensure a
proper load balancing in a Ubicomp environment:

• A semi-centralized architecture, where a master medium-high server is able to dis-
tribute the requests. The heterogeneity of servers and local-client devices that can
become servers for particular cases require a central powerful coordinator to reduce
the complexity of the architecture with respect to a fully distributed one, where all
entities determine their computational capabilities, wasting resources, especially for
low-performance servers.

• Characterization methods for servers and requests to determine which servers are
the most adequate to attend to a specific type of request based on:

– The computational capabilities, where the demand of CPU, RAM, and GPU are
variable according to the type of requests.

– The network delay, which has an impact on the response time that in most cases
is proportional to distance between the entities [19,20].

Existing open-source [3,21] and customized [4,15,22] middlewares are not suitable
for this scenario, since they focus on workloading distribution among the servers and
consider the availability as the main goal, i.e., an available low-performance server could
be assigned to perform a high-performance-demanding incoming request, increasing the
response time, while a high-performance server can be busy with simple tasks at the time
a high-performance request comes, being unable to resolve it, increasing once again the
response time. In this sense, having a wide and heterogeneous server-farm and traditional
workload balancers, low response times are obtained due to a distribution of the workload
with respect to a single powerful server, but a correct computational resource management
cannot be ensured since a request can be resolved for a random server.

3. Related Work

In Ubicomp environments, it is common to find computing architectures where nodes
with low capabilities or energy consumption restrictions can behave as clients and servers;
thus they receive data and queries from other devices in real time. In this sense, the distri-
bution of tasks is a key aspect to reach efficient global performance as current studies have
highlighted [23].

In this sense, many works highlight the main issues that impact the energy consump-
tion savings and efficient workload distribution in Ubicomp environments, such as the
large number of heterogeneous devices, the high variability of services’ latency, and the
huge amounts of data generated from the connected devices devices, which in turn implies
high cost of communication bandwidth and high redundancy of data [15,19,24–28]. In this
regard, all these works agree the load balancing solutions for Ubicomp middlewares have
to be set on the following considerations:

• Location awareness to allow Ubicomp servers closer to end users to respond to their
queries and thus reduce the communication costs.

• Energy awareness to distribute the queries and tasks to devices without energy con-
sumption restrictions, as much as possible.

• Consider the query cost (service characterization) and the capabilities of servers
and the network state (hardware characterization) to ensure an efficient manage-
ment of computational resources, therefore providing the operation of large-scale
Ubicomp networks.

Based on these considerations, many studies have proposed middlewares or software
components to partially overcome the current challenges. Many works exploit the location
awareness; thus they are focused on data management [13,29,30], neglecting the energy
consumption awareness and characterization of services and servers.

Some other works tackle the problem of energy awareness for load balancing in
Ubicomp environments [31–35], but they do not perform a better distribution considering
the capabilities of servers.



Sensors 2022, 22, 6688 5 of 26

Characterization of services is also a strategy used to support decisions about schedul-
ing and distribution of requests in a distributed system. In the context of museums, as our
motivating scenario, some works have proposed solutions in this regard. The semantic
information service layer described in [36] characterizes services (i.e., visiting, exhibition,
and enrichment services) and devices (e.g., multimedia, personal, smart IoT, and network
communication) to support the design of intelligent application; however, this information
is not used in run-time for task distributions. An IoT architecture system is developed in [4]
aimed at transforming Museums and Historical Centres in Smart Places by introducing IoT
technologies. They propose a system organized in three layers, a sensors layer, network
layer, and application layer, to gather information from the environment and characterize it
to decide which services are activated. The study presented in [37,38] categorizes services
related to a robot implementation in Smart Museums and Smart Places. Authors propose
the use of robots for museum settings and for learning heritage languages and cultures
at the Chinese heritage center; for that purpose, they use two social robots, one to guide
visitors and the other one for explaining and presenting the artwork (English and Chinese
languages). The robots have an architecture framework organized in two layers, a physical
layer and a middleware layer, where there are a localization module, a word processing
module, a navigation module, and a response content module. Authors of the work pre-
sented in [38] talk about the integration between Smart Environments (AmI—Ambiance
Intelligence) and Mobile Robots Team (MRT) to increase performance of task execution
and human–robot interaction in smart environments such as museums, medical centers,
or warehouses. They consider three elements for this integration system: humans, robots,
and sensors. The robots belong to a semantic layer. Additionally, there is a scheduling layer
that defines the assignment tasks scheme and finally an execution layer that executes all
the tasks demanding from robots and sensors.

All these works demonstrate the need and usefulness of better strategies to deal with
distributed services in Ubicomp environments, where devices with different levels of
capacities are involved in the demand and delivery of services. However, few of them
propose holistic solutions that integrate the three previously considered aspects: location
awareness, energy awareness, and categorization of services and servers. Thus, a method
able to ensure the correct use of resources in Ubicomp environments, is needed.

4. SAAQ-Based Methodology: Our Proposal

According to the issues outlined in Section 3, such as location awareness, energy
awareness, and categorization of services and servers, we design a methodology to assign
queries to servers available and capable of answering queries in the shortest time. Our
proposed SAAQ-based methodology comprises the configuration phase, and the assig-
nation phase, as shown in Figure 2. In the configuration phase servers and queries are
characterized by considering three aspects: (i) the computational capabilities of the server
in terms of CPU, RAM, and GPU capacities [5], which are the most representative resources
of a computer (Step 1 in Figure 2); (ii) the computational cost of the query, defined in terms
of CPU, RAM, and GPU needed for a query to be executed in a server (Step 2 in Figure 2);
and (iii) the delay time between clients and servers (Step 3 in Figure 2). In the assignment
phase, this methodology defines a metric called SAAQ score (saqqscore) to relate servers,
queries, and network delay and indicate how suitable a server is to resolve a particular
query (Step 4 in Figure 2) and a distribution query process that assigns queries to a server
according to the SAAQ score values (Step 5 in Figure 2). The following subsections describe
both phases and their respective steps.
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Figure 2. SAAQ methodology pipeline.

4.1. Configuration Phase

This phase comprises three steps to characterize servers, queries, and network delay
and offers methods that can be adapted and extended according to the scenario in which
they are applied.

4.1.1. Step 1: Sever Characterization Method (Computational Capabilities)

To determine the computational capabilities of the servers, we use benchmarking
methods for CPU and GPU components in order to establish rankings for each resource.
A benchmarking is an evaluation method for identifying and understanding the causes
of a good performance for any process. The four elements considered by benchmarkings
are [39]:

• The objective: in our case the goal is to calculate the overall performance of the servers.
• The practice: represent the actions to measure the server performance.
• The resources to evaluate: in this study are CPU, RAM, and GPU.
• The measurement in terms of consumption and execution time of a task.

By calculating a score for each resource (sresource), i.e., CPU, RAM, and GPU, which
is obtained based on particular characteristics, a ranking (rresource) in the scale of 1 to 10
is established.

To propose the CPU ranking (rcpu) based on the CPU server score value (scpu), we
use the most popular benchmarking, CineBench [18], which is widely used to evaluate
computer performance in rendering processes. According to CineBench, the best CPU in
the market is the AMD Threadripper 3990X; thus it is established as the top of our ranking.
We calculate our score (see Definition 1) using three elements of the CPU: (i) the CPU
speed (GHz); (ii) the numbers of cores; and (iii) the number of threads that is supported by
each core.

Definition 1. CPU Score (scpu). Given a server S, its CPU score, denoted as scpu, is calculated by
multiplying its CPU speed (GHz), the number of cores, and the number of threads that is supported
by each core, as follows:

scpu(S) = S.CPU.speed× S.CPU.cores× S.CPU.threads

By using the scpu value, the CPU is ranked in a scale from 1 to 10 (rcpu). Table 1 shows
the ranges of CPU scores of the proposed ranking and the characterization of servers,
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according to the CPU, for our motivating scenario in a museum. For instance, the CPU
Intel Core i7-8650U (2.7 GHz), which has 4 cores and 2 threads per core, which means
in total the CPU can solve 8 threads simultaneously, obtains a CPU score value of 86.4.
(scpu = 2.7× 4× 8 = 86.4) and therefore classified as rcpu = 2 in our ranking.

Table 1. Proposed CPU Score.

CPU
Example

CPU Score
scpu

Raking
rcpu

Reference Architecture CPU

CPU Score Server

AMD Threadripper 3990X scpu > 10,000 10 35,225 Remote Server I
AMD Threadripper 3970X 6000 < scpu ≤ 10,000 9
Procesador Intel

Xeon Platino 8160 2000< scpu ≤ 6000 8

Intel Core i9-9900x 700 < scpu ≤ 2000 7 880 Master Server
Intel i7 8700 281 < scpu ≤ 700 6
Intel i7 7800X 115 < scpu ≤ 281 5 202 Remote Server II
AMD Ryzen 5 1400 100 < scpu ≤ 115 4
AMD A10-9700 90 < scpu ≤ 100 3 91.2 Local Server
Intel Core i7-8650U

(2.7 GHz) 83.2 < scpu ≤ 90 2

Intel i3 2330 M scpu ≤ 83.2 1 30.56 Robot A and B

For the RAM, we define the RAM score and ranking based on some recommendations
posted in [40–43]; these works consider most of the queries can be satisfied with less than
16 GB. We define the RAM score (sram) using the amount of RAM (see Definition 2).

Definition 2. RAM Score (sram). Given a server S, its RAM score, denoted as sram, is calculated
by its amount of RAM, as follows:

sram(S) = S.RAM.size

Table 2 describes our proposed RAM ranking and the characterization of servers,
according to the RAM, for the museum of our motivating scenario; for example, if the
server has 6 GB of RAM (sram = 6), then it is ranked as rram = 3.

Table 2. Proposed RAM Score.

RAM Score
sram

Ranking
rram

Reference Architecture RAM

RAM Score Server

sram ≥ 128 10 128 GB Remote Server I
100 < sram < 128 9
64 < sram ≤ 100 8 64 GB Master Server
32 < sram ≤ 64 7–6
16 < sram ≤ 32 5 16 GB Remote Server II
8 < sram ≤ 16 4
4 < sram ≤ 8 3 4 GB Local Server
2 < sram ≤ 4 2 2 GB Robot A and B

sram≤ 2 1

For GPU, we take into account the UserBenchmark [44] as a reference in order to build
the GPU raking (rgpu). UserBenchmark has a classification of 652 GPUs in the market. The
GPU score (sgpu) is calculated by multiplying the speed and the amount of memory (see
Definition 3).

Definition 3. GPU Score (sgpu). Given a server S, its GPU score, denoted as sgpu, is calculated
by multiplying its speed and the amount of memory:

sgpu(S) = S.GPU.speed× S.GPU.size
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In Table 3, we describe the GPU score ranges and the ranking from 1 to 10, as well
as the characterization of servers according to the GPU characteristics for our motivating
scenario in a museum. For instance, the Nvidia RTX 3090 GPU has 1.70 GHZ speed and
24 GB of memory, then its GPU score is 40.80 (sgpu = 1.70× 24 = 40.80) and according to
our scale, it is ranked as rgpu = 10.

Table 3. Proposed Score for GPU.

GPU
Example

GPU Score
sgpu

Ranking
rgpu

Reference Architecture GPU

GPU Score Server

Nvidia RTX 3090 sgpu < 40.8 10 40.80 Remote Server I
Nvidia GTX 950 28.8 ≤ sgpu< 40.8 9 - -

AMD RX 590 12 ≤ sgpu< 28.8 8 12 Master Server
Nvidia GeForce MX250 6.4 ≤ sgpu< 12 7 - -
AMD Radeon HD 6670 1.2 ≤ sgpu < 6.4 6 - -

Nvidia GeForce GTX 280 0.64 ≤ sgpu<1.2 5 0.64 Remote Server II
Nvidia Quadro FX 880M 0.56 ≤ sgpu < 0.63 4 - -

Intel HD 5500
(Mobile 0.95 GHz)

0.51 ≤ sgpu < 0.56 3 0.52 Local Server

ATI Mobility FireGL V5700 0.15 ≤ sgpu < 0.51 2 - -
NVIDIA GeForce 7150M +

nForce 630M
or

Rendering processes
appointed to MESA Library

sgpu< 0.15 1 0 Robot I and II

Note that we adopt simple CPU and GPU score calculations based on some character-
istics of the resources (e.g., speed, RAM, cores, threads), which are easily obtained by exe-
cuting commands such as sar, free, and lscpu for Linux; and systeminfo and “WMIC CPU
Get DeviceID, NumberOfCores, NumberOfLogicalProcessors” for Windows, and to be
calculated at real time. Some servers have low computational capabilities and are battery-
energy dependent; therefore running benchmarking tools which nowadays have been
adapted to thermal throttling analysis (e.g., 10 min for Cinebench R23 [45,46]) are not
suitable for this scenario.

Once the rankings for CPU (rcpu), RAM (rram), and GPU (rgpu) are defined, our server
characterization score based on these values is formalized in Definition 4.

Definition 4. Server Characterization Score (cscore). Given a server S, its server characteriza-
tion score, denoted as cscore, is defined as a 3-tuple, consisting of its rcpu, rram, and rgpu values:

cscore(S) =< S.rcpu, S.rram, S.rgpu >

Table 4 shows the characterization scores (cscore) of the servers presented in the mu-
seum of our motivating scenario. According to our rankings, Remote Server I has the
highest score cscore =< 10, 10, 10 >, while Robot I and Robot II have the lowest value,
cscore =< 1, 2, 1 >.

Table 4. Scores for the reference architecture in the motivating scenario.

Server
Characterization Score

cscore

Remote Server I <10, 10, 10>
Master Server <7, 8, 8>

Remote Server II <5, 5, 5>
Local Server <3, 3, 3>

Robot I and Robot II <1, 2, 1>
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4.1.2. Step 2: Query Characterization Method (Computational Cost)

The types of queries that might be contemplated are strongly related to the domain,
context, or scenario in which the Ubicomp system is developed. To illustrate this step, we
consider several works related to type of queries and services [15,38,47] and our motivating
scenario, defining four categories described as follows:

• Multimedia services, referred to all binary format data like images, videos, and voice
recording.

• Localization services, such as services like devices Geo localization, GPS, places
description, and environment recognition.

• Web services, meaning all services that allow accessing web applications, webpages,
API (Application Programming Interfaces), and cloud platforms.

• Information Management services that manage all personal data, devices metadata
and place information stored in DB (Data Bases); therefore, it defines how these data
are shared, saved, and transmitted through the middleware.

The query characterization score describes the resources required to perform a task
in terms of CPU, RAM, and GPU, similar to the sever characterization score in order to
compare both in the SAAQ score calculation. Definition 5 formally presents our query
characterization score (qscore).

Definition 5. Query Characterization Score (qscore). Given a query Q, the query characteriza-
tion score, denoted as qscore, is defined as a 3-tuple consisting of the minimum power of CPU, RAM,
and GPU resources (in a rank of 1 to 10) required to complete the query successfully:

qscore(Q) =< Q.rcpu, Q.rram, Q.rgpu >

For Multimedia services, we consider image processing queries demanding: (i) GPU
Nvidia Quadro 2000 with 1024 MB and 1250 GHz; (ii) CPU Intel Core i7 – 8700; and (iii)
16 GB of RAM memory, as shown in [6,16,48]. Then, according to our server characteri-
zation score, we determine that an image processing query demands qscore =< 6, 5, 6 >.
In Web services, queries demand real-time interaction, quick response time, and effective
communication with cloud servers [49]; therefore, we establish a cost of qscore =< 6, 4, 4 >.
In the case of Information Management services, we establish a cost of qscore =< 6, 5, 2 >
for Word Processing queries (less GPU is required), while for Synchronization queries
(updating data) the cost is qscore =< 1, 1, 1 >. For Localization services, there are two types
of requests: localization by IP address and localization by images. We determine that a local-
ization by image query demands qscore =< 6, 4, 5 > and by IP address is qscore =< 3, 2, 1 >,
according to the studies proposed in [50,51] that characterize images and forest maps
analysis to localize firefighters by sensors.

Table 5 summaries the most common services, type of queries, and the query charac-
terization score of six queries, which are presented in applications such as museums and
place of interest, similar to our motivating scenario.

Table 5. Query Characterization Score for the motivating scenario.

Service Type of Query
Query Characterization

Score (qscore)

Multimedia Service (1) Image Processing < 6, 5, 6 >
Web Service (2) Webiste and Apps Accessing < 6, 4, 4 >

Information Management Service
(3) Words Processing
(4) Syncronization (updating data)

< 6, 5, 2 >
< 1, 1, 1 >

Localization Service
(5) Localization by Images
(6) Localization by IP address

< 6, 4, 5 >
< 3, 2, 1 >
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4.1.3. Step 3: Delay Characterization (Network Cost)

The delay between servers has an impact on the response time, which in some cases
can be bigger than the processing time [52,53]. Based on the work defined in [20], we
establish a rank between 0 and 10. Table 6 shows the scores for different delays, our
proposed ranking, and the characterization of servers according to the network delay.
For example, in our motivating scenario, a delay of 130 ms (sdelay = 130) corresponds to
a value rdelay = 6 in our ranking. The delay characterization score is formally defined in
Definition 6.

Table 6. Cost of network delay between servers or client-servers.

Delay Network Score (ms)
(sdelay)

Ranking
(rdelay) Reference Architecture

0– 20 0 Master Server
21–40 1 Robot I/Robot II/Local Server
41–60 2 -
61–80 3 -

81–100 4 -
101–120 5 -
121–140 6 -
141–160 7 -
161–180 8 Remote Server I
181–200 9 Remote Server II

200+ 10 -

Definition 6. Delay Characterization Score (dscore). Given a server S and a query Q, the delay
characterization score, denoted as dscore, is defined as the rdelay, which is a value in a rank of 0 to 10
according to the network delay between S and S, i.e., sdelay(S, Q):

dscore(S, Q) = rdelay(sdelay(S,Q))

Note that in this case, the rdelay is equal to dscore since only the network delay is con-
sidered; other characteristics such as datetime for dynamic network delay can be applied.

After defining the three characterization scores, the middleware is able to calculate the
SAAQ score and assign each query to the most suitable available server. This configuration
phase is supposed to be executed once. It can be re-executed when servers are updated, new
devices are added, or new types of queries are integrated into the Ubicomp environment.

4.2. Assignment Phase

Once servers, queries, and network delay are characterized, the middleware evaluates
the best server for each query received. To do so, two steps are performed as explained in
the following.

4.2.1. Step 4: Calculation of the SAAQ Score

The SAAQ score determines if a server (local or remote) or a temporal/permanent server
is capable to resolve a specific query whose type is one of those defined in Section 4.1.2. The
SAAQ score is calculated by using the server characterization score (cscore, see Definition 1),
the query characterization score (qscore, see Definition 5), and the delay characterization
score (dscore, see Definition 6).

In order to obtain the SAAQ score (saaqscore), we first calculate the SAAQ performance
score (saaqper f ), which measures the distance between the server characterization score
(cscore) and the query characterization score (qscore). This score represents the viability of
performing a query in the server without yet considering the delay between the servers.
A negative score means that the resources required to attend to a query are greater than the
ones of the server; similar query and server resources result in a zero score; while a positive
value score represents the server resources are greater than those requested. The SAAQ
performance score is formally defined in Definition 7.
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Definition 7. SAAQ Performance Score (saaqper f ). Given a server S and a query Q, the
SAAQ performance score, denoted as saaqper f , is an integer value, defined as:

saaqper f (S, Q) = ∑i={cpu,ram,gpu}((cscore(S.ri)− qscore(Q.ri))× qscore(Q.ri))

where: cscore(S) = [S.rcpu, S.rram, S.rgpu] is the server characterization score of S, qscore(Q) =
[Q.rcpu, Q.rram, Q.rgpu] is the query characterization score of Q, and i is the CPU, RAM, and GPU.

Note that the SAAQ performance score takes into account the most demanding re-
source from the query by multiplying the difference between the server and query scores
(cscore − qscore) with the query score (qscore). For instance, considering two servers, S1
and S2, with characterization scores of cscore(S1) :< 3, 3, 8 > and cscore(S2) :< 8, 3, 3 >,
and a query with qscore(Q) :< 1, 1, 5 > characterization score, by only calculating the
different between both scores, i.e., cscore(S)− qscore(Q), we obtain saaqper f (S1, Q) = 7 and
saaqper f (S2, Q) = 7, and therefore according to the results, any of the servers can attend
to the query without identifying which is better. Query Q demands more GPU than
CPU and RAM resources; thus, S1 is more suitable than S2, since S1 has a S1. rgpu = 8
ranking value for GPU, while S2 only S2.rgpu = 3. Multiplying the difference by the
query score ((cscore(S)− qscore(Q))× qscore(Q)), the results are saaqper f (S1, Q) = 19 and
saaqper f (S2, Q) = −1, showing that the server S1 is better than S2 for attend to the query.

Considering the motivating scenario described in Section 2, an Image Processing query,
whose query cost is qscore(Q) :< 6, 5, 6 > has a SAAQ performance score of saaqper f = 73
with respect to Remote Server I; saaqper f = 33 with respect to Master Server;
saaqper f = −12 for Server II; saaqper f = −58 for the Local Server; while for Robot I and II
the score is saaqper f = −75. For example, Table 7 summarizes the saaqper f values for an
Image Processing query in our motivating scenario.

Table 7. SAAQ performance scores for our Motivating Scenario.

Server Score

Query Cost

Remote
Server I

[10, 10, 10]

Master
Server
[7, 8, 8]

Remote
Server II
[5, 5, 5]

Local
Server
[3, 3, 3]

Robots
[1, 2, 1]

Images
Processing

[6, 5, 6]
73 33 −12 −58 −75

In order to obtain the saaqper f values into the range [0, 10] and to keep the same scale
as the delay characterization score, we normalize the saaqper f values as Equation (1) shows.

saaqper f _norm = 10× (saaqper f −min(saaqper f ))/(max(saaqper f )−min(saaqper f )) (1)

where min(saaqper f ) is the minimum and max(saaqper f ) is the maximum saaqper f scores
among values. For instance in our motivating scenario, Robot I or Robot II with cscore :< 1, 2, 1 >
obtain the minimum performance score min(saaqper f ) = −75, solving an Image Processing
query (qscore :< 6, 5, 6 >). The Master Server with cscore :< 7, 8, 8 > obtains the maximum
performance score max(saaqper f ) = 38, solving a Web query (qscore :< 6, 4, 4 >). After the
normalization is applied, Robots I and II with respect to the Image Processing query, obtain
a saaqper f _norm = 0; the Master Server with respect to a Web query saaqper f _norm = 10.
Table 8 shows the saaqper f _norm values for an Images Processing query with respect to the
servers in our motivating scenario.
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Table 8. saaqper f _norm values for our Motivating Scenario.

Server Score

Query Cost

Remote
Server I

[10, 10, 10]

Master
Server
[7, 8, 8]

Remote
Server II
[5, 5, 5]

Local
Server
[3, 3, 3]

Robots
[1, 2, 1]

Images
Processing

[6, 5, 6]
10 7.290 4.250 1.140 0

Once the SAAQ performance score is normalized, the SAAQ score can be calculated
by adding the delay characterization score (dscore). Definition 8 formalizes our SAAQ score.

Definition 8. SAAQ Score (saaqscore). Given a server S and a query Q, the server ability to
resolve a query, denoted as saaqscore, is defined as:

saaqscore(S, Q) = α× saaqper f _norm(S, Q)− β× dscore(S, Q)

where α and β define the importance of the delay characterization score, which are user-preference
parameters; such that α + β = 1.

Table 9 presents the saaqscore values for our motivating scenario, considering α = 0.80
and β = 0.20. Higher values mean that the server is more powerful to attend to the query;
however, computational resources can be wasted by a simple query attended on high
performance servers.

Table 9. saaqscore values for our motivating scenario.

Server Score

Query Cost

Remote
Server I

[10, 10, 10]

Master
Server
[7, 8, 8]

Remote
Server II
[5, 5, 5]

Local
Server
[3, 3, 3]

Robots
[1, 2, 1]

Images
Processing

[6, 5, 6]

9.072 7.645 * 2.860 2.053 0

Syncronization
[1, 1, 1]

5.821 6.725 4.559 5.734 5.380 *

Localization
by Images

[6, 4, 5]

9.072 7.928 3.568 3.044 1.203

Localization
by IP address

[3, 2, 1]

7.166 7.504 4.842 5.592 * 4.884

Web Query
[6, 4, 4]

9.007 8 * 3.851 3.469 1.769

Words
processing

[6, 5, 2]

8.511 7.645 * 3.709 3.185 1.981

The green marked scores are the values that comply with the normalized baseline; The servers marked with an
asterisk are the most suitable for the type of query.

The following section describes how to select the most adequate server for each query.

4.2.2. Step 5: Assignment Query Process

In order to assign a query to a specific server, it is necessary to determine from what
baseline a saaqscore value represents a suitable assignment scenario. The SAAQ performance
score (saaqper f , see Definition 7) determines if a server has the resources to attend to
a query, deciding a positive scenario when this score is equal to or greater than zero,
i.e., saaqper f ∈ {0,Q+}. Thus, saaqper f = 0 is our baseline to determine a correct as-
signment. Our approach for calculating the saaqper f (see Definition 7) is universal and
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can be applied to any scenario. Since the saaqper f is normalized between 0 and 10 to ob-
tain saaqper f _norm, our baseline has to be normalized as well using the same min(saaqper f )
and max(saaqper f ) values of the particular context, which in our motivating scenario are
min(saaqper f ) = −75 and max(saaqper f ) = 38 (see Section 4.2.1), respectively. After nor-
malization, i.e., 10× (baseline− min(saaqper f ))/max(saaqper f )− min(saaqper f )), the nor-
malized motivating-scenario baseline value is 5.309. In Table 9, the green marked scores are
the values that comply with the normalized baseline, i.e., score greater or equal to 5.309.

To select the most suitable server from the ones that are able to resolve the queries,
we adopt a philosophy of the use of minimum resources, which allows a lower energy
consumption and the availability of high-performance servers for complex queries that
really need it, i.e., while the saaqscore value is closer to the normalized baseline value,
the server is more suitable than others that could also satisfy the query. Table 9 shows
the most suitable servers which are marked with an asterisk. For example, for Images
Processing queries, the most suitable server is the Master Server, while for Synchronization
queries are Robot I and Robot II.

Note that Remote Server I (sscore(RSI) :< 10, 10, 10 >) is not the most suitable server
for any of the queries even if it is the most powerful server. This server can attend to more
complex queries than the ones defined in this work, saving energy, and also being available
to process the requests when the most suitable servers are busy. Cases in which none of
the servers are able to attend to a query due to a saaqscore less than the normalized baseline
value, the same philosophy of minimum resources is applied, selecting the server with the
saaqscore closer to the baseline (under the baseline). Using the saaqscore value, a load balancer
can make decisions not only considering the load on servers but also the server ability
to resolve the query for better response time. By following this methodology, location
awareness, as well as energy awareness are fulfilled due to a consideration of network
delays, the capacity to serve, and the categorization of services and servers.

The following section describes the experiments in order to evaluate our proposal.

5. Experimental Evaluation

To evaluate and validate the SAAQ-based methodology, we implemented a distributed
server architecture (middleware), considering the saaqscore value as a condition of query
assignment, as well as the CPU utilization of servers. In the following sections, we describe
the main aspects considered for the experimental evaluation.

5.1. Query Implementation

As we presented in Section 4.1.2, we consider four categories of queries: (i) Multi-
media; (ii) Localization; (iii) Web Services; and (iv) Information Management Services,
from which we propose six query types. In order to evaluate our proposal, the six queries
are implemented as follows:

• Images Processing query: Client sends a 1.8 MB picture as query data and receives
the same image as response from the server.

• Web query: The text of the Uniform Resource Locater type (URL) “www.rutas.com.pe”
(accessed on 1 March 2021) is received as a response.

• Word Processing: A text about a historical review of the city of Arequipa, Peru,
of 1842 bytes is sent, and the same text is received as response data once it is processed.

• Synchronization query: The Linux “date” command is executed on the assigned
server system, and the date and time information extracted from the system are stored
in a 29-byte text that is sent as response data to the client.

• Localization by Images: A 1.6 MB image is sent and a random geographic location is
received in response.

• Localization by IP address: In this type of query, the client sends its IP address and
receives a random geographic location as a response.

Table 10 summaries our implemented queries. The size of images for Images Process-
ing and Localization by image queries are 1.8 MB and 1.6 MB, respectively, since we have

www.rutas.com.pe
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considered the Pepper robot, whose hardware specification indicates a 5 Megapixel camera;
thus, it produces between 1.5 MB and 1.9 MB size pictures. This robot is considered an IoT
server due to its limited hardware [54].

Table 10. Used data set in experiments.

Type of Query Query
Data Type

Size of
Query Data

(Bytes)

Response
Data Type

Size of
Response Data

(Bytes)

Image processing Image 1.800.000 Image 1.800.000
Web query Text 1 Text 15
Words processing Text 1.842 Text 1.842
Syncronization Text 1 Text 29
Localization by images Image 1.668.636 Text 30
Localization by IP address Text 1 Text 30

5.2. Architecture Implementation: Servers

A total of 12 servers were hired from the company Digital Ocean, a North American
company that provides virtual, private, and cloud services, headquartered in New York
City [55]. Table 11 shows a summary of the hardware aspects of each team hired and
selected for this phase.

Table 11. Hired servers used during experiments

Role CPU State Location
CPU
Core
Nº

RAM
Memory

Price
Per

Month

Server
Characteri.

Score
(cscore)

Master Server Share San Francisco 8 16 GB 80$ [7, 5, 8]
Local Server Share San Franciso 1 2 GB 10$ [5, 1, 1]

Remote Server I Share Frankfurt 1 2 GB 10$ [5, 1, 1]
Remote Server II Share Singapore 1 2 GB 10$ [5, 1, 1]

Client 1 Dedicated New York 8 16 GB 160$ [7, 5, 1]
Client 2 Dedicated Toronto 8 16 GB 160$ [7, 5, 1]
Client 3 Dedicated London 8 16 GB 160$ [7, 5, 1]
Client 4 Dedicated San Francisco 8 16 GB 160$ [7, 5, 1]
Client 5 Dedicated Amsterdam 8 16 GB 160$ [7, 5, 1]
Client 6 Dedicated Frankfurt 8 16 GB 160$ [7, 5, 1]
Client 7 Dedicated Bangalore 8 16 GB 160$ [7, 5, 1]
Client 8 Dedicated Singapore 8 16 GB 160$ [7, 5, 1]

The hardware configuration of clients (high performance) was selected considering
that thousands of simultaneous connections will be simulated from the same physical
equipment; therefore a large amount of RAM memory and numbers of cores of CPU
are required (eight dedicated cores, 16 GB RAM). Due to that, the creation time of these
connections is as fast and simultaneous as possible.

An intermediate power server for the Master Server was selected, since it is in charge
of distributing the work and also processing when it is the case. The local and remote
servers were selected as low-power servers. All clients and servers have an SSD of 25 GB
of capacity and run Ubuntu 20.04 LTS.

5.3. Architecture Implementation: Protocol and Configuration

The programming language used for the implementation of the current version of
the middleware is C language. The C language presents the best performance in terms of
energy consumption, execution times, and memory occupation [48,56].
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5.3.1. Communication Protocol

In the current implementation of the middleware, communication sockets were defined
under the Stream Control Transmission Protocol (SCTP). SCTP is defined as a transport layer
protocol in the Open Systems Interconnection (OSI) model, which allows the transmission
of several data streams between two end points when the connection in the network is
established at the same time [57].

Based on the state of the art, it was determined that the SCTP protocol is the most
recommended in terms of performance, jitter (delay fluctuation), delay, and packet loss. It
is also considered the most adjusted protocol for the multimedia data transmission [57–60].

5.3.2. Configuration

All servers in the test scenario were configured to ensure optimal performance of the
architecture, considering the following parameters:

• Thread numbers: The first parameter to be defined is the number of threads in the
threads pool of each server in the communication socket programmed in C language.
This pool of threads establishes the number of simultaneous connections that servers
can handle. It was determined by experimentation, obtaining the best performance
with 250 threads for the Master Server and 150 threads for the other servers, since the
Master Server has better hardware than the other ones.

• File descriptors: The number of file descriptors defined by default (1024) is insufficient
when it is required to process thousands of queries and processes simultaneously;
thus, to avoid the known error too many file opens, it is pertinent to set a number greater
than the default value. It was experimentally determined for this scenario that the
optimal number of file descriptors to allow servers to process thousands of queries
simultaneously without producing errors is 8192; this parameter is set with the Linux
command “ulimit -n 8192”.

• Libraries: Library “netinet/sctp.h” must be installed to run the server sockets under
the SCTP, and include all the data handling and connection characteristics of this
communication protocol. Its installation was carried out through the command “sudo
apt install libsctp-dev” and is executed in the following way “gcc mysocket.c –o
mysocket.out –lsctp”. Library “pthread.h” is necessary to run the C program, from the
multithreaded client or server socket, using command “gcc mysocket.c –o mysoc-
ket.out –lpthread”. Additionally, tool “glxinfo”, by the command “apt-get install
mesa-utils” was executed, where the MESA library was installed, which provides a
generic implementation of OpenGL, which is an Application Programming Interface
(API) cross-platform graphics that specifies a standard software interface for three-
dimensional (3D) graphics processing hardware [61,62]. In this sense, to extract the
information from the computer’s graphic card, the command “glxinfo | grep OpenGL”,
when the first connection of each SE with the SM was established.

5.4. Experiments and Results

This section describes the tests performed to evaluate the response times of processing
the queries as well as CPU consumption of servers, and thus, the performance of the
methodology developed. An efficient load balancer is able to distribute tasks without
stressing a server (cpu usage 100%). Experiments are related to location awareness (differ-
ent client location), energy awareness (allocation of necessary computational resources),
and automatic categorization of services and servers (using our proposed rankings).

Tests are performed considering the delay times between Client 1 (New York) and
the servers presented in Table 12 which are the average of five repetitions. The delay time
between Client 1 (New York) and the Master Server (San Francisco) is smaller than the one
between Client 1 and Remote Server II (Singapore), since the distance of the latter is greater.
Experiments were performed during March 2021.
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Table 12. Delay times between Client 1 and servers.

From
(Client 1) To Delay

(ms)

New York San Francisco (Master Server) 75.7600
New York San Francisco (Local Server) 75.5479
New York Frankfurt (Remote Server I) 84.2000
New York Singapore (Remote Server II) 247.7850

The α = 0.800 and β = 0.200 values for saaqper f _norm and dscore, respectively, are used
to calculate the saaqscore value. The normalized baseline value for this scenario is 5.380 as
we explain the calculation in Section 4.2.1. Table 13 shows the saaqscore values, where the
ones marked as green are the suitable servers for the corresponding query.

Table 13. Assignment query process based on saaqscore.

Server

Query
Master Remote I Remote II Local Renamed

Images processing 7.645 −0.055 −0.455 0 Type 1
Web and apps 6.725 1.785 1.385 1.769 Type 2
Word processing 7.928 1.219 0.819 1.203 Type 3
Synchronization 7.504 5.500 5.600 5.380 Type 4
Localization by images 8 1.219 0.819 1.203 Type 5
Localization by Ip address 7.645 5.500 5.600 5.380 Type 6

The green marked scores are the values that comply with the normalized baseline.

Test 1: Average Response Time for each type of Query. The objective of this test is to
determine the average response times of five repetitions for each type of query generated
from Client 1. Figure 3 shows the results obtained in this test. The query with the highest
average response time is the Image Processing query (2.4767 s), since it sends and receives
an image of 1.8 MB, followed by the Word Processing query with response time in 0.6752 s.
The query with the shortest response time is the Web query (0.2252 s). The Synchronization
query performed in 0.3074 s; Location by Image query was executed in 0.3752 s, while
Location by IP address was executed in 0.2303 s in average. Five of the six types of queries
obtained an average response time less than 1 s. Note that the times obtained were affected
by the network delay between the servers, already specified in Table 12.

Figure 3. Average response times with respect to the type of request.

Test 2: Performance for Simultaneous Connections. With this test, we determine the
performance of the developed architecture, when 20, 100, 500, 1000, and 2000 simultaneous
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connections of each type of query are generated by Client 1 (six types of queries), including
an extra one which refers to a random type query (seven types of queries in total) for a more
real scenario where several clients perform different type of request. The scenario used
in this test is the same as Test 1, under the same saaqscore and delay conditions. In order
to simplify the name of queries, we renamed the Image processing query as Type 1, Web
queries as Type 2, Word Processing query as Type 3, Synchronization query as Type 4,
Localization by Images query as Type 5, Localization by IP address as Type 6, while random
query (any of the six types of queries) as Type 7.

Figure 4 shows the maximum, minimum, and average response times obtained in this
test. Response times increase by staggered increasing the number of connections that are
generated regardless of the type of query. This effect is produced due to the queued which
is generated in the Distribution Layer made up of the Master Server, the more connections
are generated, the longer queries take a long time to be assigned and answered. Queuing
becomes noticeable after 500 connections; below this number, queuing has no effect on
response times; it can be observed especially through the maximum time in Figure 4.

Figure 4. Response times with respect to the number of connections.

On the other hand, Type 4 (Synchronization) and Type 7 (Random) queries, as can be
seen in Figure 4, are the ones that present the greatest increase in maximum response times
because of their dynamic allocation, i.e., a set of queries can be served by the Master Server,
while another set must be assigned to the Local or Remote Servers and implies that the
delay in terms of computational processing has a greater impact on global (time to response
of all queries) and average response time (see Figures 5 and 6).

The Type 4 (Synchronization) query, unlike the rest of the queries, generates a system
call with the command “date”, therefore, the more queries of this type are made, there will
be more calls to the system, which represents a greater delay in terms of computational
processing in comparison to the rest of the queries, although by itself this type of query
does not require high computational resources. For Type 5 (Localization by Images) query
(see Figure 5), the average response time does not show a notable variation when scaling
the number of connections; however, in Figure 6, from 500 connections, Type 1 (Images Pro-
cessing), Type 5 (Localization by Images), and Type 7 (Random) queries start to significantly
increase their global response times, due to queuing in the Distribution Layer.
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Figure 5. Average response times with respect to the type of request from 20 until 2000 requests.

Figure 6. Global response times with respect to the type of request.

The factors that affect the response times in queuing at the Distribution Layer are the
number of threads in the server thread pool and the number of CPU cores. The number of
threads defines, at the software level, how many tasks the server must solve simultaneously,
and at the hardware level, the cores tell us how many tasks at the physical level the
equipment is capable of solving. However, the server tries to grant the limited resource of
the number of CPU cores fairly to all the threads waiting to be executed in their entirety
in order to resolve them pseudo-simultaneously. For this reason, this pseudo-simultaneity
generates a delay, and since in the Master Server the number of threads was defined as
250 and in the rest of the servers as 150, then, when it receives more than 250 connections
it begins to scale significantly the global response times. Note that the Master Server
distributes tasks efficiently between itself and the servers (local or remote), i.e., the Master
Server also responds to queries from clients.

Regarding CPU consumption, in Figure 7, the server with the highest CPU activity is
the Local Server for query Type 4 (Synchronization) and 6 because it is the most suitable in
terms of saaqscore (up to 80% approximately, see Table 13). Additionally, it can be observed
that from 500 connections of Type 7 (random queries), activity was registered in the Remote
servers, which implies that the load balancer (Master Server) perceived greater activity in
the Local Server, and therefore decided to assign part of the tasks to the rest of the Remote
Servers. It is important to highlight that the metadata information is sent every 4 s to the
Master Server in order to know the state of the server (each Local and Remote Servers
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send metadata information to the Master Server), for this reason, the longer the time the
architecture was stressed, the more efficient the load balance was.

Figure 7. Average CPU consumption with respect to the numbers of connections.

The performance obtained from the middleware in terms of response time is related to
the capacity of the master server to receive and attend to the queries. Queuing becomes
noticeable for 500 and more concurrent connections, since the pool of threads for the master
server was established to 250 by experimentation according to the resources of this server.
Different hardware configurations require changes in the number of threads of the server
that it can handle simultaneously.

Test 3: Performance by different Client Locations. The objective of this test is to determine
the impact of the client location from where the queries are generated and additionally to
verify if the existence of a server close to the client contributes to obtain better response
times as part of the proposed task assignment scheme.

For this test, there are seven evaluating scenarios since seven different geographical
locations of servers are available in the Digital Ocean service (see Figure 8). Due to only
Type 4 (Synchronization) and Type 6 (Localization by IP address) queries being able to
be performed by the Local and Remote Servers according to the saaqscore (see Table 13),
their saaqscore values are modified to comply (as shown in Table 14 ) and therefore evaluate
the client location performance.

Figure 8. Location of clients available in digital ocean.
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For O1 and O2 scenarios, the saaqscore values are shown in Table 15. According to this
table, the Master Server is able to serve all the types of queries, as can be seen in the green
boxes, and for Type 4 (Synchronization) and 6 (Localization by Images) queries, the first
candidate is the Local Server in San Francisco, followed by the Master Server, then Remote
Server I in Frankfurt, and lastly Remote Server II in Singapore.

Table 14. Client location and most suitable servers for Type 4 (Synchronization) and Type 6 (Localiza-
tion by IP address) queries.

Scenario Client Location Most Suitable Server

O1 Client 2
(San Francisco—USA)

Local Server
(San Francisco—USA)

O2 Client 3
(Toronto—Canada)

Local Server
(San Francisco—USA)

O3 Client 4
(Frankfurt—Germany)

Remote Server 1
(Frankfurt—Germany)

O4 Client 5
(London—United Kingdom)

Remote Server I
(Frankfurt—Germany)

O5 Client 6
(Amsterdam—Netherlands)

Remote Server I
(Frankfurt—Germany)

O6 Client 7
(Singapore—Singapore)

Remote Server II
(Singapore—Singapore)

O7 Client 8
(Bangalore—India)

Remote Server II
(Singapore—Singapore)

Table 15. Saaqscore values for Scenarios O1 and O2.

Server

Query
Master Remote I Remote II Local

Images processing 7.645 −0.055 −0.455 0
Web and apps 6.725 1.785 1.385 1.769
Word processing 7.928 1.219 0.819 1.203
Synchronization 7.504 7.600 7.700 5.380
Localization by images 8 1.219 0.819 1.203
Localization by Ip address 7.645 7.700 7.750 5.380

The green marked scores are the values that comply with the normalized baseline.

For O3, O4, and O5 scenarios, the saaqscore values described in Table 16 are considered,
where the Master Server is also capable of handling all types of queries. In the case of
Type 4 (Synchronization) and 6 queries, the first candidate is Remote Server I in Frankfurt,
the second is the Master Server, followed by the Local Server in San Francisco and lastly
Remote Server II in Singapore.

Table 16. Saaqscore values for scenarios O3, O4, and O5.

Server

Query
Master Remote I Remote II Local

Images processing 7.645 −0.055 −0.455 0
Web and apps 6.725 1.785 1.385 1.769
Word processing 7.928 1.219 0.819 1.203
Sync 7.504 5.380 7.700 7.600
Localization by images 8 1.219 0.819 1.203
Localization by Ip address 7.645 5.380 7.750 7.700

The green marked scores are the values that comply with the normalized baseline.
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For scenarios O6 and O7, the saaqscore values are described in Table 17, where the
Master Server is capable of handling all types of queries as well. For Type 4 (Synchronization)
and Type 6 (Location by IP address) queries, the first candidate is Remote Server II in
Singapore, followed by Master Server, then Local Server in San Francisco, and lastly
Remote Server I in Frankfurt.

For this test, 2000 connections were generated with types of random queries (Type 7).

Table 17. saaqscore values for scenarios O6 and O7.

Server

Query
Master Remote I Remote II Local

Images processing 7.645 −0.055 −0.455 0
Web and apps 6.725 1.785 1.385 1.769
Word processing 7.928 1.219 0.819 1.203
Sync 7.504 7.700 5.380 7.600
Localization by images 8 1.219 0.819 1.203
Localization by Ip address 7.645 7.750 5.380 7.700

The green marked scores are the values that comply with the normalized baseline.

Regarding the results obtained in this test, it can be observed in Figures 9 and 10 that
the shortest average and total response times were obtained with the client located in the
city of San Francisco, while the highest average and total response times were obtained
with the client located in the city of Amsterdam.

Figure 9. Minimum and maximum response times according to client location.

Figure 10. Global response times according to client location.
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For the average response time, a behavior similar to the ones of the total times was
observed (see Figure 11), where the longest time was obtained with the client in the city of
Amsterdam and the lowest in the city of San Francisco.

Figure 11. Average response times according to client location.

Table 18 shows the network delay between each client and the Master Server, and be-
tween clients and the closest suitable server (Local Server, Remote Server I, or Remote
Server II). Given this information and in addition to that shown in previous figures, it
was determined that the network delay has a considerable effect on the response times
according to the location of the client, as well as the distance between the Master Server
and the nearest suitable server.

Table 18. Average response time and network delay of third test.

Client
Location

Average
Response

Time
(ms)

Client-
Master Server

Network Delay
(ms)

Master-
Nearest

Suitable Server
Network Delay

(ms)

Client-
Nearest

Suitable Server
Network Delay

(ms)

San Francisco 19.1 0.6578 0.5980 0.6016
Toronto 2602.3 59.0250 0.5611 59.1670
Frankfurt 5654.6 157.4379 158.5471 0.5799
London 5074.5 144.6109 158.5580 13.5938
Amsterdam 8624.4 193.2961 158.5583 18.6036
Singapore 6533.0 186.0983 186.5254 0.4039
Bangalore 7518.7 173.2195 186.5140 33.6762

In the case of the client in the city of San Francisco, the fact of having a delay of only
0.5 milliseconds (ms) with respect to the Master Server and the Local Server (see Table 18,
row 2), both also located in San Francisco, guaranteed to obtain average response time of
19 ms approximately.

In the case of clients in Singapore and Bangalore, despite the fact that the former had a
greater delay with respect to the Master Server, it obtained better average response times
due to the fact that it had an remote server (Remote Server 2) located in the same city
of Singapore as opposed to the client in Bangalore which had a delay of 33.67 ms with
respect to the nearest remote server. The client in Amsterdam obtained the highest average
response time of the entire test, given that its delay with respect to the Master Server
was the highest in the entire test (193.30 ms) and with respect to its closest remote server
(Remote Server I—158.56 ms), it was also the highest among clients located in Europe.
By not having a remote server in the same location as the client, response times are high.

Finally, with respect to CPU consumption, a record is taken of the CPU activity in the
server closest to the clients in each test. As can be seen in Figure 12, the Local Server in
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San Francisco registered the highest average CPU activity with 13% for the client located
in Toronto. In Europe, for the client, the remote server in Frankfurt recorded the highest
CPU activity with 7% average usage, while in Asia, in the scenario in Bangalore, the remote
server in Singapore, recorded the highest activity with 11% average CPU occupancy.

Figure 12. Average CPU consumption by client location.

Discussion: Regarding the impact of delay in response times, it was partially determined
by the distance between the Master Server, the remote servers, and the clients. Generating
the queries in the same location of the Master Server and Local Server (San Francisco),
the average response time did not exceed 70 ms. That is, the incidence of delay was
significantly reduced, leading us to determine that the process of load balancing, query
allocation, and the SCTP protocol ensured fast response times. On the other hand, in the
generation of queries from locations that are distant from the Master Server, a factor that
considerably improves response times is having a remote server in the same location of
the client, as happened in the case of Singapore and Frankfurt. This determines that the
strategy for assigning queries to the remote server closest to the client was optimal and
fulfilled its objective of reducing response times.

6. Conclusions and Future Works

In this work, we proposed a characterization method for distributed servers in Ubi-
comp environements, where the computational resources of servers are taken into account
for better response times. A heterogeneous architecture, with devices with different capac-
ities acting as servers and clients at the same time, makes traditional load balancers not
suitable for this scenario.

Preliminary experiments under the scenarios where distance and workload are con-
sidered, demonstrated the viability of our proposal. All generated queries reported having
received their corresponding responses in all the tests carried out, which determines that
both the SCTP protocol and the middleware of communication developed under all scenar-
ios guaranteed the integrity of the query and response data.

Our proposal was able to distribute the loading, showing during experiments a
maximum use of CPU around 80% for the Local Server and distributing the queries to
remote servers when this value was reached (2000 simultaneous requests). However, since
metadata information about the remote servers state are sent every 4 s, an optimal real-time
assignment is not possible since if the Master Server is able to assign thousands of queries
in less than 4 s, all queries will be attended to by the most suitable server, overloading it.

We are currently working on a server-state prediction method based on the use of
server resources and the complexity of the queries for a better query assignment. The size
of data sent by the queries is another factor to be included. Moreover, a dynamic network
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delay will be integrated, considering the network congestion during the assignment process.
Experiments for a correct delay network impact on the saaqscore, i.e., α and β values, will
also be evaluated in the future.
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