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Abstract

This paper proposes a novel real option (RO)-based network investment assessment
method to quantify the flexibility value of battery energy storage systems (BESS) in dis-
tribution network planning (DNP). It applied geometric Brownian motion (GBM) to
simulate the long-term load growth uncertainty. Compared with commonly used stochas-
tic models (e.g. normal probability model) that assume a constant variance, it reflects the
fact that from the point of prediction, uncertainty would increase as time elapses. Hence,
it avoids the bias of traditional net present value (NPV) frameworks towards lumpy invest-
ments that cannot provide strategic flexibility relative to more flexible alternatives. It is for
the first time to adopt the option pricing method to evaluate the flexibility value of distri-
bution network planning strategies. To optimize the planning scheme, this paper compares
the static NPVs and flexibility values of different investment strategies. A 33-bus system
is used to verify the effectiveness of the formulated model. Results indicate that flexibility
values of BESS are of utmost importance to DNP under demand growth uncertainties. It
provides an analytical tool to quantify the flexibility of planning measures and evaluate the
well-timed investment of BESS, thus supporting network operators to facilitate flexibility
services and hedge risks from the negative impact of long-term uncertainty.

1 INTRODUCTION

While numerous countries and regions have set ambitious car-
bon neutrality targets, the low-carbon development has led to
a major energy paradigm shift. The increasing penetration of
distributed energy resources (DERs), particularly those behind
meters, leads to significantly volatile and unpredictable overall
electricity demand [1]. For example, as reported by National
Grid UK, the growing penetration of electric vehicles (EVs)
could lift peak power demand by between 5 and 8 GWs by
2030. The situation is further aggravated by extensive electrifica-
tion of heating and other sectors. These inevitable uncertainties
pose high risks to distribution network planning. This may lead
to a high likelihood of overinvestment because traditional net-
work capacity reinforcement requires lump-sum investment.
Conventional methods may cause a considerable portion of idle
capacity and inefficient utilization of network infrastructure [2].
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To hedge the risks in distribution network planning, alternative
smart technologies can be adopted to enhance planning flexibil-
ity by deferring expensive traditional solutions until uncertainty
unfolds over time [3].

Battery energy storage systems (BESS) can reduce system
peak load and hence are essential to enable networks to inte-
grate more renewable energy and volatile demand [4]. Thus,
incorporating BESS into distribution network planning adds
strategic opportunities for network reinforcement, which is an
alternative to increase network investment flexibility and avert
considerable overinvestment [5]. The investment flexibility dis-
cussed in this paper represents the capabilities of distribution
network operators (DNOs) to defer investment in response to
uncertainties.

Many researchers have studied the synergy between optimal
BESS planning and distribution network upgrades. Tech-
nical and economic assessments are conducted to build
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optimization models for optimally sized and sited BESSs [6, 7].
The existing literature normally disregards the optimal invest-
ment time of BESS, leading to a bias towards lumpy investment
strategies. Multi-stage investment is a widespread method to
capitalize on the flexibility of strategic decision-making to
address the risks of lumpy investment under long-term demand
uncertainty. Diverse multi-stage models are proposed in the
existing literatures. Paper [8] proposes a multi-stage expansion
planning strategy for a district energy sector to optimize invest-
ment decisions. Paper [9] designs a multi-stage and stochastic
planning model to integrate BESS and reactive power sources to
increase the penetration of renewable generation. Papers [2] and
[10] propose multi-stage distribution network planning methods
to minimize the net present value (NPV) of the total investment
and operational cost. However, the investment time intervals
are fixed in these papers, that is, the optimal investment time is
not considered in the planning. Because investment time is pre-
determined, whatever circumstances evolve, fixed multi-stage
frameworks fail to unlock the flexibility of investment options
fully.

In terms of flexibility assessment of BESS, some papers put
an emphasis on optimization. For instance, paper [11] devel-
ops an optimal day-ahead scheduling model for multi-carrier
BESS to assess its planning, operation, and flexibility contri-
bution. Paper [5] investigates the energy storage allocation and
investment optimization in terms of compressed air energy
storage, pumped hydro storage, lithium-ion battery, and fly
wheel. Nevertheless, most literature only addresses the flex-
ibility valuation problem in the short run, for example, the
energy scheduling stage. Limited efforts are devoted to quantify-
ing the demand-side flexibility values from distribution network
planning.

Compared to the existing investment assessment approaches,
real option (RO)-based methods offer a well-founded frame-
work to assess planning flexibility under long-term uncertainty
[12]. Each planning scheme can be modelled as a portfolio of
ROs that can be considered the right but not the obligation to
perform investment [13]. Thus, their time values are incorpo-
rated into network planning. Some studies employ RO to solve
transmission system planning problems. From the perspective
of social planners, papers [14] and [15] present RO-based
economic models for transmission expansion planning but do
not specifically model power systems with detailed physical
features.

In summary, there is very limited literature addressing
distribution network investment (DNI) using RO. Although
the paper [16] uses RO in distribution networks to quantify
the flexibility value of demand response (DR) contracts, it
only addresses the uncertainty of electricity prices to enable
aggregators to hedge potential risks in the electricity mar-
ket. However, volatile electricity prices are not the driving
factor for distribution network reinforcement. Thus, the
proposed model in [16] does not apply to distribution net-
work planning. In the demand scenarios network innovation
allowance (NIA) project [17], Electricity North West devel-
oped the RO-based assessment framework for DR under
uncertainty in [18]. Although these models quantify the eco-

nomic value of DERs against alternative investment strategies,
they omit the physical electric network, the electric power
flow and the corresponding operational constraints. Thus,
it may lead to unreasonable economic assessment results,
which inevitably limits its scalability for real-world distribution
networks.

To address the research gap, this paper proposes an RO-
based investment assessment model for BESS in distribution
network planning (DNP), considering load growth uncertain-
ties. Firstly, stochastic models are developed to model the
uncertain behaviours of demand growth and renewable energy
resources (RERs). After that, the expected incremental social
welfares (ISWs) are estimated for BESS and traditional rein-
forcement methods through the investment revenue assessment
model. This model evaluates the economic benefits from DNI
portfolios when optimizing the operation of the whole distri-
bution network. Thereafter, ISWs are input to the RO-based
valuation model to quantify the flexibility values of avail-
able options embedded in DNP. The problem statements and
proposed models are further illustrated as below.

1.1 Problem statement

According to discount cash flow (DCF), upgrading projects are
only carried out when the NPV of expected revenue can at
least offset relevant costs. However, when assessing irreversible
investment in power systems, the opportunity cost of invest-
ing an asset now rather than deferring it can be very high under
even moderate uncertainties . Specifically, even though the static
NPV of immediately investing BESS may not be big, it enables
the option of lumpy and expensive investment to be alive until
circumstances turn most favourable for exercising the option.
By ignoring the value of deferral options, the cost-benefit anal-
ysis of multiple planning strategies only leads to now-or-never
decisions that prevent investors from making or revising deci-
sions in the future. As a result, since the conventional DCF
planning framework uses static cash flows to assess planning
solutions, it has a bias towards lumpy investment compared
to more flexible alternatives that enable planners to react to
unfolding information. Since ‘deferral options’ embedded in
planning investment portfolios can offset the negative impact
of uncertainties, it is essential to propose a novel method to
quantify them fairly, which are added to DNI portfolios.

1.2 Real option and investment assessment

Any attempt to assess the flexibility value (i.e. deferral option
value) embedded in strategic DNI portfolios naturally leads to
the concept of RO [3]. Borrowed from financial mathemat-
ics [19], an RO can be regarded as the option to defer and
adjust investment decisions to solve uncertainty. Unlike tradi-
tional DCF, which assumes a passive management approach,
RO seeks to value the flexibility embedded in an investment
opportunity, for example, the flexibility of delaying the invest-
ment through time . The RO framework enables DNOs to make
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2780 CHENG ET AL.

decisions on whether, how, and when BESS versus traditional
network reinforcement assets should be implemented. There-
fore, planners can seize these options to reduce the losses from
overinvestment by adapting their future actions to respond to
evolving future conditions.

The proposed methodology consists of stochastic modelling,
an investment revenue assessment model and an RO-based flex-
ibility valuation model. The assessment model quantifies cash
flows originated by implementing DNI measures as an analogy
for payoffs in economics. The result of the assessment model
is input into the RO-based flexibility valuation model, which
quantifies the value of available options embedded in different
planning schemes, that is, corresponding flexibility value.

The main contributions of this paper are summarized below:

∙ This paper proposes a comprehensive method to evaluate
the flexibility value of BESS in network planning, which
can enable a more scalable analysis for DNOs from flexi-
ble investment. Unlike most planning models that use DCF
to incorporate BESS in distribution network planning, this
paper proposes an RO-based method to evaluate its flexibil-
ity value of BESS in network planning that can avoid the bias
of traditional DCF frameworks towards lumpy investments
relative to more flexible alternatives.

∙ Considering traditional fixed multi-stage investment strate-
gies undervalue the flexibility in investment, this paper
incorporates the option value into planning to investigate the
impact of optimal investment time on DNI. The proposed
valuation model takes the dynamic investment into account
to hedge planning risks under long-term uncertainties, thus
helping network operators to rationalize the design of flex-
ibility contracts for BESS. Unlike the existing literature that
assumes that investment is immediately performed or follows
predetermined multi-stages, the proposed model can avoid
the bias towards lumpy investments relative to more flexible
alternatives.

∙ To better capture the stochasticity in demand growth, this
paper employs a geometric Brownian motion (GBM)-based
forecast model to represent the positive skewness of volatile
load growth. Compared to commonly used stochastic mod-
els that assume constant variance, GBM can reflect that
uncertainty would increase as time elapses from the point of
prediction. Such a model has a lognormal probability density
function to better capture the skewness of load growth uncer-
tainty. Unlike fixed variance models, the proposed method
adopts variable variances to reflect the fact that from the
point of prediction, as time elapses, the accuracy of load
forecast would decrease.

The remainder of this paper is organized as follows. Sec-
tions 2 and 3 illustrate the investment revenue assessment and
RO-based flexibility valuation models. Section 4 presents the
solution algorithm. Section 5 validates the performance of the
proposed method through a modified IEEE 33-bus network.
Section 6 summarizes the key findings in this paper.

2 INVESTMENT REVENUE
ASSESSMENT MODEL

Three parts are presented in this section: component-level
modelling, network operation modelling, and incremental
social welfare modelling. The network component modelling
incorporates uncertain demand growth rates and renew-
able generation, that is, photovoltaics (PVs), and wind tur-
bines (WTs). The network operation model optimizes the
energy production cost. The operation cost reduction due
to network investment is thus cumulated to assess the
investment revenue through ISW. They are illustrated as
below.

2.1 Component-level modelling

2.1.1 Stochastic modelling of peak demand
growth rates

The uncertainty of load growth rate is modelled by developing
the GBM model. The temporal change of load demand follows
the underlying process:

dS (t ) = 𝜇S (t ) × dt + 𝜎S (t ) × dW (t ) (1)

dW (t ) = 𝜀(t )(dt )
1

2 (2)

E (S (t )) = S(0) × e𝜇t (3)

where S (t ) is the time-variant demand growth rate, W (t ) is
the Wiener process, and 𝜀(t ) is a serially uncorrelated and nor-
mally distributed random variable. Equation (1) denotes the
mathematical expression of GBM. The former term mod-
els deterministic trends, while the latter models unpredictable
events occurring during the time horizon. Equation (2) illus-
trates the continuous-time stochastic process, that is, the Wiener
process. Equation (3) represents the corresponding expected
value of load growth at time t . The stochastic model indicates
that the current value of S (0) is known to the planner, but the
future growth rates are unknown, which follow lognormal dis-
tributions with a variance that grows linearly with time. Thus,
the more distant the future positions, the more uncertain the
circumstance is.

2.1.2 RER modelling

This paper considers PVs, WTs, and BESS as DERs in distri-
bution network planning. Solar output power [19] is shown as

PPV = 𝛼 × As × G0 ×
1
∫
0

f (G∕G0; 𝜑G ; 𝜎G ) (4)
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CHENG ET AL. 2781

where G∕G0 scales G into [0,1]. The stochastic dynam-
ics of PV production are modelled with 𝜑G and𝜎G, which
can be estimated through fitting Beta distribution into the
mean and standard deviation of the observed solar irradi-
ance. The solar output power is set as ±5% of the predicted
value.

The extractable wind power [20] is shown as (5).

PWT =
1
2

CP𝜌AV 3
wt (5)

2.2 Operation modelling of distribution
networks

2.2.1 Objective function

The objective function of the distribution network operation
is to minimize the total electricity supply cost, including the
generation cost of thermal generating units and RER units,
the power loss cost, and the load shedding cost, as shown in
(6)–(11).

min C = CWT +CPV +CTG +Cshed +Cgrid (6)

CWT =
∑

j

pWT × P
i, j

WT (7)

CPV =
∑

j

pPV × P
i, j

PV (8)

CTG =
∑

j

(
A
(

P
i, j

TG

)2
+ BP

i, j

TG +C

)
(9)

Cshed =
∑

b

C i
LL,bPLb,i (10)

Cgrid =
∑

l

pgrid,i × Ploss,l ,i (11)

Equation (6) minimizes the energy supply cost of WTs, PVs,
and traditional generators, the load shedding cost, and the grid
loss cost. The energy supply costs can be calculated through
(7)–(9), respectively. As shown in Equation (10), the load shed-
ding cost Cshed is the cumulated product of the unsupplied load
and value of lost load (VOLL). As shown in (11), the grid loss
cost Cgrid is derived through the real-time electricity price and
the energy loss.

2.2.2 Network operating constraints

The distribution network operation model is subject to the
power flow constraints, the network capacity and security
constraints, and the load shedding constraints, as clarified

below.

PFb,c,i = Gb,c

(√
Vb,i −

√
Vc,i

)
− Bb,c

(
𝜃b,i − 𝜃c,i

)
+Gb,c

⎛⎜⎜⎝
(
𝜃b,i − 𝜃c,i

)2

2

⎞⎟⎟⎠ (12)

QFb,c,i = −Bb,c

(√
Vb,i −

√
Vc,i

)
− Gb,c

(
𝜃b,i − 𝜃c,i

)
−Bb,c

⎛⎜⎜⎝
(
𝜃b,i − 𝜃c,i

)2

2

⎞⎟⎟⎠ (13)

V ≤ Vb,i ≤ V̄ (14)

PPV ≤ PPV ≤ PPV (15)

PWT ≤ PWT ≤ PWT (16)

PTG ≤ PTG ≤ PTG (17)

0 ≤ PLb,i ≤ PDb,i (18)

Constraints (12) and (13) enforce the active and reactive
power balance based on the new optimal power flow (OPF)
model in [21]. Since the traditional OPF model cannot address
power losses, the linear OPF model provides a more accurate
calculation. Constraint (14) enforces the nodal voltage security.
Constraints (15)–(17) ensure the electricity generation volumes
of WT, PV, and traditional generators are within their capac-
ity. Constraint (18) ensures that the unsupplied load does not
exceed the actual demand at each bus [22].

2.2.3 BESS constraints

The operation constraints of BESS are illustrated as below

Qi = Qi
sc + Qi

sd (19)

Qi
sc ≤ 0 (20)

Qi
sd ≥ 0. (21)

Ei
− ≥ S i

min (22)

Ei
+ ≤ S i

max. (23)
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2782 CHENG ET AL.

Ei
𝜆
= −𝜆

(
𝜂inPBC

i +
1
𝜂out

PBD
i

)
(24)

Ei
− ≤ Ei−1

− + Ei
𝜆
− 𝜆

𝜂loss

2

(
Ei
− + Ei−1

−

)
(25)

Ei
+ ≥ Ei−1

+ + Ei
𝜆
− 𝜆

𝜂loss

2

(
Ei
+ + Ei−1

+

)
. (26)

∑
s∈ΦSB

PBC
b,s,i

+ PDb,i +
∑

c

PFb,c,i =
∑

j∈ΦGB

(∑
j

P
i, j

WT +
∑

j

P
i, j

PV

+
∑

j

P
i, j

TG

)
+

∑
s∈ΦSB

PBD
s,i + PLb,i (27)

∑
s∈ΦSB

QBC
s,i + QDb,i +

∑
c

QFb,c,i =
∑

j∈ΦGB

(∑
j

Q
i, j

WT

+
∑

j

Q
i, j

PV +
∑

j

Q
i, j

TG

)
+

∑
s∈ΦSB

QBD
s,i + QLb,i . (28)

Es,b,i = 1 = E0
s (29)

Es,b,i = E0
s +

i−1∑
i = 1

𝜂in × PBC
s,b,i

−

i−1∑
i = 1

PBD
s,b,i

𝜂out
(30)

0 ≤ Es,b,i ≤ YbE rated
s , s ∈ ΦSB (31)

i∑
i = 1

𝜂in × PBC
s,i =

i∑
i=1

PBD
s,i

𝜂out
(32)

Constraint (19) demonstrates that the net energy injection
Qi for BESS is the sum of charging and discharging power
injections at time i. Constraints (20) and (21) ensure the charg-
ing and discharging limits. Constraints (22) and (23) enforce
BESS’s energy lower and upper bounds. Constraints (24)–(26)
implement the charging and discharging constraints during the
scheduling time for BESS. Constraints (27) and (28) ensure the
active and reactive power balance, respectively. BESS acts as
loads in charging mode and as generators at discharging mode.
Thus, the charging power of BESS contributes to the total elec-
tricity generation, while the discharging power contributes to
the energy consumption. In such a case, BESS can mitigate net-
work congestion by: (1) increasing energy consumption when
there is low demand or high penetration; (2) providing addi-
tional generation capacity when there is high demand or low
generation. Constraints (29) represent that at the beginning of
daily scheduling, E0

s is stored in BESS at time i = 1. As shown
in (30), the stored energy in the subsequent time slots is a func-
tion of the initial constant stored energy E0

s , the charging and
discharging power, and the corresponding efficiencies. Con-
straint (31) limits the capacity of candidate BESS. Constraint
(32) ensures operational consistency, that is, the initial value

of the stored energy equals that at the end of each scheduling
period.

2.3 Incremental social welfare

To assess the payoffs of different investment options, this part
cumulates the operation cost savings on time horizon T to rep-
resent the incremental social welfare. It can evaluate the present
value of economic profits from exercising planning measures in
year t . The detailed model formulation is clarified as follows:

�
(
n, 𝜔, tn,Xtn

)
= PV (ISW )

𝛾,𝜔,tn
− Itotal,𝜔,tn (33)

PV (ISW )
𝛾,𝜔,t =

T∑
y=t

ISW𝛾,𝜔 (y)

(1 + r )y (34)

ISW𝛾,𝜔 (y) =
8760∑
i=1

(
C total

y,i,𝜔,base −C total
y,i,𝜔,inv

)
(35)

Itotal,𝜔,tn =
∑

s∈ΦSB

YsIs,𝜔,tn

(1 + 𝜌)tn
+

∑
l∈ΦCL

Zl Il ,𝜔,tn
(36)

C total
j ,i,𝜔 = Csup, j ,i,𝜔 +Cshed, j ,i,𝜔 +Cgird, j ,i,𝜔 +CCj ,i,𝜔. (37)

CCj ,i,𝜔 =

Φl∑
l=1

(
p f j ,i,l −Cl

)
×Uc (38)

Constraint (33) defines the payoff function Π(n, 𝜔, tn,Xtn
)

which is calculated by subtracting the investment cost from
the present value of ISW. As defined in (34) and (35), ISW is
the cumulated operation cost savings throughout each invest-
ment stage, which is discounted to the present value through
the discount rate r . It should be noted that both the traditional
network investment and BESS can mitigate network congestion
and thus reduce operation costs, yet with different approaches.
Traditional wire solutions can increase the branch capacity Cl ,
while BESS can reduce peak power flows p f j ,i,l . Equation (36)
represents that the total investment cost consists of BESS and
feeder expansion costs. The BESS investment capital cost drops
with a decay rate 𝜌. The operation and investment assessment
models are coordinated through Equations (37), representing
that the total operation cost consists of the energy supply, load
shedding, power loss, and network congestion cost. The net-
work congestion cost is formulated in (38) based on the C/D
method proposed in [23].

3 RO-BASED FLEXIBILITY
VALUATION MODEL

The objective function of flexible distribution network planning
is to maximize the expectation of the discounted payoff func-
tion Π(n, 𝜔, tn ) so that optimal investment decision-making can
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CHENG ET AL. 2783

be achieved. In other words, the planning scheme is optimized
when the expected net profits from the well-timed investments
are maximized in terms of BESS and capacity. It is formulated
as

F (n, 𝜔, tn ) = max E
[
Π (n, 𝜔, tn )] , s × t × tn ∈ (0, T )

(39)

where E [⋅] denotes the expectation operator. Since it is
expected to obtain the total maximized payoffs with uncer-
tain decision-making in each investment stage, the problem
reduces to seeking the optimal investment time through-
out the planning horizon along each sample path. To solve
the problem, this paper refers to Bellman’s principle of
optimality, that is, the optimal decision-making policy has
the basic principle that regardless of the initial state and
decisions, the remaining decisions must constitute an opti-
mal policy in terms of the state resulting from the first
decision. Thus, the objective function can be expressed as
below

F (n, 𝜔, tn ) = max
{
Π (n, 𝜔, tn ) ,E∗

tn

(
F
(
n + 1, 𝜔, tn+1

))}
.

(40)

𝜙∗
(
𝜔, tn,Xtn

)
= E∗

tn

(
F
(
n + 1, 𝜔, tn+1

))
(41)

where F (n, 𝜔, tn ) represents the flexibility value of all invest-
ment options available at time tn, while E∗

tn
(F (n, 𝜔, tn+1) is

defined as the continuation value, that is, the estimated payoff
from continuation rather than exercising the investment option
at time tn. Equation (40) demonstrates that the optional stop-
ping policy (i.e. the optimal investment time for each planning
measure) is determined by comparing the economic value of
an immediate investment, that is, Π(n, 𝜔, tn ) and the value of
deferring the investment to the future, that is, E∗

tn
(F (n, 𝜔, tn+1).

Equation (41) uses 𝜙∗(𝜔, tn,Xtn
) to demonstrate the continua-

tion value of available investment options at time tn. Since the
investment time of available options at tn is uncertain, the con-
tinuation value is unknown to the system operator. This paper
uses the least square method (LSM) algorithm to estimate the
continuation value. The ways of estimating the continuation
value and obtaining the optimal investment time are formulated
in (42)–(46).

E∗
tn

(F
(
n + 1, 𝜔, tn+1

)
=

min

𝜕

Ω∑
! = 1

[
Π
(
n + 1, 𝜔, tn+1, Xtn+1

)
(1 + r )−1

−

P∑
p = 1

𝜕p × Lp

(
Xtn

)]2

(42)

Lp

(
Xtn

)
= exp

(
−

Xtn

2

)
eXtn

p!

d p

dX
p

tn

(X
p

tn
e−Xtn ) (43)

𝜙∗
(
𝜔, tn,Xtn

)
=

P∑
p=1

𝜕∗p ⋅ Lp

(
Xtn

)
. (44)

FIGURE 1 Framework of the proposed methodology

𝜙∗
(
𝜔, tn,Xtn

)
≤ Π

(
n, 𝜔, tn, Xtn

)
(45)

F
(
X𝜏(𝜔)

)
=

1
Ω

Ω∑
! = 1

Π
(
n, 𝜔, 𝜏 (𝜔) ,X𝜏(𝜔)

)
× (1 + r )−𝜏(𝜔)

.

(46)

where Lp (p = 1, 2, … , P) is the orthonormal basis of the state
variable Xtn

. Equation (42) estimates the continuation value
E∗

tn
(F (n + 1, 𝜔, tn+1) by regressing from the discounted future

payoffs, that is, Π(n + 1, 𝜔, tn+1, Xtn+1
)(1 + r )−1 on a linear

combination. Equation (43) represents the orthonormal basis
of the used linear function of the state variable Xtn

. The opti-
mal coefficient 𝜕∗p can be obtained by solving the optimization
problem (42) and (43). After that, the estimated continuation
value can be derived through (44). Working backwards from
tn = T to t0 = 0, the optimal investment time can be obtained
by comparing the value from the continuation and the ‘payoff ’
from immediate exercising. As illustrated in (45), the investment
option will be exercised only when the current payoff is larger
than the continuation value. The comparison criteria are per-
formed for all sample paths calculated from the uncertainty
model throughout the investment horizon. The loop works
backwards from the end of the planning stage and does not end
until n = 0. At the maturity of investment options, the contin-
uation value is zero. Equation (46) calculates the option value,
that is, the flexibility value based on the optimal investment time
𝜏(𝜔) for sample path 𝜔. As shown in (46), the flexibility value is
obtained by discounting and cumulating the payoffs throughout
the time horizon.

The stochastic models for RER and load growth, investment
revenue assessment, and flexibility valuation models are coor-
dinated to achieve the optimal DNP, as shown in Figure 1.
The stochastic model produces sample paths based on Monte
Carlo. For each sample path, the investment revenue assess-
ment model and the RO-based flexibility valuation mode are
sequentially performed to calculate the flexibility values of dif-
ferent planning schemes. The former model assesses cash flows
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2784 CHENG ET AL.

FIGURE 2 Solution algorithm of the proposed methodology

originated by implementing investment measures and input to
the latter model. The latter model quantifies the total value of
available investment options embedded in different planning
schemes. The static NPVs of planning strategies are calculated
from the traditional DCF framework. Finally, by adding and
maximizing the flexibility value and the static NPV value, the
proposed method acquires the optimal planning strategy for the
distribution network.

4 IMPLEMENTATION

The RO-based flexibility valuation model is solved by an algo-
rithm developed from dynamic programming, as shown in
Figure 2. The proposed LSM-based implementation algorithm
is originated from the least-squares approach. This paper uses
it here because: (i) it is an approach that is intuitive, accurate,
easy, and computationally efficient to evaluate American-style
options. Its efficiency has been verified by using a number of
realistic examples; (ii) considering the time horizon is unlikely
to be very large, the proposed implementation algorithm is

fast enough to find the optimal stopping time in network
planning.

The procedures for implementing the proposed method are
summarized as follows:

1. Firstly, the stochastic modelling of DER and load growth
rates is performed to produce sample paths, where the GBM
model and Monte Carlo simulation are applied.

2. The RO-based flexibility valuation model is conducted to
obtain the optimal stopping rule (e.g. the optimal invest-
ment time of different planning measures through all paths)
and the corresponding flexibility values. Specifically, by com-
paring the exercise value that is calculated through network
operation modelling and the continuation value that is
obtained through LSM, the optimal stopping time is found,
working backwards from the last year to the first year.

3. The network operation modelling is embedded in the valu-
ation model, where the load data, the network constraints,
and the siting data of BESS are updated if the sample path
or the time index changes. The operation results are output
to the valuation model to compute the payoff function.
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CHENG ET AL. 2785

FIGURE 3 IEEE 33-bus system

FIGURE 4 Daily PV and WT production curves. PV, photovoltaics; WT, wind turbines.

4. The total values for the planning schemes are calculated by
adding the flexibility value that is obtained from the valua-
tion model and the static NPV that is calculated by the DCF
method.

5 CASE STUDY

To assess the performance of the proposed methodology, a
modified IEEE 33-bus test system is used as a case study, as
shown in Figure 3. This network has eight generating units,
that is, two WTs, two PVs, two diesel generators, and two gas-
fuelled generators [24]. Branch 1 is the most congested network
component and needs reinforcement. The daily PV and WT
production curves are illustrated in Figure 4a, while the daily
electricity price and load profiles are shown in Figure 4b.

TABLE 1 Economic parameters

Parameter Value

Feeder cost coefficient (£/MVA) 100,000

Energy cost coefficient for BESS (£/kWh) 500

Weighted average cost of capital (WACC) 6.9%

The original capacity of all distribution lines is set as 5 MVA.
The economic data are demonstrated as shown in Table 1.
Table 2 illustrates the technical parameters of DERs and BESS.
The parameters of the GBM model are shown in Table 3. The
drift and volatility values are determined by referring to the
National Grid’s annual Future Energy Scenarios Report [25].

Traditionally, expanding the capacity of branch 1 is a capital-
intensive but effective planning strategy with stable load growth.
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2786 CHENG ET AL.

TABLE 2 Parameters of BESSs and DERs

Parameter Value

Maximum power of the micro gas turbine (kW) 300

Minimum power of the micro gas turbine (kW) 100

Maximum power of the diesel generator (kW) 250

Minimum power of the diesel generator (kW) 100

Maximum charging power of BESS (kW) −200

Maximum discharging power of BESS (kW) 250

Capacity of invested BESS (kWh) 200

Capacity of the expanded feeder (MVA) 10

The discount factor for BESS capital costs (%) 15

TABLE 3 Parameters of the stochastic model

Parameter Value

Simulated paths based on GBM 2000

Initial load growth rate (%) 1

Exercise points per year 5

The percentage drift 𝜇 (%) 3

The percentage volatility 𝜎 (%) 51

The correlation coefficient 0.44

However, considering the uncertainty of electricity demand
growth, it introduces high risks for DNOs. In comparison,
investing in BESS can postpone the irreversible investment of
new lines until up-to-date information indicates the investment
is inevitable. Thus, it provides flexible and economical solutions
for DNP. In this case study, expanding branch 1 and investing
in BESS are assumed two investment options available in the
first year. The planning strategies are thus categorized into four
cases:

1. S1: Investing in BESS in the first year;
2. S2: Expanding branch 1 in the first year;
3. S3: Investing in branch 1 and BESS in the first year;
4. S4: Taking no network expansion planning measures in the

first year until further information is obtained.

Given that S3 possesses no available investment options
through the time horizon, there is no further managerial flex-
ibility embedded in it. Specifically, the flexibility value of S3 is
zero.

5.1 Results

Assuming that the planning time horizon is 25 years, the
stochastic behaviour of the load growth rate is simulated on the
time horizon with 2000 paths, as shown in Figure 5. The red
line in Figure 6 represents the expected value of growth rates at
time t , as shown in (3). The black, blue, yellow, and green lines

FIGURE 5 Random behaviour of the demand growth based on the GBM
model. GBM, geometric Brownian motion

simulate peak demand growth predicted by National Grid in its
annual Future Energy Scenarios Report [21]. They represent the
demand growth in four future scenarios, for example, steady
progression, system transformation, consumer transformation,
and leading the way, respectively. As shown in the figure, the
parameters ensure that the average demand simulated growth
rate trajectory (e.g., the red line) is aligned with the four future
scenario trajectories.

Meanwhile, the 2000 simulated trajectories are sufficiently
dispersed around their average to present a broad range of pre-
dicted future scenarios. The stochastic dynamics of demand
fluctuations appropriately reflect the relationship between load
growth uncertainty and time. Specifically, the load growth rate
can be predicted with a small deviation in the distant future, for
example, varying from 0% to 2% in the first year. Nevertheless,
there exists a high diversity of demand growth rates in the last
few years during the time horizon, for example, varying from
−2% to 14% in the last year.

Based on the investment revenue assessment model, the
present values of estimated annual economic benefits and
cumulated net profits from three investment strategies over the
time horizon are diagrammed, as shown in Figures 6, 7, and 8.
They play significant roles in quantifying the flexibility values
of different investment strategies under long-term uncertainty.
These figures indicate the potential payoffs and flexibility val-
ues of different strategies (i.e., investment in BESSs or branch
1 first) under different future scenarios at different future time
points. It can demonstrate that deferring the traditional expen-
sive investment in the first year has higher flexibility values
based on the assumptions in this paper. Considering the focus
of this paper is flexibility evaluation, we think they are essential
in the result analysis. They also illustrate that with time elapse,
the flexibility values of available investment options decrease,
until 0 in the final year over the planning horizon.

Taking Figure 6 as an example, there are three axes, that
is, time, path, and values. The ‘time’ illustrates the future time
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CHENG ET AL. 2787

FIGURE 6 Annual social welfare and cumulated net profit of Strategy 1

FIGURE 7 Annual social welfare and cumulated net profit of Strategy 2

FIGURE 8 Annual social welfare and cumulated net profit of Strategy 4

over the planning horizon (i.e. 25 years). The ‘path’ denotes the
sample paths, that is, the simulated future scenarios in terms
of peak demand growth. The ‘values’ means the annual social
welfare (i.e. the cost reduction) and the cumulated net profit
of strategy 1 (i.e. deploying BESSs in the first year). Figure 6a
shows the various payoffs of deferring the expensive invest-
ment in branch 1 in different time points and different future
demand growth scenarios over 25 years. Figure 6b shows the
cumulated values of deferring the traditional investment, that is,
the flexibility values of available investment options under dif-
ferent predicted demand growth scenarios and investment time

points. As shown in the figure, the annual cost reductions of the
available option vary from around £−5 × 105 to £3 × 105 dur-
ing the time horizon, while the cumulated net profit varies from
£−1.8 × 106 to £1.8 × 106. That means keeping the investment
option of feeder expansion alive could lead to cost reductions
from around £−5 × 105 to £3 × 105 and option values from
£−1.8 × 106 to £1.8 × 106. As shown in Figure 7, the annual
cost reductions of deferring investment of BESSs vary from
£−5 × 104 to £7 × 104, while the option values differ from
£−4 × 105 to £2 × 105. Since there are no flexibility values for
S3, the proposed model is not applied to it. For S4, no measures
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2788 CHENG ET AL.

TABLE 4 Economic parameters ranking of strategies based on the
proposed valuation approach and the traditional DCF method

Strategy

Expected

project value

(× 10
4£)

Static NPV

(× 10
4£)

Flexibility

value

(× 10
4£)

S1 20.797 1.810 18.987

S2 9.022 8.010 1.012

S3 9.816 9.816 0

S4 19.932 0 19.932

are taken initially, thus keeping both options available. Figure 8
presents that the potential cost reductions of both investment
options vary from £−3 × 105 to £3.5 × 105, while the option
values vary from £−2 × 106 to £1.5 × 106. In conclusion, keep-
ing both investment options alive has the highest peak option
value and the lowest valley value.

There are 2000 sample paths at each investment time inter-
val during the planning horizon, for example, 25 years. The
annual social welfare represents the total cost reductions from
exercising available options in a particular year. The cumulated
net profit (e.g. the payoff function Π) represents the cumulated
value of available options, which is the difference of incremental
ISW and reinforcement costs from a particular year to the end
of the time horizon. In other words, it denotes the option value
from keeping options open and enabling them to be exercised
in a particular year.

The RO-based flexibility valuation model is implemented by
initially identifying the continuation value through the LSM
algorithm. Therefore, the optimal stopping rules are generated
for the three planning strategies, which are statistically illustrated
in Figure 9. Each path has an optimal investment time (i.e.
optimal stopping time) of the available option for these three
strategies. Figure 9 aggregates the number of sample paths with
the same optimal stopping time range. The optimal stopping
time of 25 indicates that the available options will not be exer-
cised during the planning horizon. It can be found in Figure 9a
that under the given circumstances, there is a high likelihood of
exercising the available options in the first few years or not exer-
cising them during the whole time horizon for S1. For S2, the
years when the option will be exercised are more decentralized.
In comparison, even though S4 holds two available expansion
options, they are likely to be exercised during the first few years
due to the inevitable requirements for network reinforcement.

Table 4 presents the static NPVs, the flexibility values, and the
total expected values for the four planning strategies. The static
NPVs are calculated from the traditional DCF method, while
the flexibility values are derived from the proposed model. It can
be found that Strategies S1 and S4 have considerable flexibil-
ity values. The economic importance of keeping the investment
option of BESS open and deferring it to the future is around
18.987×104

£. Keeping both investment opportunities alive in
the first year is estimated as 19.932 ×104

£. According to the
traditional method, S3 is the optimal planning scheme, that is,
investing in branch 1 and BESS in the first year. However, since
S3 stops DNO from revising the original investment decision-
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FIGURE 9 Stopping rules for multiple network reinforcement plans

making in the future, it has no flexibility values. The results from
the proposed method suggest that S1 is the optimal planning
scheme under demand uncertainty.

5.2 Discussion

The discussion part presents the sensitivity analysis for key vari-
ables and the performance of the computation simplification
method.

5.2.1 Sensitivity analysis

The sensitivity analysis shows how the flexibility value varies
with stochastic parameters and the time horizons. Firstly, a
sensitivity analysis is performed with different values of the per-
centage volatility in the stochastic model, as shown in Table 5.
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CHENG ET AL. 2789

TABLE 5 Flexibility value and the total value of three strategies with variable values of the percentage volatility

Volatility

Flexibility value(×10
4£) Total value (×10

4£)

S1 S2 S4 S1 S2 S4

0.1 17.53 1.28 16.82 19.34 9.29 16.82

0.2 18.29 1.29 18.03 20.10 9.30 18.03

0.3 18.70 1.30 18.53 20.51 9.31 18.53

0.4 18.99 1.35 19.93 20.80 9.36 19.93

0.5 19.29 1.36 22.69 21.10 9.37 22.69

0.6 19.46 1.38 24.65 21.27 9.39 24.65

0.7 20.48 1.49 27.00 22.29 9.50 27.00

5 10 15 20 25 30 35 40 45
Static NPV (×10^4£)  S3 -41.76 -28.92 -17 -4.28 9.82 20.54 36.61 49.95 65.34
Static NPV (×10^4£)  S2 -39.09 -27.82 -16.17 -4.31 8.01 19.32 32.02 44.83 58.05
Static NPV (×10^4£)  S1 -2.51 -1.56 -1.21 0.75 1.81 2.61 5.05 5.08 5.83
Flexibility value (×10^4£) S4 0.59 3.65 8.81 10.97 19.93 15.65 17.79 18.45 20.61
Flexibility value (×10^4£) S2 0.04 0.29 0.48 1.19 1.35 1.45 1.62 1.77 1.82
Flexibility value (×10^4£) S1 3.54 9.3 13.82 16.34 18.99 19.25 21 22.57 23.72
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FIGURE 10 Flexibility values and NPVs of four planning strategies with variable time horizons

The percentage volatility makes no difference to the static NPV,
which ignores the uncertainty of load growth, that is, £1.81 ×
104, £8.01 × 104, £9.816 × 104, and 0 with the volatility of 0.4
for the four strategies, respectively. Additionally, since S3 holds
no available options, its flexibility value remains zero. There-
fore, Table 5 only presents the flexibility values and total values
of the three strategies, given that higher volatility values imply
larger uncertainty. Table 5 shows that flexibility values rise with
the volatility since the available options are more valuable under
higher uncertainty. Remarkably, S1 is always the optimal strat-
egy until the volatility value is higher than 0.4. Hence, where the
market is uncertain, there is a strong incentive to wait and keep
the investment options alive rather than exercise them. Under
such circumstances, network reinforcement measures should be
deferred until uncertainty gets resolved over time.

Figures 10 and 11 show the effect of the planning time hori-
zon on the results. It can be found that both the flexibility

value and the static NPV value are sensitive to the time horizon.
Specifically, all three numerical results grow accordingly with the
incremental time horizon. With a shorter planning time horizon,
the profit horizon shrinks while the capital costs are constant. In
addition, since the uncertainty grows significantly with increas-
ing time horizons, the flexibility value is more sensitive than
the static NPV value. Thus, there is also a positive correlation
between the total value and the time horizon. In addition, the
total value of Strategy S2 outstrips S1 when the time horizon is
35 years, indicating that investing feeders is more valuable than
the storage system with a longer time horizon.

5.2.2 Computation simplification

This paper uses the test results with the same model param-
eters to evaluate the effectivity of the approximation method,
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2790 CHENG ET AL.

5 10 15 20 25 30 35 40 45
Case S1 1.03 7.74 12.61 17.09 20.8 21.86 26.04 27.65 29.55
Case S2 -39.05 -27.53 -15.7 -3.12 9.02 20.77 33.65 46.6 59.87
Case S3 -41.76 -28.92 -17 -4.28 9.82 20.54 36.61 49.95 65.34
Case S4 0.59 3.65 8.81 10.97 19.93 15.65 17.79 18.45 20.61
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FIGURE 11 Total investment values of four planning strategies with variable time horizons

TABLE 6 Diagnostic test results

Planning

strategy

Actual value

(×10
4£)

Approximation

value (×10
4£)

Time without

approximation (s)

Time with

approximation (s)

Deviation

rate (%)

S1 18.987 18.751 22807.829 5673.428 1.24

S2 1.349 1.362 20900.047 5721.316 0.96

S4 19.932 19.531 22315.102 5655.156 2.01

as shown in Table 6. The elaborate simulation process calcu-
lates the option value without approximation. By comparison,
the value with an approximation is calculated by using the
regression function parameters in the sample to estimate the
continuation values out of the sample. As shown in the table,
the differences in flexibility values between the two methods are
negligible, while the execution time reductions are remarkable.
Thus, the simplification approach is recommended to minimize
the computational time.

6 CONCLUSION

This paper develops an RO-based model to explore the man-
agerial flexibility and time value of DNI schemes. The extensive
case study indicates that the traditional DCF analysis leads
to sub-optimal solutions when it is used to evaluate planning
projects involving managerial flexibility under long-term uncer-
tainty. Additionally, the flexibility value of planning measures is
sensitive to stochastic parameters of load growth. The proposed
approach offers analytical tools for simultaneously assessing
the flexibility values of planning strategies and determining the
optimal solution. Through the proposed method, a trade-off
between the revenues of investment in large traditional feeders
and the flexibility of investment in BESS is achieved.
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NOMENCLATURE

Indices and sets

b, c Index for network node in set ΦB

i Index for scheduling time
j Index for generation units in set ΦGB

l Index for network branch
n Index for time interval in set N

N Set of discrete intervals
s Index for BESS unit in set ΦSB

t , y Index for exercise year
𝛾,𝜔 Index for planning measure and sample path
Ω Set of sample paths from Monte Carlo

ΦB , ΦGB Set of network nodes and generation units
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CHENG ET AL. 2791

ΦSB Set of candidate BESSs
ΦEL , ΦCL Set of the existing line and candidate line

Abbreviations

WT Wind Turbines
DER Distributed Energy Resources

EV Electric Vehicles
DNO Distribution Network Operators
V2G Vehicle-to-Grid
DNP Distribution Network Planning
BESS Battery energy storage systems
GBM Geometric Brownian Motion

RO Real Options
DNI Distribution Network Investment
NPV Net Present Value

Parameters

As Array surface area in square meters
𝜌,A Air density and area swept by blades
𝛼 Solar panel efficiency

G0,G Extra-terrestrial and global horizontal radiation
𝜇 Vector drift of GBM
𝜎 Percentage volatility of GBM

𝜑G , 𝜎G Simulation parameters of stochastic PV production
𝜆 Scheduling time length for BESS

𝜂in, 𝜂out BESS Charging and discharging efficiency
𝜂loss Hourly energy loss of BESS

r The weighted average cost of capital
𝜌 Annual discount rate for BESS investment
𝜏 Stopping time, i.e., investment time

Variables

A Cost factors for traditional generators
Cl Capacity of network branch l

CWT , CPV ,CTG The operation costs of WT, PV, and
traditional generators, respectivelyc

Cshed Cost of unsupplied load
C total

base
,C total

inv Total cost of the base case and the
investment case

Csup,Cshed ,Cgrid ,CCj ,i,𝜔 Energy supply, load shedding,
imported power, and congestion
cost, respectively

C i
LL,b

Value of Lost Load (VOLL)
E Energy injected into or stored from

the system from BESS
Erated

s Rated capacity of BESS s
Ei
−,E

i
+ Energy lower and upper bounds on

the energy stored in BESS at time i

Gb,c ,Bb,c Line conductance and susceptance
between buses b and c

I Investment cost
pWT , pPV Unit price of WT and PV, respectively

pgrid ,i Real-time electricity wholesale price
p f j ,i,l Power flow on congested branch l

P , P̄ Power limits of generators
Pgrid Imported power from the wholesale

market

P
i, j

WT
,Pi, j

PV
, P

i, j

TG
Power output of wind turbine, PV, and
traditional generators, respectively

PBC ,PBD Active charging and discharging power
PD, QD Active and reactive power demand
PF , QF Active and reactive power flow

between buses b and c
PL, QL Active and reactive unsupplied power
Qi

sc ,Q
i
sd

Charging and discharging power injec-
tions at time i, respectively

QBC ,QBD Reactive charging and discharging
power

Q
i, j

WT
,Qi, j

PV
, Q

i, j

TG
The reactive power output of WTs,
PVs, and traditional generators

S Peak demand growth rate
S i

min,S i
max Minimum and maximum stored

energy limits for BESS at time i

T Planning horizon
Uc Unit congestion cost

V , 𝜃 Voltage magnitude and angle
V , V̄ Voltage security lower and upper limits

Vwind Area swept by blades
dW Weiner process

Y ,Z Binary variable for the investment
state of BESS and feeder

X State variable
𝜏 Optimal stopping time

𝜀(t ) Serially uncorrelated and normally dis-
tributed random variable
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