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Abstract
Phonon hydrodynamics is an exotic phonon transport phenomenon that challenges the
conventional understanding of diffusive phonon scattering in crystalline solids. It features a
peculiar collective motion of phonons with various unconventional properties resembling fluid
hydrodynamics, facilitating non Fourier heat transport. Hence, it opens up several new avenues
to enrich the knowledge and implementations on phonon physics, phonon engineering, and
micro and nanoelectronic device technologies. This review aims at covering a comprehensive
development as well as the recent advancements in this field via experiments, analytical
methods, and state-of-the-art numerical techniques. The evolution of the topic has been
realized using both phenomenological and material science perspectives. Further, the
discussions related to the factors that influence such peculiar motion, illustrate the capability
of phonon hydrodynamics to be implemented in various applications. A plethora of new ideas
can emerge from the topic considering both the physics and the material science axes,
navigating toward a promising outlook in the research areas around phonon transport in
non-metallic solids.

Keywords: phonon hydrodynamics, phonon transport, collective phonon dynamics, phonon
scattering, second sound, phonon Poiseuille flow

(Some figures may appear in colour only in the online journal)

1. Introduction

Phonons are quasi-particles, which are primarily hold respon-
sible for the transport of heat in non-metallic solids. The
effect of phonons in heat transport, is realized via thermal
conductivity that bears significant importance in characteriza-
tion, engineering and applications of heat transport in solids
[1]. Solving various problems related to heat transport are
inevitable to our daily lives as well as to the future technologi-
cal advancements. These include thermal management of var-
ious devices, thermal characterization of different electronic,
photonic and phononic materials, thermal insulation, energy

∗ Author to whom any correspondence should be addressed.

conversion, high temperature applications of devices and what
not [1]. Manipulation of phononic properties of materials via
advanced state-of-the-art experimental and theoretical tech-
niques enables achieving such applications with great flexi-
bility [2, 3]. In this context, it is important to point out that
both high and low thermal conductivity materials are equally
important to solve distinct problems related to the heat trans-
port in solids. While high thermal conductivity materials help
discovering applications in the domain of thermal dissipation
in microelectronics (e.g. the usage of graphene as an efficient
heat spreading material in high power driven systems [4] due to
its enormous thermal conductivity of ≈3000–5000 W mK−1

at room temperature [5]), low thermal conductivity materials
also help developing efficient applications in thermoelectrics
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(e.g. single crystal PbTe with an extremely small thermal con-
ductivity of around 2.2 W mK−1 at room temperature, used as
one of the best thermoelectric materials [6, 7]).

The process of heat transfer in a solid has been traditionally
understood by the celebrated Fourier’s law of heat conduction,
where phonons are treated to scatter diffusively. Thus the ther-
mal gradient developed across the solid and the resulting heat
current density are connected via the thermal transport coeffi-
cient named thermal conductivity, describing the phenomena
of heat conduction in solid, via

Q(x, t) = −κ∇T(x, t), (1)

where T(x, t) is the local temperature field, Q(x, t) is the local
heat current density and κ denotes the thermal conductivity.
Connecting with energy density (e), the Fourier’s law leads to
the continuity equation

∇ ·Q+
∂e
∂t

= 0. (2)

However, the Fourier’s law breaks down in certain situations
that give rise to peculiar, anomalous and exotic phenomena
related to heat conduction [8–12]. Phonon hydrodynamics
[13–20] is one such phenomena where phonons flow collec-
tively instead of diffusively. This causes a surge in the thermal
conductivity up to infinite unless thermal resistance starts act-
ing against the phonon flow. Several similarities are drawn
between this peculiar flow of phonons with that of the fluids.
Firstly, in fluid hydrodynamics, collective motion of fluids are
important rather than the motion of individual atoms constitut-
ing the fluid. Similarly, phonon hydrodynamics addresses the
collective, coherent flow of phonons. Both the fluid flow and
phonon flow can be well described by the Boltzmann transport
equation (BTE) considering the distribution of particles in flu-
ids and phonons in solids. Temperature gradient serves as a
driving force for the phonon flow in phonon hydrodynamics.
Likewise in the macroscopic picture of fluid flow, pressure gra-
dient drives the fluid molecules which is described by Euler’s
equation [18] (or in more general picture by the Navier–Stokes
equation).

Nevertheless, some microscopic characteristics and man-
ifestations of fluids and phonons are also notably different
in terms of hydrodynamics. For example, in fluid flow, total
momentum is always conserved upon scattering between the
constituting atoms while depending on the scattering mech-
anism between them, phonons can perform either momen-
tum conserving or momentum destroying events [18, 21]. The
momentum conserving and destroying scattering events are
called ‘normal’ (N) and ‘Umklapp’ (U) scattering respectively
where N scattering assists the collective motion and U scat-
tering impedes the flow, enabling the thermal resistance to
the phonon flow [22]. These scattering events, along with
grain boundaries and impurities in the crystal, lead to distinct
phonon transport regimes in crystalline solids as a function of
temperature [17, 23]. At low temperatures, phonon mean free
paths (MFPs) are much larger than the characteristic length
of the sample which help phonons to propagate ballistically
toward the boundaries, indicating a system size dependent

thermal transport in the ballistic regime. At the other extreme
of high temperature, phonons possess smaller MFPs compared
to the size of the crystal and they scatter diffusively, vanish-
ing completely the size dependency in the thermal transport
properties. This diffusive thermal transport regime is domi-
nated by U scattering events where phonons with large wave
vectors scatter with each other causing a non conservation of
phonon momentum and reversal of the direction of phonon
propagation. The thermal transport regime, in between these
two extremes, comprises an intermediate temperature window
where small wave vectors excite and phonons dominantly per-
form momentum conserving N scattering that leads to hydro-
dynamic phonon flow. By the very nature of this transport
regime it emerges as a fragile and hard to achieve in most of
the solids because of the simultaneous strict requirements of
both less U scattering and high N scattering events [18, 19, 24].
Lowering of temperature helps achieving in exciting only
small wave vectors to avoid U scattering but also affects the
frequent occurrence of many N scattering events.

The inception of various advanced experimental and first-
principle based methods, helped discovering a larger pool of
materials having either high Debye temperature (to postpone
the U scattering at later temperature) or large anharmonicity
(to induce more N scattering events) which is difficult to
observe in same material. Further, these advanced methods
assist in identifying the controlling parameters and therefore
pave the way toward phonon-engineering to uncover new
possibilities of applications of these materials. Some of the
two dimensional materials (e.g. graphene) had been found
[15, 17, 20] to exhibit strong N scattering even at room tem-
perature owing to their out-of-plane flexural acoustic modes.
Some isotopically not so pure materials (e.g. SrTiO3) had
been experimentally found [25, 26] to feature strong anhar-
monicity and therefore strong N scattering due to the pres-
ence of soft optical modes. One dimensional single-walled
carbon nanotubes (SWCNT) had also been found [27] to pos-
sess phonon hydrodynamics. Recent experiments on graphite
had been shown [28, 29] to feature phonon hydrodynamics
even above a temperature of 200 K. Apart from envisaging
more accurate description of phonon thermal transport as a
function of temperature, all these realizations can drive the
emergence of a lot of interesting heat transport applications
keeping phonon hydrodynamics as a focal point. For example,
graphene having a prominent presence of phonon hydrody-
namics up to a fairly high temperature (up to 300 K [17]), can
be used in the applications of thermal rectification and thermal
signal transmitters [12, 15].

This review is structured as follows: section 2 approaches
the idea of phonon hydrodynamicsfrom a straightforward scat-
tering rate analysis starting from describing various phonon
scattering processes. Section 3 discusses the onset of phonon
hydrodynamics from a new ‘relaxon’ perspective in approach-
ing the phonon hydrodynamics. Looking from a phenomeno-
logical point of view, several important features of phonon
hydrodynamics have been thoroughly explored and explained
in section 4, examining over distinct theoretical, experimental
and numerical efforts. Analyzing from a material scientist’s
viewpoint, section 5 scrutinizes a detailed and up-to-date
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Figure 1. Schematic representations for phonon–phonon scattering: (a) coalescence and (b) decay processes. Ων′′
ν,ν′ and Ων′ ,ν′′

ν represent the
scattering rates due to coalescence and decay processes respectively. In the coalescence process phonon mode ν absorbs another phonon
mode ν ′ to yield a third phonon mode ν ′′. In the decay process phonon mode ν decays into two phonon modes ν ′ and ν′′.

account of different 3D, 2D and 1D materials that feature
phonon hydrodynamics. The parameters that influence phonon
hydrodynamics, have been reviewed and the manipulation of
such parameters to tune phonon hydrodynamics for better ther-
mal management, has been studied in section 6 followed by
section 7 that demonstrates the summary of the review and a
detailed future outlook to the problem.

2. The emergence of phonon hydrodynamics:
approaching from the phonon–phonon scattering
rates

Phonon hydrodynamics is a specific situation arising in a crys-
tal lattice when thermal transport in general and phonon trans-
port in specific, happens collectively. This collective motion
of phonon quasiparticles resembles fluid flow in fluid hydro-
dynamics. Now, in phonon transport mechanisms, both har-
monic and anharmonic forces are at work. However, it is the
anharmonic forces on phonons that drive the phonon scatter-
ing and eventually lead to a finite thermal conductivity for any
materials. Therefore, persisting coherent motion of phonons,
a.k.a. phonon hydrodynamics, depends crucially on the three-
phonon scattering or the anharmonic phonon–phonon scatter-
ing processes.

2.1. Three-phonon scattering process

Anharmonicity in crystal lattice arises from the interaction
between lattice vibrational waves, known as phonon–phonon
scattering in the quasiparticle picture of solids. Thermal con-
ductivity is one such physical effect which depends heavily
on this anharmonic phonon scattering processes. As harmonic
phonons do not scatter, anharmonic phonons and their scatter-
ing processes are crucial to yield finite thermal conductivity
of materials at all temperatures. Figure 1 presents a schematic
diagram for three-phonon scattering processes of phonons.
Anharmonic phonon scattering can lead to either a coalescence
process, where a phonon mode (ν) absorbs another phonon
mode (ν ′) after scattering and yields a third phonon mode (ν ′′)
or a decay process, where a phonon mode (ν) decays into two
phonon modes after scattering (ν ′, ν ′′).

At this juncture of the discussion, we recall the seminal
work of Peierls [30] which states that anharmonicity alone

is not enough to induce thermal resistance in solids. Conser-
vation of momentum in phonon–phonon scattering process
leads to the infinite thermal conductivity. Therefore momen-
tum destroying phonon–phonon scattering plays a crucial role
in introducing thermal resistance in solids. Thus, three-phonon
scattering processes can be divided into two classes: (a) normal
scattering (N scattering) and (b) Umklapp scattering (U scat-
tering). N scattering conserves phonon momentum whereas U
scattering does not. N scattering only redistributes momentum
among various phonon modes while U scattering gives rise to
the thermal resistance. For a typical three-phonon absorption
process, as described in figure 1(a), the wave vectors satisfy

q+ q′ = q′′ +G, (3)

where q and q′ are the two wave vectors of two scattering
phonons with frequencies ν and ν ′ respectively (figure 1(a)),
q′′ is the wave vector of phonon created in the absorption
process (with frequency ν ′′ in figure 1(a)) and G represents
the reciprocal lattice vector. If G = 0, then the scattering is
momentum conserving and therefore designated as N scat-
tering whereas any finite, nonzero value of G indicates a
momentum destroying U scattering event. In other words, if
the resultant wave vector, after a three phonon scattering pro-
cess, exceeds the first Brillouin zone (the Wigner–Seitz unit
cell in reciprocal lattice [18]), G is employed to bring the resul-
tant vector back to the first Brillouin zone at the cost of reversal
of the phonon propagation direction and therefore causing non
conservation of quasi momentum of phonons. In this context,
we mention a study by Ding et al [21] where the concept of
N and U scattering processes are redefined. According to this
study, a phonon–phonon scattering process is called N scat-
tering if phonon momentum is conserved in the direction of
the heat flow and U scattering does not involve in thermal
resistance unless the projection of phonon momentum in the
scattering process is not conserved in the direction of heat flow.
Thus equation (3) can be modified as [21]

qj + q′
j = q′′

j +Gj. (4)

Here j denotes the direction of heat transport, qj and Gj are the
projections of vectors q and G along j.

Figure 2 shows the pictorial representation of U and N scat-
tering processes. It can be understood from figure 2(b) that the
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Figure 2. Schematic representation of normal scattering (N scattering) and Umklapp scattering (U scattering) processes. (a) N scattering
conserves momentum as the scattering between wave vectors q and q′ yields q′′ which stays inside the first Brillouin zone of the reciprocal
lattice. Also, N scattering does not produce thermal resistance in either the x or the y direction. (b) U scattering between phonon wave
vectors q and q′ yields q′′ which exceeds the first Brillouin zone and therefore destroys the phonon momentum conservation. U scattering is
shown to cause resistance in the x direction but not in the y direction. Reprinted (figure) with permission from [21], Copyright (2018) by the
American Physical Society.

Figure 3. Thermal transport regimes for a generic three dimensional solid is presented through a schematic diagram of the temperature (T)
variation of the lattice thermal conductivity (κ). Four distinct thermal transport regimes are shown: (a) ballistic, (b) Poiseuille
hydrodynamic, (c) Ziman hydrodynamic and (d) kinetic. In the ballistic regime, κ varies as T3 due to purely the effect of specific heat, as
phonon MFP is controlled by the sample size. In the Poiseuille regime, the exponent exceeds 3. At high temperature limit, κ varies as 1/T as
described by Slack model [44, 45]. Insets: for each of these regimes, different phonon scattering hierarchies are schematically represented
via normal (N), phonon-boundary (B), phonon-isotope (I) and Umklapp (U) scattering events. (a) Phonons are directly scattered via
boundary scattering. (b) Phonons perform N scattering which dissipates via B scattering. (c) Phonons perform N scattering which dissipates
via R (resistive: U and I) scattering. (d) Phonons mostly perform momentum destroying U scattering. We note that for each of these four
regimes, shown in insets, only dominant scattering events are illustrated for clarity.
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Table 1. Thermal transport regimes in terms of average phonon scattering rates (〈τ−1
i 〉ave)

as prescribed by GK conditions [24]. Here i denotes N, U, R and B which represent normal,
Umklapp, total resistive (Umklapp + isotope) and phonon-boundary scattering respectively.

Thermal transport regime Condition(s) Description

(A) Ballistic 〈τ−1
R 〉ave � 〈τ−1

B 〉ave,
〈τ−1

N 〉ave � 〈τ−1
B 〉ave

Phonon-boundary
scattering is dominant
due to the finite size of
the sample

(B) Hydrodynamic 〈τ−1
R 〉ave � 〈τ−1

N 〉ave,
〈τ−1

B 〉ave � 〈τ−1
N 〉ave

N scattering dominates
over B and R scattering

(i) Poiseuille hydrodynamic 〈τ−1
R 〉ave � 〈τ−1

B 〉ave �
〈τ−1

N 〉ave

Heat flux is dissipated
dominantly via extrinsic
boundary scattering

(ii) Ziman hydrodynamic 〈τ−1
B 〉ave � 〈τ−1

R 〉ave �
〈τ−1

N 〉ave

Heat flux is dissipated
dominantly via Umklapp
and isotope scattering

(C) Kinetic regime 〈τ−1
N 〉ave � 〈τ−1

R 〉ave,
〈τ−1

B 〉ave � 〈τ−1
R 〉ave

Umklapp and isotope
scattering events
dominate over N and B
scattering

momentum conservation breaks only in the x direction while
along y direction phonon momentum is conserved. Therefore
the thermal resistance originates along only x direction and the
scattering can be termed as U scattering.

2.2. The microscopic origin and criteria for phonon
hydrodynamics

As we mentioned earlier, phonon hydrodynamics is born out
of the collective phonon transport in crystal lattice. Follow-
ing the discussion of the phonon–phonon scattering rates,
the situation of collective transport implies that the phonon
momentum dissipates over a sufficiently long time such that
within an appreciable time-window the phonons transport in
a coherent motion. In the scattering rate perspective, this
indicates a situation when N scattering outweighs dissipative
scattering of phonons (U scattering, isotope scattering and
phonon-boundary scattering). Ever since the pioneering work
by Peierls [31] on the thermal conduction of phonons in crys-
tal lattice in 1929, the relative importance between momentum
conserving and momentum destroying scattering processes
were discussed in the community through various analytical
works. Here, we introduce a major manifestation of phonon
hydrodynamics in a crystal lattice called second sound which
deals with the propagation of temperature waves (a detailed
discussion is presented in the section 4.1) in a solid. Drawing
the ideas from two-fluid theory of He II by Tisza [32] and Lan-
dau [33, 34], Peshkov [35, 36] first detected this temperature
waves and later Ward and Wilks [37, 38] derived it for an inter-
acting phonon systems with the conservation of collisions. The
favourable condition for the occurrence of the second sound
had been mentioned in the works by Sussmann and Thellung
[39] and by Gurzhi [40] in his investigation on the thermal
conductivity of dielectrics at low temperatures, where U scat-
tering events were almost absent. Gurzhi [40] mentioned the
following inequality to hold in a sufficiently massive and pure
sample at low temperature to enable phonon hydrodynamics

in the form of temperature waves.

lN � d � lU, (5)

where lN and lU are the effective MFPs for N and U scat-
tering respectively. A year back, in 1963, Chester [41] dis-
cussed the second sound in solids using a more general form of
Fourier heat equation and identified a critical onset frequency

fc = 1
2πτ = c2

s C
6πκ , below which thermal wave does not propa-

gate. Here, κ is thermal conductivity, C denotes heat capacity
per unit volume and cs is the sound velocity. Soon after, this
novel feature in heat transport had experimentally been found
in He IV crystals by Mezhov-Deglin [42].

In one of their series of seminal works, Guyer and
Krumhansl (GK) [43] solved the linearized Boltzmann trans-
port equation (LBTE) for pure phonon field in terms of the
eigenvectors of the N process collisional operator and under-
stood the interplay between N and R (resistive) processes in
dictating the limiting behavior of thermal conductivity. Solv-
ing the LBTE, in their subsequent work [24], they developed
a set of macroscopic equations and solved the steady state
problem for low temperature phonon gas in one dimensional
flow in a cylinder. The existence of another distinct phonon
hydrodynamic feature called phonon Poiseuille flow (will be
discussed later in detail) was observed which is consistent with
the earlier investigation by Sussmann and Thellung [39]. The
effect of different phonon scattering events can be understood
using the average scattering rates, defined by:

〈τ−1
i 〉ave =

∑
λCλτ

−1
λi∑

λCλ
. (6)

Here, λ defines phonon modes (q, j) comprising wave vector
q and phonon branch j. Index i denotes normal, Umklapp, iso-
tope and boundary scattering processes, denoted by N, U and

5
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I and B respectively. Cλ is the modal heat capacity, given by

Cλ = kB

(
h̄ωλ

kBT

)2 exp(h̄ωλ/kBT)
[exp(h̄ωλ/kBT) − 1]2

, (7)

where, T denotes temperature, h̄ is the reduced Planck constant
and kB is the Boltzmann constant. According to the condition
prescribed by GK [24, 43] hydrodynamic regime exists if

〈τ−1
U 〉ave � 〈τ−1

N 〉ave. (8)

Moreover, Guyer’s condition [24] for the occurrence of second
sound and Poiseuille’s flow reads:

〈τ−1
U 〉ave � 〈τ−1

B 〉ave � 〈τ−1
N 〉ave. (9)

The advent of highly efficient computational resources over
the years as well as several phenomenological models of
heat transfer (Callaway [22], Callaway–Holland [22, 46], Kle-
mens [47], Slack [44, 45]) enable accessing the phonon scat-
tering rates corresponding to the N and R processes and
therefore GK conditions permit a feasible and robust way to
identify the presence of phonon hydrodynamics in various
nonmetallic systems and have been used extensively in current
state-of-the-art research on phonon physics [15, 17, 48–51].
Figure 3 and table 1 summarize the GK conditions for the
occurrence of phonon hydrodynamics and demonstrate dis-
tinct thermal transport regimes from the temperature variation
of lattice thermal conductivity (κ) of a generic three dimen-
sional material with their specific scattering protocols. Gure-
vich and Shklovskii [52] also gave similar arguments around
the same time on the conditions for realizing the second sound
in semiconductors, produced by long-wave phonons in a fre-
quency interval. Hardy [53] solved the complete linearized
Boltzmann equation in terms of the eigenvectors of collision
matrix including normal, Umklapp and isotope scattering pro-
cesses. He discussed the existence of ‘driftless’ and ‘drifting’
second sound in the hydrodynamic transport regimes of solids
[53]. It was found that the dominance of N-scattering events
are necessary to feature ‘drifting’ second sound while a uni-
form energy flux with an exponential decay is essential to fea-
ture the ‘driftless’ second sound. Hardy’s analysis [53] was
stressed upon the fact that the slow decay of energy flux is the
most essential criteria for phonon hydrodynamics. The anal-
ysis [53] also mentioned that the domination of N scattering
is not always necessary for the existence of second sound,
but when it dominates, phonon hydrodynamics seems to be
observable.

All the studies discussed above, are aligned with the same
idea of the identification of a window in the relaxation time
spectrum that supports hydrodynamic features of the phonon
gas. At this point, for the clarity of the readers, we tend to
briefly discuss the hydrodynamic conditions, in terms of scat-
tering rates, that had been discussed in the study of Beck et al
[14]. A system of phonon gas can be described by a distri-
bution function f (q, r, t) and its time evolution is dictated by
the Peierls–Boltzmann equation (a detailed account is given
in section 4.1.2). The energy is conserved during the colli-
sions between phonons. However, the phonon hydrodynamics

demands a dominance of N scattering over resistive scatter-
ing events and therefore dictates the conservation of quasimo-
mentum of the phonons throughout the crystal. This situation
invokes a drift to the phonon distribution function in thermal
equilibrium given by the displaced distribution ( f d

BE)

f d
BE =

1
exp[β h̄(ω − q · u)] − 1

, (10)

where β = 1/kBT, u is the drift velocity of the phonon gas
and q is the phonon wave vector. It is noted that both u and β
are space and time-dependent corresponding to local thermal
equilibrium. Using Peierls–Boltzmann equation, two conser-
vation laws corresponding to energy and momentum, involv-
ing partial derivatives of time and position yield respectively

∂

∂t
E (r, t) +

∂

∂ri
Qi (r, t) = 0 (11)

∂

∂t
Pi (r, t) +

∂

∂r j
Pi j (r, t) = 0, (12)

where E(r, t), Qi(r, t), Pi(r, t), and Pi j(r, t) designate den-
sities of energy, energy current along a specific direction
i (x, y, or z), momentum along i, and momentum flux along j
respectively. Equations (11) and (12) represent hydrodynamic
equations as long as E(r, t), Qi(r, t), Pi(r, t), and Pi j(r, t) can
be expressed in terms of the hydrodynamic variables β(r, t)
and u(r, t). Approximating Debye model with ωq = cλ|q| and
employing mean free time approximation used by Sussmann
and Thellung [39], the conservation laws equations (11) and
(12) respectively become

β̇

β0
=

1
3
∇ · u+

1
3
∇2β

4εβ0

∑
λ

σλ(c2
λ − 3c2

II) (13)

u̇i = 3c2
II
∇iβ

β0
− 3c2

II
∇iβ

4εβ0

∑
λ

σλ

(
1 − 3c2

II

c2
λ

)

+
3c2

II

20ε

(
1
3
∇i∇ · u+∇2ui

)∑
λ

σλ. (14)

Here, λ stands for phonon polarization, cλ is speed of sound,
β0 is the equilibrium value for inverse temperature, ε is mean
thermal energy density, σλ ≡ c2

λ

∑
q q2m(ωq)τq, τ q is the

isotropic relaxation time in the mean free time approximation,
and cII denotes the speed of second sound [14]. Eliminating u
from equations (13) and (14) gives rise to equation for damped
second sound

β̈ − c2
II∇2β − 2c2

IIτII∇2β̇ +
β̇

τR
= 0, (15)

where τ II and τR are the relaxation times corresponding to
normal and resistive scattering respectively. The ansatz

β(r, t) − β0 =

∫
dq ei(q·r−Ωt)β(q,Ω(q)) (16)

6
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Figure 4. (a) Schematic presentation of the ‘relaxon’. Each of the relaxons consists of a linear combination of phonons that scatter within
themselves but are decoupled from phonons belonging to different relaxons. Reprinted with permission from reference [55]. CC BY 3.0.
(b) The contribution of relaxation times (considering both the heat carriers: phonons and relaxons) to the thermal conductivity of graphene at
room temperature is presented. Relaxons are shown to possess longer lifetimes than that of the single phonon excitations. A significant
contribution of relaxons to the thermal conductivity is observed at relaxation times greater than 103 ps while phonons contribute to thermal
conductivity mostly in the range between 10 to 100 ps. Phonons are realized as a continuous spectrum while relaxons are discrete and
smaller number of relaxons are found to be sufficient (as the contribution to the thermal conductivity is significantly higher than that of the
phonons) to accurately represent the thermal conductivity of graphene. Reproduced from [55]. CC BY 3.0.

gives rise to

Ω2 +
iΩ
τR

+ 2iΩτIIc
2
IIq

2 = c2
IIq

2 (17)

which eventually leads to the dispersion relation

Ω = ±cIIq

√
1 − 1

c2
IIq

2

(
τIIc2

IIq
2 +

1
2τR

)2

− i

(
τIIc

2
IIq

2 +
1

2τR

)
. (18)

If the damping of the second sound has to be small, the
period of temperature perturbation should simultaneously fol-
low Ωτ II � 1 (abundance of normal scattering) and ΩτR 
 1
(rare resistive scattering), leading to the following condition

τ−1
R � Ω � τ−1

II . (19)

3. The emergence of phonon hydrodynamics:
approaching from the collective excitation
perspective

The backbone of the theories of phonon thermal transport
lies in solving the BTE for phonons or using Green–Kubo
approach in the realm of linear-response theory. The analysis
of phonon scattering rates seems to be a feasible approach to
investigate phonon hydrodynamics within the relaxation time
approximation of the phonon gas. However, in the advent of
powerful computational resources and related development in

the field of computations with various ab initio accurate tech-
niques, several methods have been discovered to directly solve
BTE without simplifications and assumptions [54]. Along this
line of thought, in an alternative approach to understand the
microscopic origin of the collective phonon dynamics, the fail-
ure of the single-mode relaxation time approximation (SMA or
RTA) seems to be a key to detect collective phonon transport
[19].

For several materials, experimentally observed thermal
conductivity had often been reproduced in a surprisingly accu-
rate manner using BTE beyond the single mode relaxation
time approximation (SMA or RTA) [17, 48, 54]. However, the
departure from RTA approach of phonon gas costs the concep-
tual complications [19]. This is due to the fact that the full solu-
tion of BTE abandons the approach of phonon relaxation times
and they are no longer relevant descriptors [19, 54]. Cepel-
lotti and Marzari [55–57] posed an important question on this
regard whether any form of relaxation times can be included
in the picture of the full solution of BTE.

The single mode relaxation time approximation (SMA or
RTA) takes only the diagonal terms of the scattering matrix
[58] into account in solving the LBTE and the closed form
solution looks like

1
V

∑
λ′

Ωλλ′Δ fλ′ (x, t) ≈ Δ fλ (x, t)
τRTA
λ

, (20)

where V is the normalization volume, λ ≡ (q, j) denotes
the phonon modes with specific wave vector (q) and phonon
branch j. Ωλλ′ is the linear phonon scattering operator and
Δ fλ = fλ − f λ stands for the deviation of the phonon dis-
tribution from equilibrium Bose–Einstein distribution f λ(x, t)
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Figure 5. Top row: temperature variation of L2 distances between the temperature profile predicted by the Fourier’s law and that of the
viscous heat equations derived by Simoncelli et al [59], are shown as a function of total length of a sample of (a) graphite, (b) diamond,
and (c) silicon. The color code quantifies the L2 which is a descriptor to measure phonon hydrodynamic effects via the deviation
parameter. Bottom row: FDN are presented for the same materials as a function of temperature and total length of the sample. The FDN
description is found to be consistent with the L2 description in identifying the hydrodynamic regimes in terms of temperature and
characteristic length. Both the top and the bottom rows represent a strong hydrodynamic effect in graphite even up to 100 K, while
diamond and silicon show a comparatively mild and almost no signature of phonon hydrodynamics respectively. Reproduced from [59].
CC BY 4.0.

=
[
exp(h̄ωλ/kBT) − 1

]−1
. The approach of collective phonon

excitation, on the other hand, takes the whole scattering matrix
into account as well as the direct solution of LBTE with-
out any approximation. In this picture, Cepellotti and Marzari
showed [55] that the collective excitations can be written as an
eigenvalue equation of the form

1
V

∑
λ′

Ω̃λλ′θ
α
λ′ =

1
τα

θαλ , (21)

where Ω̃λλ′ is the scaled, real symmetric scattering matrix,
defined as

Ω̃λλ′ = Ωλλ′

√
f λ′ ( f λ′ + 1)

f λ( f λ + 1)
. (22)

As Ω̃ is real, symmetric matrix, it can be diagonalized with
eigenvectors θαλ′ and real eigenvalues 1/τα such that it sat-
isfies equation (21). Thus, it was shown [55] that collective
phonon excitations can be expressed in terms of a character-
istic relaxation time (τα). However, the relaxation time corre-
sponds to a collective excitation or ‘relaxon’ instead of single
excitation of phonons as realised using RTA approach. Each
relaxon describes a distribution of out-of-equilibrium or dis-
turbed phonon wave packets and therefore emerges as a lin-
ear combination of phonons, which scatter among themselves
but decoupled to the phonons that belong to different relaxons
[55, 56]. This enables the use of kinetic theory on the relaxon
gas to interpret thermal conductivity in materials.

Figure 4(a) presents the schematic representation of
relaxon, taken from the work of Cepellotti and Marzari [55].
Figure 4(b) shows a specific example of thermal conductiv-
ity of graphene at room temperature, comparing the relative
importance of the relaxation times of the relaxons and that
of the phonons, obtained from the RTA approach [55]. From
this relaxation time spectrum of both relaxon and phonons,
relaxons are found to be longer lived than phonons and dis-
cretized unlike the continuous spectrum of phonons. The dis-
crete nature (in the region of large values mostly) and at least 2
orders of magnitude larger relaxation times than phonons help
the relaxon picture to accurately describe the experimentally
observed thermal conductivity of graphene even using a small
number of relaxons [55].

3.1. The conditions for phonon hydrodynamics in relaxon
approach

The condition that leads to the phonon hydrodynamics in
the relaxon picture, is essentially based on the departure
of heat flux equation from that of the Fourier’s law. This
leads to the condition to distinguish the diffusive from the
hydrodynamic transport regime using viscous heat equations.
Simoncelli and co-authors investigated [59] this hydrody-
namic deviations from Fourier’s law depending on sample’s
size and reference temperature T . Novel viscous heat equations
were solved [59] for different sample sizes and different refer-
ence temperatures for graphite, diamond and silicon for com-
parison. The normalized difference (L2) between the predicted
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temperature profile by the viscous heat equations and the
Fourier’s law for a given sample length ltot and reference tem-
perature T , serves as one such parameter that can be computed
numerically. It is defined [59] as

L2 [TFourier − Tviscous]
(
ltot, T

)

=

√∫
G[TFourier(x, y) − Tviscous(x, y)]2dx dy∫

Gdx dy
, (23)

where G is defined by the integration variable x as x > 1
5 ltot,

corresponding to the spatially homogeneous region of the sam-
ple. However, to capture the essence of this deviation in a com-
putationally cheaper way, rewriting viscous heat equations in
reduced units, Simoncelli et al [59] defined a quantity called
Fourier deviation number (FDN), described as

FDN =

(
1
π1

+
1
π3

)−1

, (24)

where dimensionless parameters π1 =

√
TACWu0L
κδT and

π3 = μ
DUL2A

. Here C is specific heat, μ is the thermal
viscosity and A and W are two parameters related to
μ. A is specific momentum, defined as A = ∂P/∂u =

1
kBTV

∑
λ f λ( f λ + 1)(h̄q)2, where u is drift velocity, and W is

the velocity of relaxon, obtained by projecting phonon group
velocity into the momentum conserving eigenvector as Wα =
1
V

∑
λφλvλθ

α
λ . L is characteristic size, u0 is the drift velocity,

δT is the temperature perturbation and DU is the momentum
dissipation rate. These notations can also be extended to the
3D case with full tensorial notations as mentioned in [59].

Two conditions are needed to visualize appreciable hydro-
dynamic feature in this picture: (a) the coupling between drift
velocity and temperature needs to be large for the devia-
tion between Fourier’s law and viscous heat equations, i.e.
π1 
 1 and (b) viscous effects should dominate over crystal-
momentum dissipation, i.e. π3 
 1. Therefore, large hydrody-
namic effect is expected if the following condition is satisfied

FDN =

(
1
π1

+
1
π3

)−1


 1. (25)

Figure 5, taken from [59], describes the aforementioned dif-
ference between Fourier’s law and viscous heat equations via
L2 and FDN as descriptors to distinguish phonon hydrody-
namics in graphite, diamond and silicon. The strong signature
of deviation from the Fourier’s law is observed for graphite
(figure 5(a)), which is known to feature hydrodynamics, at
low temperature and large sample size limit [49]. Diamond,
having a large thermal conductivity with weak U scattering,
is a potential candidate to feature phonon hydrodynamics. In
figure 5(b), the L2 parameter is seen to predict the largest devi-
ation from Fourier’s law in diamond around room tempera-
ture and for sample size > 1 μm. However, compared to the
graphite, hydrodynamic phonon signatures seem to be feeble
in diamond. For silicon, a very small deviation is observed,
mostly at low temperatures as can be seen in figure 5(c), mak-
ing it not prone to the phonon hydrodynamic behavior. This
is also consistent with earlier studies on silicon as the RTA

approximation yields similar values as that of the full LBTE
solution for silicon [55, 60, 61]. Figures 5(d)–(f) present a
consistent picture of the deviation from Fourier’s law and the
possibilities of displaying hydrodynamiceffects for these three
materials, captured via FDN. With a negligible computational
cost, FDN seems to emerge as a perfect predictor to identify
phonon hydrodynamics in materials in the relaxon picture.

4. Features associated with phonon
hydrodynamics: phenomenological viewpoint

The phenomena of phonon hydrodynamics manifest them-
selves in some peculiar experimentally observable or
theoretically realized features that are the representative
signatures of the collective motion of phonons. Historically,
through these signatures, the presence of phonon hydrodynam-
ics was first introduced within the subject of physics related
to phonons. Phonons follow the Bose–Einstein distribution in
equilibrium which can be perturbed by a temperature gradient
with an abundance of the N scattering events. The N scat-
tering events allow coherent phonon flow and transform the
equilibrium phonon distribution to a displaced Bose–Einstein
type with a drift velocity associating with it. This indicates
gaining of excess momentum to the phonons which shuttles
through the N scattering events in such a way that all phonon
modes adopt the same drift velocity [15]. Umklapp and other
resistive scattering events cause non conservation of phonon
momentum and force the phonon modes to relax back to the
equilibrium Bose–Einstein distribution. Therefore to realize
various features of phonon hydrodynamics, the timescale of
the phonons to sustain the displaced BE distribution is crucial.
In this section, we will address few such prominent signatures
of phonon hydrodynamics, the physics behind them and the
state-of-the-art account of their research.

4.1. Second sound

In general, ‘second sound’ is referred to the propagation of
heat as weakly damped waves in contrary to the usual dif-
fusive propagation of heat in a solid. The propagation of a
heat pulse in a solid varies distinctively depending on the rel-
ative weight-age of the normal, Umklapp and other resistive
scattering (phonon-boundary, phonon-isotope etc) processes
in a solid. In the hydrodynamic transport regime, the heat
pulse is carried mostly by very many N scattering events,
leading to a propagation of weakly damped (due to very less
resistive scattering events) phonon density waves through the
solid, which is called second sound. In the diffusive propa-
gation regime of heat, Fourier’s law is obeyed and the strong
presence of resistive scattering events suppress the collective
motion of phonons supported by N scattering. As a result,
the heat pulse cannot propagate in the solid and the thermal
energy in the heat pulse diffuses [15, 18]. In the ballistic heat
propagation regime, the heat pulse propagates but the average
phonon MFP is always greater than the sample size. Therefore
collective motion of phonons can occur only in the hydro-
dynamic regime, featuring ‘second sound’ phenomenon. The
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name ‘second sound’ comes from its phenomenological sim-
ilarity with acoustic sound, which propagates in fluids as a
pressure wave.

4.1.1. Historical account. The idea of second sound surfaced
with the Laszlo Tisza’s idea of two-fluid theory of liquid
helium [32]. Liquid helium showed very different features
below the so-called lambda transition temperature near 2.2 K
and was termed as helium II. Tisza proposed the idea that the
Bose–Einstein condensed fraction of helium II [62] can form
a superfluid which passes through narrow tubes without any
dissipation, whereas, the uncondensed atoms behave as nor-
mal fluids [63]. This leads to the idea of ‘two-fluid’ theory in
liquid He. Naturally, two-fluid equations of motions not only
predicted density fluctuations of the fluid, but also the temper-
ature or entropy fluctuations which later was termed as ‘second
sound’ by Lev Landau [33]. To conceptualise the ‘two-fluid’
theory of He II, around 1947, Landau put forward the idea
of two types of quasiparticles, namely phonons and rotons
[34]. These rotons [64, 65] have been understood as higher
energy excitations than phonons. However, the second sound
velocity of He II showed notable discrepancies [63] between
Tisza’s and Landau’s theoretical models at low temperature
(below 1 K). The very first experiments to detect second sound
in helium II was carried out by Peshkov [35] in 1944 using a
resonator in a glass tube to study the standing waves of sec-
ond sound in helium II. Finally, with some more refinements,
Peshkov’s experiment [36] matched with the prediction by the
Landau’s theory. At the same time, Fairbank et al [66] pro-
posed a different experiment to generate second sound at a
liquid–vapor interface by using the reflection of the normal
sound in the vapor from the liquid surface. Later, Ward and
Wilks [37, 38] directly derived the velocity of second sound
from the interacting phonon gas models where collisions con-
serve momentum. Dingle [67] and London [68] also proposed
similar ideas in 1952 and 1954 respectively. This opens up
the research pathway to investigate second sound in crystalline
solids.

4.1.2. Theoretical investigations. The early experiments on
the second sound in solids trigger the theoretical physics com-
munity to delve deeper into the physics of phonons to under-
stand second sound in solids. Around 1960, a lot of theoretical
investigations on the speed, occurrence, dispersion and fre-
quency of operation of second sound in solids surfaced in the
field. Peierls work [31] on the transport phenomena in inter-
acting phonon systems, derived via the Boltzmann’s equation
for dynamics of gases paved a founding stone to deal with the
occurrence and consequences of second sound theoretically.
To understand the development in this direction of research,
first we shall demonstrate the theoretical underpinnings of the
derivation of the speed of second sound through the hydro-
dynamic equation which arises from the Peierls–Boltzmann
transport equation.

The time evolution of phonon distribution function
f (q, r, t), governed by Peierls–Boltzmann equation reads
[14, 31, 53]

∂ f
∂t

+ vk · ∂ f
∂r

=

[
∂ f
∂t

]
C

, (26)

where vk is the phonon group velocity and
[
∂ f
∂t

]
C

represents
the change of the phonon distribution function due to the
phonon scattering events. In phonon hydrodynamics, as dis-
cussed earlier, we are looking at the conditions where quasi-
momentum destroying Umklapp processes die out and the
quasi-momentum is conserved. In that case, the phonon distri-
bution function at equilibrium will contain an additional drift
term in the expression given as

f d
BE =

1

exp
[

h̄
kBT (ω − q · u)

]
− 1

, (27)

where u is the drift velocity of the phonon gas and q is
the phonon wave vector. As mentioned in [15], assuming
energy and crystal momentum along the direction of flow
(x), energy and crystal momentum balance equations, derived
using Peierls phonon BTE, read

∂

∂t

(∑
λ

∫
ω f dq

)
+

∂

∂x

(∑
λ

∫
ωvx f dq

)
= 0 (28)

∂

∂t

(∑
λ

∫
qx f dq

)
+

∂

∂x

(∑
λ

∫
qxvx f dq

)
= 0, (29)

where λ stands for phonon polarization. Equation (28) is said
to be the energy balance equation where energy and energy
current along a specific direction α (x, y or z) are given
respectively as

E (r, t) =
∑
λ

ωλ f (q, r, t) (30)

Qα (r, t) =
∑
λ

ωλvαλ f (q, r, t) . (31)

Similarly, equation (29) describes the momentum balance
equation where momentum density along α and momentum
flux along β are given by

Pα (r, t) =
∑
λ

qαλ f (q, r, t) (32)

Pαβ (r, t) =
∑
λ

qαvλβ f (q, r, t) . (33)

We note that the energy and momentum balance equations
stem from the two principal considerations: (a) the energy
conservation due to scattering and (b) the crystal momentum
conservation due to the assumption of low resistive scattering.
If a small drift velocity is assumed with q · u � ω, then the
displaced Bose–Einstein distribution ( f d

BE) of phonons can be
linearized as

f d
BE ≈ f 0

BE +
h̄

kBT
f 0

BE

(
f 0

BE + 1
)

qxux. (34)

10



J. Phys.: Condens. Matter 34 (2022) 323001 Topical Review

Here f 0
BE stands for the equilibrium BE distribution. Putting

the value of f d
BE and neglecting higher order terms involving

small ux, the energy and momentum balance equations read
[15](∑

λ

∫
ω
∂ f 0

BE

∂T
dq

)
∂T
∂t

+

(∑
λ

∫
ωvx

h̄
kBT2

f 0
BE

(
f 0

BE + 1
)

qx dq

)
∂ux

∂x
= 0

(35)

(∑
λ

∫
qx

h̄
kBT2

f 0
BE

(
f 0

BE + 1
)

qx dq

)
∂ux

∂t

+

(∑
λ

∫
qxvx

∂ f 0
BE

∂T
dq

)
∂T
∂x

= 0. (36)

Time derivative of equation (35) and spatial derivative of
equation (36) and little algebraic exercise gives rise to the
hyperbolic wave equation for second sound as

∂2T
∂t2

= v2
II
∂2T
∂x2

. (37)

Here vII denotes the speed of second sound where

vII =

√√√√√√√

⎛
⎜⎜⎝

(∑
λ

∫
qxvx

∂ f0
BE

∂T dq

)(∑
λ

∫
ωvx f 0

BE

(
f 0

BE + 1
)

qx dq
)

(∑
λ

∫
ω

∂ f0
BE

∂T dq

)(∑
λ

∫
qx f 0

BE

(
f 0

BE + 1
)

qx dq
)

⎞
⎟⎟⎠.

(38)
This derivation by Lee et al [15] considered arbitrary phonon
dispersion to derive the speed of second sound. At earlier times
[37, 38], most of the studies related to the theoretical predic-
tion of second sound involved the major assumption of the
phonon spectrum as a Debye model with three branches. This
assumption with ωq = vIq, where vI is the speed of acoustic
sound leads to the relation between first and second sound as
vII = vI/

√
3.

In the early 60s, to understand the phenomena of second
sound in solids, macroscopic equations were used [41] with
modifications of the Fourier’s heat equation. Sussmann and
Thellung [39] derived a more generalized version of the hydro-
dynamic equation of second sound for a cylindrical domain
with rough surface. During this time, a series of theoretical
studies by Guyer, Krumhansl and Prohofsky [24, 43, 69, 70]
marked as pioneering works in this context. GK solved the
linearized Boltzmann equation for phonons as an eigenvec-
tor problem of the normal scattering collision operator. By
investigating the steady-state phenomena in a phonon gas, their
study [24, 43] explicitly expressed the thermal conductivity as
a function of wave vector and frequency and therefore gen-
eralized the macroscopic heat equation with Fourier’s law at
one limit (τ−1

N � τ−1
R ) and a macroscopic equation similar to

Sussmann and Thellung [39] at the other limit (τ−1
N 
 τ−1

R ).
Their seminal works also involved the investigation of the dis-
persion relation of second sound using the Boltzmann equation

of phonon gas with a local temperature perturbation [69], the
damping [70] and the operational conditions of second sound
in nonmetallic solids in terms of upper and lower frequency
bounds [24] as mentioned in earlier sections. In the context
of dispersion and damping on second sound, Kwok’s work
[71] shed light on the second sound velocity in arbitrary direc-
tions for anisotropic solids and found that the damping varies
quadratically with the frequency of phonons for anisotropic
solids. Later, a similar but simpler form of the second sound
velocity had been derived by Maris [72] for anisotropic solids.
The attenuation of second sound was also discussed by Weiss
[73]. Gurevich and Shklovskii [52] showed that the possibil-
ity of occurrence of a damped second sound is related to the
large and equal electron and hole concentrations in a semi-
conductor. Hardy [53] envisioned to understand second sound
by solving the exact solution of LBTE using eigenvalues and
eigenvectors of the collision matrix. Instead of the conditions
driven only by the relative weights of Umklapp and normal
scattering, his work introduced a more generic condition for
the occurrence of second sound. It was shown that the second
sound can propagate if the energy flux decays slow enough for
sustaining the temperature wave. Hardy also derived the possi-
bility of ‘drifting’ and ‘driftless’ both kinds of second sounds
in crystals, which though envisaged theoretically in some other
studies [74–76], is yet to be validated by experiments [18]. A
lucid description on second sound using the one-particle den-
sities and the local equilibrium density matrices for phonon
fields can be found in the work by Enz [74]. Ruggeri et al [77]
defined a characteristic temperature and studied its effect on
the shape change of the propagating second sound waves in
solids.

In an alternative approach, several theoretical works
[78–81] on the second sound in solids also rely on the Green’s
functions method. These approaches can be broadly classi-
fied as non-equilibrium and equilibrium Green’s functions
methods. In the former approach, microscopic derivations of
transport equations for phonons are obtained [82–85] start-
ing from the lattice Hamiltonian, using phonon number den-
sity and following the general prescription by Kadanoff and
Baym [86]. The later approach employed equilibrium Green’s
functions procedure to investigate second sound phenomena
[78, 80, 81, 87]. This approach broadly based on the idea that
if second sound seems to exist in some system, then irrespec-
tive of how it had been excited, it should be realized by some
equilibrium correlation function (precisely the autocorrelation
function of the energy density) of the system [81]. Other the-
oretical exploration of second sound involved the effect of
strong stationary thermal pulse on second sound [88], the
effect of finiteness of the normal scattering rate on the speed
of second sound [89], the effect of pulse propagation along
temperature gradients [90], studies on second sound velocities
in cubic [75] and hexagonal crystals [76], calculation of the
velocity of drifting second sound in NaF [91], NaI [92] using
anisotropy and dispersion of the phonon frequency spectrum
etc.

A thorough account of these theoretical development until
1974 was presented in the work of Beck et al [14]. A broader
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version on all kind of heat waves can be found in the work of
Joseph and Preziosi [93].

4.1.3. Experimental methods and observations. As predicted
by theoretical investigations, solid He satisfies the strict fre-
quency criterion to observe second sound. Therefore, Ack-
erman and co-workers carried out heat-pulse experiments to
probe second sound in solid He4 [16] and He3 [94]. Around
the same time, light scattering experiments [95] also employed
to probe second sound in solids. As mentioned by Lee and
Li [18], these experiments can be broadly distinguished as
two different methods: (a) heat-pulse experiments and (b)
light scattering experiments. In literature, both the heat-pulse
experiments [16, 94, 96–102] and the light scattering methods
[26, 95, 103–109] have been proved to be effective to detect
second sound in solids. In a standard heat pulse experiment
[16, 18, 99], a heat pulse is generated at the one end of the sam-
ple and the temporal response of temperature is monitored at
the opposite end whereas light scattering techniques measure
the local change of dielectric constants due to the propagation
of second sound. At low temperatures, where phonon scatter-
ing is supposed to be dominated by the sample boundaries, the
detector of the heat pulse experiments receives two tempera-
ture pulses corresponding the ballistic transport of transverse
and longitudinal phonons. At little higher temperature, N scat-
tering seems to dominate the phonon–phonon scattering and
a distinct peak can be observed, which is the representative
of second sound [97–99]. At further elevated temperature, U
scattering dominates and the second sound pulse broadens and
gradually smears out into the diffusive signal. In their two con-
secutive studies, using the Ruggeri’s model [110], Tarkenton
and Cramer [111, 112] investigated the nonlinear wave prop-
agation in solids and found the nonlinear corrections to the
speed of the second sound for NaF and Bi are small.

At earlier times, heat-pulse methods also suffered some dis-
advantages to detect second sound signal. One of the crucial
restrictions involved the requirement of the absorption lengths
of the order of the sample dimensions [106]. To resolve these
issues, in an alternative method, light scattering techniques
probe second sound by measuring the local change of dielec-
tric constants due to the propagation of second sound. The
problem of weak coupling between light and thermal fluc-
tuation at low temperatures had been resolved using force
thermal scattering technique [106]. Both of these techniques
detected second sound in NaF quite satisfactorily with reason-
able agreement on the second sound speed and the temperature
of occurrence [97, 106].

The fundamental difficulties in detecting second sound
experimentally lies in the phenomena of coupling between
temperature and other elementary excitations. However, it was
found that SrTiO3 possesses strong normal scattering due to
strongly anharmonic soft transverse optical phonons [113].
Motivated by this idea, Koreeda et al [26, 108] explored low-
frequency light scattering experiments without employing a
thermal fluctuation field to investigate the propagation of sec-
ond sound in SrTiO3. They observed an underdamped second
sound for SrTiO3 below 40 K [26]. The origin of the anoma-
lously broad Brillouin component was understood as the effect

of second sound in SrTiO3 in this quasielastic light scattering
(QELS) study. In recent times, advancements of the experi-
mental techniques lead to more precise account of the sec-
ond sound in solids. Khodusov and Blinkina [114] observed
a weakly damped second sound in the isotopically highly pure
quantum crystals of orthodeuterium and parahydrogen as well
as in the neon cryocrystals. Recently, Huberman et al [29]
experimentally observed second sound in graphite at moder-
ately high temperature (>100 K) using transient thermal grat-
ing (TTG) technique implemented with time-resolved optical
measurements. Very recently, Ding et al [28] observed second
sound in graphite at even higher temperature (>200 K) using
sub-picosecond TTG technique supported by first-principles
simulations. For isotopically pure graphite, the occurrence of
second sound had been predicted [28] to reach even at room
temperature. Due to the strict frequency bounds and the exper-
imental limitations, second sound in solids had been exper-
imentally explored mostly in a narrow temperature range.
Recently, Beardo et al [115] carried out an experiment with a
rapidly varying temperature field as a driving force in a system
of bulk Ge using a harmonic high-frequency external thermal
excitation. High-frequency second sound was found for Ge in
a wide temperature range (7–300 K) observing the phase lag of
the thermal response of the material and validated by ab initio
and nonequilibrium MD approaches. These new experiments
open up possibilities to explore the occurrence of second sound
in a wide range of materials.

4.1.4. Numerical investigations. Advancement of computa-
tional resources in late 80s and 90s opened up the avenues
to explore the peculiar behavior of second sound in solids.
It gathered more momentum in the post-2000 era due to the
presence of large scale simulation tools for extremely time
consuming atomistic and quantum mechanical methods like
molecular dynamics and density functional theory etc. Also,
computational resources greatly helped developing the exten-
sive numerical solutions of the Peierls BTE with lesser approx-
imations on the phonon–phonon scattering processes. Several
molecular dynamics studies [116–123] were carried out in
this context. Among them, the works of Tsai and MacDonald
[116, 117] demands special attention as the molecular dynam-
ics approach they adopted in the 70s were fundamentally very
different from the then existing methods but it was surprisingly
consistent with the theoretical results [93]. Instead of lineariz-
ing the equations, they included the complete anharmonicity
of the interatomic potential for forces. Their MD study [117]
of an intense heat pulse propagation in a lattice at high tem-
perature and pressure revealed the second sound propagation,
superimposed on a diffusive background. A coupling between
elastic and the thermal response was observed where longitu-
dinal and transverse stress waves carry temperature waves with
velocity resembling second sound velocity [117]. Another MD
study [116] by the same authors on the propagation of shock
wave in a 3D crystalline lattice revealed the existence of sec-
ond sound in a thermally equilibrated regime behind the shock
front. Schneider and Stoll [118] identified the temperature win-
dow and damping of second sound in model solid via the
resonance in spectral density functions using a canonical MD
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Figure 6. Different observations of second sound in crystalline solids. (a) Schematic of second sound propagation in a solid. A heat pulse,
introduced at one end, can be received at the detector at the other end with negligible damping. (b) Results from the observation of second
sound in heat pulse experiments of NaF, presented via pulse heights as a function of arrival times of the pulses. The pulse emerging from the
shoulder of the curves after the longitudinal (L) and transverse (T) ballistic peaks, denotes the second sound signal. Reprinted (figure) with
permission from [98], Copyright (1971) by the American Physical Society. (c) Comparison between different experiments to observe first and
second sound velocities in NaF as a function of temperature. The results of heat pulse [98] and the evidences from light scattering experiments
[106] are shown to be consistent for NaF. Reprinted (figure) with permission from [106], Copyright (1976) by the American Physical Society.
(d) Temperature variation of the average scattering rates corresponding to N, U and B scattering for Bi calculated via ab initio techniques. The
shaded regime denotes the GK criterion for the occurrence of second sound. Reprinted (figure) with permission from [48], Copyright (2018)
by the American Physical Society. (e) Second sound window of graphite with natural isotope content is shown in the temperature and the
TTG grating period parameter space with the color code denoting the ratio of the maximum at the peak of the magnitude of frequency-domain
Green’s functions to the minimum between the peak and zero frequency as defined in [29]. From [29]. Reprinted with permission from AAAS.
(f) Continuous spectrum of dispersion relations for temperature waves in graphene in the ‘relaxon’ picture, over a high symmetry path in the
Brillouin zone, is presented. The largest value of the allowed oscillation frequencies are marked with red while zero temperature phonon
dispersion curves are denoted via black. The color scale implies decay time of the temperature waves. Reprinted (figure) with permission
from [57], Copyright (2017) by the American Physical Society.

ensemble with almost constant energy. Osman and Srivas-
tava [119] used MD simulations of heat pulse propagation in
SWCNT and observed that the energy carried by wave packets
corresponding to the second sound was larger compared to that
of the twisted phonon mode (TW) and longitudinal acoustic
(LA) modes. In another MD simulation of multiwalled CNT
[121], however, the second sound feature was not seen. In a
comparatively recent non equilibrium MD simulation of heat
pulse propagation, Yao and Cao [122] observed an attenu-
ated second sound propagating in both armchair and zigzag
graphene. However, these MD simulations [119, 120] suffered
from the space and time scales limitations. Later, using an
optimized tersoff potential to account the atomic interactions

in a lattice dynamics calculation of a (20, 20) SWCNT [27],
those limitations were overcome and a significant contribu-
tion (� 70%) of the drifting phonons was identified in the
heat propagation at room temperature. Also some of the non-
equilibrium MD studies [122, 123] underwent difficulties in
detecting second sound due to its strict window condition and
due to the small size and high temperature. A dispersion rela-
tion was also derived [18, 27] and the propagation and damp-
ing of second sound were understood in terms of the real and
imaginary parts of the dispersion relation respectively.

Another approach within numerical methods dealt with
modeling hydrodynamic phonon transport using approximate
solutions [20] to the BTEs. In this context, the paradox of
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infinite propagation of speed of thermal signals in Fourier’s
law was overcome by using Cattaneo–Vernotte [124, 125] or
GK [43] equation for heat conduction in solids. There are also
other macroscopic equations for hydrodynamic heat conduc-
tion which is out of the scope of this review and readers are
recommended to read the works of Guo and Wang [12, 126].
Very recently, Scuracchio et al [127] derived a system of cou-
pled integrodifferential equations for phonon density fluctua-
tions in 2D crystals and the second sound doublet was observed
via the dynamic displacement susceptibility for 2D crystals.
Using a discrete gas kinetic scheme, Luo et al [128] studied
the propagation of second sound in graphene ribbon and found
the flexural acoustic modes (ZA) of the phonon spectrum of
graphene as the principal contributor to the second sound. Very
recently, Shang et al [129] obtained a 2D GK equations to
describe hydrodynamic phonon transport and reached similar
conclusions about the connections between ZA phonon modes
and second sound. They found [129] the speed of second sound
is much smaller than that of the Debye model at similar tem-
perature due to the frequency dependent group velocity and
the frequency independent phonon density of states of the ZA
modes.

The evolution and expansion of first-principles techniques
like density functional methods [19] with a lot of pub-
licly available extremely efficient software packages (Quan-
tum Espresso [130], ShengBTE [131], PHONOPY [132],
PHONO3PY [54, 133]) greatly helped the community to
undertake the exploration into the ‘No Man’s land’ in the field
in terms of the computational feasibility. The first-principles
calculations by Lee et al [15] predicted the existence of
phonon hydrodynamics and therefore propagation of second
sound in suspended graphene at higher temperatures and in
wider temperature window compared to the 3D bulk materials.
Cepellotti et al [17] extended and generalized this phenomena
at room temperature for a wide range of 2D materials using
first-principles density-functional perturbation theory with an
exact variational solution. Markov et al [48] carried out an
exact variational solution to the BTE incorporating with the
first-principles calculations of the three-phonon scattering and
consistently identified the drift velocity of Bi along the binary
axis with that of the second sound in Bi measured experi-
mentally [100] many years back. Very recently, hydrodynamic
features in bulk crystalline polymers were also observed by
Zhang and co-workers [51]. Also, very recently, Monte-Carlo
simulations [134, 135] and lattice-Boltzmann method [136]
were introduced to predict second sound in solids. Apart from
the exact solution of BTE [54], macroscopic hydrodynamic
equations were also coupled with the first-principles calcula-
tion inputs of the harmonic and anharmonic properties of the
crystal lattice to predict the phonon hydrodynamics in mate-
rials. Kinetic collective model (KCM) [137–143] is one such
model derived from the GK solution [43] to the LBTE which
splits the collision operator into normal and resistive ones and
thus separates kinetic and collective contributions of phonons
to the heat conduction. This model also uses first-principles
outputs of second and third order force constants due to har-
monic and anharmonic processes of phonons. This can be
a viable alternative for some instances where the complete

solution of LBTE with first-principles force constants calcula-
tions demand unprecedented computational resources. KCM
in conjunction with GK frequency criteria, was employed
in some recent studies to predict second sound and phonon
hydrodynamics in some 3D materials [50, 144, 145].

4.1.5. Second sound from relaxon approach. In the realm
of relaxon approach, introduced by Cepellotti and Marzari
[55, 57], linear superpositions of phonon modes are termed
as relaxons which represent the collective excitation in the
solid having well defined lifetimes and MFPs. It was shown
that the LBTE naturally allows the existence of this collec-
tive excitations contrary to the earlier works [43, 53] where
the solutions of LBTE were associated with approximations
and simplifications. Also the single relaxation time approxi-
mation and Debye approximations for phonon dispersion were
abandoned. The relaxon approach based on the fact that
the temperature waves are related to the fluctuations of the
phonon population of the solid. Under scattering events, this
population deviates from the Bose–Einstein to a displaced
Bose–Einstein distribution, inducing a change of the total
energy of the crystal. This total energy fluctuations is related
to the temperature fluctuation in the system through the spe-
cific heat of the material. Cepellotti and Marzari [57] employed
LBTE for the displaced phonon distribution and arrived at
an eigenvalue equation where eigenvectors of the scattering
matrix correspond to the crystal excitations. Investigating
graphene, the authors reached the conclusion that transport
waves exist in many crystals but the observation demands
to meet the criteria of long relaxation times and frequency-
resolved advanced experimental methods. Another work by
Simoncelli et al [59] exploited the relaxon’s even parity to
describe a generalized viscous equations and the second sound
was explored using this viscous heat equations.

Figure 6 summarizes the exploration of second sound in
different materials using various experimental, theoretical and
numerical methods over the years and illustrates some of the
crucial findings in the literature concerning second sound in
solids.

4.2. Poiseuille flow

Phonon Poiseuille flow is another exotic phonon hydrody-
namic phenomena in solids which bears resemblance with the
Poiseuille flow of fluids in a pipe. This phenomenon oper-
ates in a thermal conduction regime where normal scatterings
are predominant and the thermal resistance is introduced by
the boundaries of the sample. The abundance of N scatter-
ing events causes the deviation from the Bose–Einstein dis-
tribution of phonons with a drift velocity developing along the
direction of the thermal gradient. However, diffuse boundary
scattering events tend to lower the drift velocity of phonons at
the boundaries, giving rise to a drift velocity gradient normal
to the heat flow direction. The steady-state phonon hydrody-
namical feature where phonons flow under a thermal gradient
with a drift is termed as Poiseuille flow [15] as it bears similar-
ities with the fluid flow in a pipe where the pressure gradient
plays similar role as that of the temperature gradient and the
flow resistance comes from the viscosity and the pipe diameter,
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comparable to the N scattering rates and sample width respec-
tively in the context of thermal conduction [146]. The drift
velocity gradient across the width induces a phonon momen-
tum transfer toward the boundary from the center of the width.
N scattering events hinder this cross-plane momentum trans-
fer and thus invokes the thermal resistance as viscous damping
effect [18]. Thus, similar to the concept of fluids, N scatter-
ing along with the boundary scattering give rise to the idea
of hydrodynamic viscosity of phonons, which has also been
realized via viscous heat equations in relaxon approach [59].
Similar to the second sound propagation regime, Poiseuille
flow does not exist in either ballistic or diffusive (or kinetic)
regimes as the sample size is less and much greater than the
average phonon MFP in these two regimes, respectively. In the
first scenario, the heat conduction is ballistic as the phonons
directly hit the boundaries before encountering other phonons.
In the second scenario, much larger system size compared to
the phonon MFPs allows resistive phonon–phonon scattering
events (Umklapp) to become the principal mechanism for ther-
mal resistance inside the material, defining the diffusive ther-
mal conduction regime. These consequences bring forth the
idea of a MFP window in which the Poiseuille flow can be
realized.

4.2.1. Theoretical predictions. The investigation on the ther-
mal conductivity of a crystal at low temperature by Sussmann
and Thellung [39] was the first to identify the Poiseuille like
flow in a phonon gas, neglecting the Umklapp scattering at
low temperatures. A temperature gradient was set up between
the two ends of a cylinder with a rough boundary. The hydro-
dynamic equations, derived for the phonon gas, coupled with
mean free approximation and ignoring dispersion, was shown
to feature two distinct contributions to the heat flow: (a) one
due to the drift motion of the phonon gas and (b) one due to the
temperature gradient. This drift was eventually shown to pro-
duce Poiseuille flow. Also, using a simple substitution of the
drift velocity, the coupled equations derived for temperature
and drift velocity was seen emerging as undamped tempera-
ture wave equation corresponding to the second sound if the
thermal dissipation was neglected [39]. Following Sussmann
and Thellung [39], a very brief derivation of Poiseuille flow is
given below. The coupled equations for both temperature and
drift velocity, as was obtained by Sussmann and Thellung [39]
reads
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Considering heat flow in a cylinder whose length is much
larger than the radius and assuming diffusive boundary scatter-
ing at the cylindrical surface, retaining only axial components

of∇T and the drift velocity u (along z axis) reduce these above
two equations as
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. As Sussmann and Thellung [39]

approached a dispersion-less low temperature phonons, their
longitudinal and transverse energies were realized using the
proportionality with momentum, giving rise to the constants
Cl and Ct with τ l and τ t their mean free times respectively.
The solutions of these solutions constitute Poiseuille flow of
phonons with a parabolic nature of the drift velocity,

∇zT = constant (43)

and

uz (r) =
5∇zT
4τ̃T0

(
r2 − R2

)
, (44)

where R is the radius of the cylinder and r =
√

x2 + y2. The
signature of the Poiseuille flow through the dependence of
thermal conductivity on temperature and characteristic size
was first realized by Gurzhi [13, 40]. A hydrodynamicequation
was employed to solve LBTE by series expansion in the small
parameters lN/d and lN/lR where l is the MFP, d is the diame-
ter of the sample and N and U denote normal and Umklapp
scattering respectively. Thermal conductivity in the rarefied
Poiseuille flow regime (lN � d � lU), was found to exhibit
a much stronger temperature dependence

(
κ ∝ d2T8

)
com-

pared to that of the Casimir effect [147]. In 1966, a series of
papers [24, 43, 148] extensively discussed and derived LBTE
for the nonmetallic crystals from the analysis of the eigenvec-
tors of the normal scattering operator using the relaxation time
approximation. The existence of the Poiseuille flow was found
to be correlated with the propagation of second sound [14, 24]
as both of them require the presence of drifting distribution of
phonons. Therefore, the condition

ΓU � ΓB � ΓN (45)

denotes the frequency window where both Poiseuille flow and
second sound can operate. GK [24] also identified another
hydrodynamic regime where the normal scattering processes
are still dominant yet the heat flux is dissipated via Umklapp
resistive scattering contrary to the Poiseuille regime where
the sample boundary dominantly dissipates the heat. This
regime was termed as Ziman hydrodynamic regime where the
frequency window satisfies the following

ΓB � ΓU � ΓN, (46)

where Γ denotes the average scattering rate with i = N, U or B
defining normal, Umklapp and boundary scattering processes
respectively.
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Here C denotes the specific heat and λ defines the phonon
mode comprised of wave number and phonon branch. Fur-
ther, invoking Poiseuille flow condition, GK derived the tem-
perature dependent expression for thermal conductivity which
is consistent with that of the findings of both Gurzhi [40]
and Sussmann and Thellung [39]. Meier [84] reproduced the
results on Poiseuille flow derived by GK using Green’s func-
tions approach. The thermal conductivity was found [84] to
vary with T8, consistent with that of the Gurzhi. Nielsen [88]
found a nonlinear dependence of the heat current on tempera-
ture gradient under the Poiseuille flow conditions of a phonon
gas. In another theoretical work [149], Callaway’s relaxation
time approximation [22] was used to reconstruct LBTE to
obtain numerical solution of the thermal conductivity for thin
plates by an approximation of the integral equation for drift
velocity. It was shown for model calculations of LiF and NaF
that the Poiseuille flow could be visible only in a very pure
crystals of small dislocation density and with more thickness
[149]. Beck [150] derived the temperature dependence of ther-
mal conductivity by taking a model wave vector-dependence
of normal phonon scattering rate and observed that κ ∝ T6.
Employing Cattaneo model [124] with adding nonlocal effects
and with comparing with GK equation [43], Jou and Casas-
Vazquez [151] theoretically derived the consequences of gen-
eralized temperature on the effective thermal conductivity in
the Poiseuille flow regime.

4.2.2. Experimental realizations. After the theoretical predic-
tion by Gurzhi [13, 40], experimental efforts were made to
observe the phonon Poiseuille flow in crystalline solids. All
these experiments [25, 42, 152–162] were based on measur-
ing the thermal conductivity (κ) as a function of temperature
and observing the temperature scaling of the κ(T) below the
κ(T) peak. In 1965, for the first time, this hydrodynamic fea-
ture was experimentally shown by Mezhov-Deglin [42] for
crystalline He4. The thermal conductivity was found to vary
with temperature as κ(T) ∼ Tn, with n varying from 6–8. Also,
the maximum average MFP was seen to exceed the diam-
eter of the sample. These two hallmarks of Poiseuille flow
was found to be consistent with that of the Gurzhi’s theoreti-
cal work [40]. Thomlinson [152] evidenced a similar trend of
κ(T) with temperature with the exponent (n) ranging from 3.4
to 3.7. Poiseuille flow was also investigated at low tempera-
ture for hexagonal closed-packed He4 [155–157], quasi-one
dimensional single crystals [158], single crystals of Si [160]
and for solid parahydrogen [159]. Isotopically and chemically
pure materials were observed to be more prone to display
Poiseuille flow conditions [160]. Kopylov and Mezhov-Deglin
[153, 154] explored this feature in pure Bi single crystals and in
the temperature range between T = 1.3–2.5 K, κ(T) was found
to scale with T3.15±0.07. This exponent along with the corre-
sponding growth in the effective MFP (leff ) with temperature,
demonstrated the existence of Poiseuille flow in Bi. Recently,
Machida et al [161] observed a faster than cubic dependence
of κ(T) on T for black phosphorus in a temperature range of

5–12 K. The momentum exchange between acoustic phonon
branches of black P was found to be responsible to felicitate
the Poiseuille flow. Here we note the discrepancies between
the exponents of the temperature of theoretical and experi-
mental observations in the Poiseuille flow regime. Almost in
all the experiments, the exponents were found to be less than
that of the Gurzhi’s [13, 40] findings. The reason behind these
discrepancies comes from the understanding of the kinematic
viscosity of the phonon system, emerging out of the N scatter-
ing and local velocity of phonons, as was mentioned by Gurzhi
[13]. The variation of this phonon viscosity at a given temper-
ature makes the phonon system non-Newtonian, giving rise to
a comparatively flatter parabolic velocity profile which even-
tually lead to the absence of the superlinear size dependence of
the thermal conductivity [161]. Martelli et al [25] carried out
experiments on both undoped and doped SrTiO3 and Poiseuille
flow was realized in the undoped sample via the temperature
dependence of κ(T) with an exponent n > 3 in the low temper-
ature (6 K < T < 13 K). Very recently, thin graphite sample
was also shown to feature Poiseuille flow at reasonable high
temperature (40 K) [162].

4.2.3. Numerical explorations. The solution of BTE in the
GK approach [43] greatly helped the community to carry out
numerical studies on the phonon hydrodynamics. Moreover,
using dispersion relation of nonmetallic solids, GK [24, 69]
established the link between the occurrence of both Poiseuille
flow and second sound in the same frequency window.
Thus, GK approach was numerically adopted in many studies
[129, 163, 164], to realize the Poiseuille flow in phonon
dynamics of the solids. Sellitto et al [164] analyzed the nature
of the heat flux profiles across a narrow 2D strip using GK-type
generalized heat transport equation with a slight modification
of the boundary conditions in the wall. It was found that only
a small range of temperature and strip width is permissible
for the Poiseuille flow of phonons with a parabolic heat flux
profile [164]. Also, superlinear dependence of heat current on
the ribbon width was numerically understood as a manifesta-
tion of the Poiseuille flow in 2D materials [129]. Apart from
that, different methods were performed to numerically observe
the existence of the Poiseuille flow. These approaches include
macroscopic heat conduction models [126, 165], hydrody-
namic models concomitant with 2D crystals [127, 166], first-
principles density functional calculations coupled with full
solution of LBTE using either variational [17, 48] or iterative
methods [15, 49], employing second-principles polynomial
potential [167] with the direct solution [54], solution under
Callaway model [168] and Monte Carlo solutions of Peierls
BTE [134, 135, 169] etc. Similar to what has already been
discussed in the second sound observation in earlier section,
first-principles calculations with accurate solution of LBTE
using different methods [15, 17, 54] helped a lot to predict the
correct thermal conductivity and therefore the Poiseuille like
behavior in 2D materials. At room temperature, phonon hydro-
dynamics seems crucial for graphene and a wide temperature
[17] and width windows [15] were observed for the occurrence
of the Poiseuille flow of phonons. Further, Callaway’s model
[22] was broadly found to predict the correct behavior even
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Figure 7. Different instances of Poiseuille flow of phonons in crystalline solids. (a) A schematic diagram of phonon Poiseuille flow inside
a solid sample of finite width. The drift motion is larger at the center compared to the boundaries, giving rise to a parabolic flow pattern of
the heat flux profile. (b) Thermal conductivity as a function of temperature is shown to vary with stronger temperature dependence (∝ T8)
than the Casimir (ballistic) limit (∝ T3) in the Poiseuille flow regime. Reproduced with permission from [13]. [© Uspekhi Fizicheskikh Nauk
1968]. (c) The temperature variation of the thermal conductivity of crystalline SrTiO 3 is presented employing LBTE coupled with ab initio
density functional simulations. A faster than T 3 dependence (κ ∝ T 3.75) is observed in the Poiseuille flow regime. Reprinted (figure) with
permission from [167], Copyright (2019) by the American Physical Society. (d) First-principles findings of the sample width window as a
function of temperature to detect Poiseuille flow in graphene and diamond. Graphene has a wider and distinct gap below 100 K compared
to the negligible gap in diamond (even at 50 K), making it more prone to the Poiseuille flow characteristics. Reproduced from [15], with
permission from Springer Nature. (e) Effective phonon MFP (lph) is extracted from κ as a function of T along the a-axis of black phosphorus.
The peak in the T dependence of lph indicates Poiseuille flow which decreases with sample width. Reprinted/adapted from [161]. © The
Authors, some rights reserved; exclusive licensee AAAS. Distributed under a CC BY-NC 4.0 license http://creativecommons.org/licenses/by-
nc/4.0/. (f) Poiseuille flow in ‘relaxon’ picture using viscous heat equations. x component of the heat flux along the sections x = 1.5 and 9
μm are presented for graphite. Unlike the Fourier heat flux, total heat flux obtained from viscous heat equations show Poiseuille-like profile.
Reproduced from [59]. CC BY 4.0.

for the 2D materials [17]. Li and Lee [169] employed a devia-
tional Monte Carlo scheme [170] coupled with first-principles
scattering matrices due to anharmonicity to study the phonon
hydrodynamics in suspended graphene. This novel numerical
scheme, introduced by Landon and Hadjiconstantinou [170],
deals with the sampling of the deviation of the distribution
function by attaching either positive or negative values of unit
deviational energies attached with each of the particles. These
particles, however, are not to be mixed with real atoms or
molecules and it had been approximately described as the con-
stitutive computational elements in the distribution function
[170]. Li and Lee [169] showed that this Monte Carlo tech-
nique is at par with the other methods to solve LBTE and found
a superlinear dependence of the thermal conductivity on the
width, confirming the existence of Poiseuille flow at 100 K and

in the width-window between 1–10 μm of graphene. Here, we
recall the differences seen between Gurzhi’s theoretical model
and experimental realizations as was discussed in the previ-
ous subsection. Employing ab initio calculations coupled with
the iterative solution of LBTE, phonon hydrodynamic inves-
tigations by Ding et al [49] identified the Poiseuille flow in
graphite using the superlinear size dependence of the thermal
conductivity, consistent with the prediction by Gurzhi [13, 40].
The thickness dependence of thermal conductivity was found
to be either superlinear or sublinear depending on the varia-
tion of the boundary scattering rate compared to the normal
scattering rates. Recently, in the hydrodynamic phonon trans-
port in GeTe at low temperature, an ab initio numerical study
[145] also suggested a similar superlinear size dependence and
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demonstrated it using an exponent related to the ratio between
normal and resistive scattering rates.

4.2.4. Relaxon approach to Poiseuille flow. As mentioned
earlier, the relaxon picture [55] approaches the phonon hydro-
dynamics from the inconsistent description of the Fourier’s
law and is based on the collective phonon excitations
(superposition of phonons) instead of individual phonon
dynamics. Using the idea of relaxon, Simoncelli et al [59]
derived generalized viscous heat equations involving two cou-
pled equations for local temperature and the drift velocity
fields, which on the limiting conditions of crystal momen-
tum dissipation, invoke either second sound (weak dissipation)
or Fourier’s law (strong dissipation). Rewriting the viscous
heat equations as energy and momentum balance equations,
heat flux was realized [59] as separate effects coming from
the temperature driven (Qδ(r, t)) and the drift velocity driven
(QD(r, t)) components. Employing no-slip boundary condi-
tions (zero drift velocity of the relaxons), the heat flux profiles
were found to feature Poiseuille flow associated with a char-
acteristic length scale which dictates the parabolic variation
of the heat flux [59]. These findings were found to be con-
sistent with that of the space-dependent LBTE solution using
full scattering matrix [56]. The analytical solutions of the one-
dimensional version of the viscous heat equations were also
seen to produce similar qualitative behavior with the findings
of Sussmann and Thellung [39].

Some of the important results from the literature that fea-
ture phonon Poiseuille flow in crystalline materials using var-
ious experimental, theoretical and numerical approaches are
presented in figure 7.

4.3. Knudsen minimum

Citing the analogy of phonon flow with the Knudsen flow of
gas, phonon Knudsen minimum is ascribed to the minimum in
temperature dependence of the phonon MFP, marking ballistic
to hydrodynamic phonon transport. It indicates a minimum in
the normalized heat flow rate in a system whose size becomes
comparable to the phonon MFP.

In comparison with the second sound and Poiseuille flow,
phonon Knudsen minimum had been demonstrated and dis-
cussed less often in the literature in the context of phonon
hydrodynamic heat conduction. This is primarily because the
occurrence of the phonon Knudsen minimum is more subtle
compared to its two other counterparts as it corresponds to
the heat conduction regime where the transition between bal-
listic and hydrodynamic regimes is occurred [19, 171]. Here
we note an important point that despite the GK conditions
[24] with a quantifiable frequency window exist to detect the
phonon hydrodynamic regimes in a crystal, often the bound-
aries between different heat conduction regimes are blurred
[145] (ballistic–hydrodynamic, hydrodynamic–diffusive, bal-
listic–diffusive). This emerges from the GK condition
[24] for the existence of the Poiseuille hydrodynamics:
ΓR � ΓB � ΓN, where Γ denotes average scattering rates and
R, B, N stand for resistive (Umklapp and isotope scattering),
boundary and normal scattering processes respectively. This
inequality prevents from defining a sharp boundary between

different regimes. For example, starting from the ballistic
regime, the boundary between the ballistic (ΓR � ΓN � ΓB)
and the hydrodynamicheat conduction (ΓR � ΓB � ΓN) goes
through a crossover where the condition shifts from ΓN < ΓB

to ΓN > ΓB where the difference between ΓN and ΓB is not
significant to satisfy the GK conditions.

The microscopic understanding of the phonon Knudsen
minimum in solids relies on the occurrence of a minimum in
the normalized heat flow rate in a system of which the char-
acteristic size (L) becomes comparable to the phonon MFP
[15, 49], in other words when Knudsen number (Kn = MFP/L)
is close to 1. Further, it has been understood by considering
the minimum in the variation of the dimensionless thermal
conductivity (κ∗) as a function of the sample width or the char-
acteristic size. In the complete ballistic regime, where system
size defines the MFP of phonons, thermal conductivity and κ∗

are seen varying linearly and remaining constant with the sys-
tem size, respectively. When N scattering is introduced, the
thermal resistance is solely controlled by the boundary scat-
tering and therefore it depends on the system size. For small
characteristic size of the sample N scattering is seen to increase
the boundary scattering and lower theκ∗ than the ballistic case.
On the other hand, larger size weakens the boundary scatter-
ing leading to a larger κ∗ than the ballistic case. Therefore,
κ∗ goes through a minimum in between these two situations,
termed as Knudsen minimum. Larger κ∗ than the ballistic
case, is an indicative of a superlinear size dependence of the
thermal conductivity. Therefore, Knudsen minimum occurs
concomitantly with the onset of the Poiseuille flow in solids
and more specifically, a Poiseuille peak in phonon hydrody-
namic regime is followed by a Knudsen minimum.

After the exploration of molecular Knudsen minimum
observed by Knudsen [172] in early 20th century, Cercignani
and Daneri [173] was the first to numerically solve the BTE
for the Poiseuille flow of a rarefied gas between two paral-
lel plates and found the Knudsen minimum in the variation of
nondimensional volume flow rate with inverse Knudsen num-
ber. Liquid helium was shown to exhibit Knudsen minimum
at very low temperature [174]. The solids, on the other hand
had not been found to be very prone to display the phonon
Knudsen minimum [171]. In 1975, Mezhov-Deglin et al [175]
carried out a comprehensive experimental and numerical study
to observe the transition between Poiseuille flow and Knud-
sen flow in Bi crystal at very low temperatures (<2 K). At
temperatures below 1.3 K and with diameter below 0.5 cm,
neglecting the impurity and defect scattering processes, the
Knudsen minimum was found [175] to exist at temperature
∼ 1 K, represented through the minimum of the size variation
of the effective MFP (leff ). Solid He4 [157] was also found to
feature Knudsen minimum in the MFP at T ≈ 0.25 K. Guo and
Wang [168] developed a numerical method to solve Boltzmann
equation using Callaway’s [22] dual relaxation model to study
heat transport in two-dimensional materials and found the exis-
tence of Knudsen minimum in the graphene ribbon. The min-
imum was shown [168] to persist at low temperatures when
the average normal scattering rate seems to strongly domi-
nate (around 100 times stronger) than the resistive scattering
rates, realized via the width variation of the nondimensional
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Figure 8. Knudsen minimum in crystalline solids. (a) Experimentally observed Knudsen minimum in Bi crystal below 2 K, shown via the
variation of effective MFP (lpe) with temperature. Reproduced with permission from [175]. [Russian Academy Of Sciences]. (b) Thickness
dependence Knudsen minimum of black phosphorus, expressed via the temperature variation of the effective phonon MFP along c axis,
normalized by its value at Knudsen minimum. With increasing thickness, minimum shifts to lower temperatures. Reprinted/adapted from
[161]. © The Authors, some rights reserved; exclusive licensee AAAS. Distributed under a CC BY-NC 4.0 license http://creativecommons
.org/licenses/by-nc/4.0/ (c) Simulation of Poiseuille flow and Knudsen minimum in graphite ribbon, realized via minimum in nondimensional
thermal conductivity (red dots) while varying with inverse phonon Knudsen number. Reprinted with permission from [49]. Copyright (2018)
American Chemical Society. (d) Knudsen minimum was found in the width variation of thermal conductivity of suspended graphene, nor-
malized by sample width at different temperatures via solving the Peierls BTE with deviational Monte Carlo scheme. Knudsen minimum
seems prominent when temperature is lowered from 300 K to 100 K. Reprinted (figure) with permission from [176], Copyright (2019) by the
American Physical Society.

heat flow rate. Ding et al [49] extensively used first-principles
calculations to obtain the exact solution of BTE for graphite
and surprisingly identified Knudsen minimum at significantly
higher temperature (∼90 K) opening up the possibilities to dis-
cover Knudsen minimum in other 3D materials. Soon after,
the experimental study by Martelli et al [25] identified the
Knudsen minimum in SrTiO3 via the minimum in the tem-
perature variation of the effective MFP. Experimental efforts
by Machida et al [161] explored the thickness dependence
of the Knudsen minimum in the temperature variation of the
effective MFP along with the prominent Poiseuille flow char-
acteristics in black P. They found that increasing the sam-
ple thickness gradually shifts the Knudsen minimum to the
lower temperatures. Increasing thickness helps larger pool of
phonons to undergo normal scattering which essentially trig-
gers more diffuse boundary scattering at the onset of bal-
listic regime, leading to this trend. Another study [162] on
thin graphite sample was also found to exhibit Knudsen mini-
mum around 10 K. A multiscale computational protocol [128]
for solving the transient BTE using Callaway’s dual relax-

ation model was employed to investigate the second sound in
graphene and identified the sample width (2 μm) where the
Knudsen minimum was observed at 40 K via the sample width
variation of the nondimensional thermal conductivity. Using
deviational Monte Carlo method with first-principles calcu-
lations, Li and Lee [176] numerically solved BTE to investi-
gate the crossover between different heat conduction regimes
in suspended graphene. Nondimensional thermal conductivity
was realized via κ′ (=κ/W) which is similar to the original
dimensionless thermal conductivity κ∗ = κT0/(CvW), where
C, v and W represent energy density, average group velocity
and the width of the sample, respectively [176]. By decompos-
ing κ′ into ballistic and scattered contributions, Knudsen min-
imum was observed to be present at 100 K at width ≈ 0.7 μm
for suspended graphene [176]. In a recent ab initio study [145],
three dimensional crystalline GeTe was found to exhibit a shal-
low Knudsen minimum like feature at low temperature mark-
ing the onset of the phonon hydrodynamics. Figure 8 outlines
various works with a strong presence of Knudsen minimum in
various solids.
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Figure 9. A comprehensive up-to-date review of various 3D, 2D and 1D materials that have been found to feature phonon hydrodynamic
signatures via various experimental, numerical and theoretical methods. The materials, supporting phonon hydrodynamics, are represented in
a parameter space of temperature and the year of their investigation. For each of the materials, the corresponding temperature windows for
featuring phonon hydrodynamics, has been defined via the double headed arrows. Also, different investigations related to the experimental
and theoretical-numerical methods have been distinguished. As it is evident from the gradual growing resources of advanced computational
and experimental techniques, explorations regarding phonon hydrodynamics are more frequent after 2010 compared to the era before it. For
different materials at similar temperature range or similar year of study, green dots are marked for clarity to guide the eye to distinguish
the corresponding temperature window for specific materials. Some of the uncommon symbols for the materials are given below: p-H2:
parahydrogen [114]; o-D2: orthodeuterium [114]; MX2: (M = Mo, W; X = S, Se) [144]; PA-I: polyacene [51]; PA-II: polyacetylene [51]; PE:
polyethylene [51].

5. Phonon hydrodynamics from material science
perspective

While phenomenological understanding is crucial from the
physicist’s point of view, a material science perspective is also
equally important in the current age of advanced material sci-
ence, process engineering, metallurgy and applied physics.
Physical understanding of the hydrodynamic phenomena in
solids eventually should lead to harnessing the suitable proper-
ties to produce materials of interests which can solve various
heat conduction related problems and open up new areas of
scientific explorations. Though some of the reviews [8, 19] on
the subject briefly described the materials that feature phonon
hydrodynamics, a thorough up-to-date account of the materials
of interest seems essential. Figure 9 summarizes an up-to-date
account of the materials that possess phonon hydrodynamics
with corresponding temperature window of occurrence and
their year of study, investigated via experiments and advanced
theoretical/computation techniques.

5.1. 3D materials

As discussed in earlier studies [8, 14, 18, 19], it demands a
stringent set of rules for the materials to qualify for persisting

and exhibiting phonon hydrodynamics phenomena. Extremely
low, often cryogenic temperature to switch on enough nor-
mal scattering or appropriate size of the sample to satisfy GK
condition, make it difficult for materials to become a suitable
candidate for phonon hydrodynamic phenomena e.g. second
sound, Poiseuille flow, Knudsen minimum etc. Furthermore,
isotopic purity, vacancies in the crystal structure, structural
instability are also found to influence the operational regime
of phonon hydrodynamics. No wonder, only few materials
had been found over the years to substantially exhibit phonon
hydrodynamics. Initially, works of Tisza [32] and Landau
[33, 34] and later the experimental works by Peshkov [35, 36]
on the second sound wave propagation in liquid He evoked
curiosity about the existence of phonon hydrodynamics in the
solids. Using heat-pulse experiments phonon hydrodynamics
regime was obtained for solid He4 [16, 42, 156]. For solid He4,
Ackerman et al [16] found the operational temperature regime
to be extremely low (below 0.7 K). Similar heat-pulse prop-
agation experiments were also carried out [152] for solid bcc
He3 and the signatures of phonon hydrodynamics were found
to be present at T � 0.58 K [94, 152]. Both heat-pulse [97]
as well as light scattering experiments [106] showed consis-
tent phonon hydrodynamic behavior in the temperature range
10 K < T < 20 K in the crystalline NaF. A similar fluoride
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material, LiF was also investigated by Bausch et al [149] in
this context. Dislocation density and thickness of these fluoride
crystals were found to act as critical factors, making it difficult
to realize phonon hydrodynamicmodes in these samples [149].
Bi with sufficient isotopic purity was experimentally observed
[100, 153, 154] to feature phonon hydrodynamics at low tem-
perature regime (3 K < T < 3.5 K) which had been verified
only few years back by Markov et al [48] via the first-
principles calculations coupled with variational solution of the
LBTE. Both doped and undoped SrTiO3 had been experimen-
tally investigated [25, 108] in the context of phonon hydrody-
namics and Poiseuille regime with faster than T3 scaling was
observed for thermal conductivity in the temperature range
6 K < T < 13 K for undoped SrTiO3. Second-principles den-
sity functional theory with full LBTE solutions by Torres et al
[167] confirmed the hydrodynamicphonon transport in SrTiO3

with smaller characteristic size of the sample (4 μm). Contrary
to the conventional solids, SrTiO3 hosts soft optical modes
even at low temperature [25]. Therefore, unlike the solid He
crystals, where chemical purity is crucial, the large contri-
bution of the three phonon phase space, particularly normal
scattering events, helps SrTiO3 to exhibit phonon hydrody-
namics. In another approach, the QELS experiment [26] on
SrTiO3 in the low frequency range revealed an anomalously
broad doublet structure in the light scattering spectrum in the
temperature interval of 30 K < T < 40 K [26, 107, 108].
This doublet was argued as the signature of second sound
whose presence had been a subject of debate [177]. Machida
et al [161] experimentally observed phonon hydrodynamics in
black P in the temperature range 5 K < T < 12 K utilizing
the Poiseuille flow characteristics in the temperature variation
of the effective MFP. Recently, thermal grating measurement
[29], thermal conductivity assessment [162] as well as first-
principles simulations [49] reported phonon hydrodynamic
features in graphite at substantially high temperature. While
experiments recorded the second sound propagation between
85 K and 125 K [29], simulations revealed a corresponding
temperature window of 50 K < T < 90 K [49]. However, very
recent findings by Ding et al [28] recorded second sound in
graphite at even higher temperatures (at 200 K and at 225 K)
using sub-picosecond transient grating method supported by
ab initio simulations. Recently, bulk Ge [115] has been shown
to exhibit phonon hydrodynamics in a wide temperature range
(7 K < T < 300 K) using a rapidly varying temperature field
and observing the phase lag of the thermal response of the
material supported by ab initio and nonequilibrium MD stud-
ies. Some of the other materials that feature phonon hydrody-
namics include solid H [159], orthodeuterium, parahydrogen
quantum crystals, neon crystals [114] and crystalline polymers
(polyacene, polyacetylene, polyethylene) [51].

5.2. 2D materials

2D materials are perhaps the most studied materials in recent
times in the context of the phonon hydrodynamics as hydro-
dynamic phonon transport manifests striking features(e.g.
high thermal conductivity and wider temperature window for
hydrodynamics in graphene) compared to the 3D materials,

marking a significant influence on the technological and heat
transfer applications [15, 17, 127, 178]. Especially, the sec-
ond sound phenomena (fast thermal conduction with negligi-
ble damping) can be exploited to use graphene as potential
thermal signal transmitters [15]. Extremely high thermal con-
ductivity (≈4000 W mK−1 for suspended graphene at room
temperature [169]) and substantial presence of phonon hydro-
dynamics in 2D materials stem from their unusual anharmonic
interaction associated with the ZA (flexural acoustic) modes.
Unlike its 3D counterparts, 2D materials possess two dif-
ferent dispersion relations, linear and quadratic, correspond-
ing to the in-plane and out-of-plane (flexural) displacements
respectively. These ZA modes were found to contribute signif-
icantly to the heat conduction in suspended graphene giving
rise to the extremely high thermal conductivity in graphene
[179, 180]. Michel et al [181] found that in a broad tempera-
ture range ZA modes are less affected by Umklapp scattering
compared to the in-plane modes and therefore supported the
realization of large intrinsic thermal conductivity of graphene.
Because of the serious contribution of the out-of-plane flex-
ural modes and its quadratic dispersion, 3D Debye model is
insufficient to precisely describe 2D systems like graphene,
BN etc. Therefore, different state-of-the-art numerical and the-
oretical strategies were adopted for 2D materials to accurately
predict thermal transport in the presence of phonon hydrody-
namics. Recently, Shang et al [129] derived 2D GK equation
by taking the quadratic dispersion into account and found
that the second sound speed in graphene varies with temper-
ature. This result is very different from the regular Debye
model for both 3D and 2D systems where second sound veloc-
ities were found to be temperature independent with values
vI/

√
3 and vI/

√
2 respectively [20, 129], vI being the sound

speed. ab initio methods were extensively used in associa-
tion with iterative [15] or variational approach [17] to solve
LBTE for 2D materials and revealed an extremely strong
N scattering events at a wide range of temperatures up to
room temperature [17] as well as large density-of-states of
the long-wavelength ZA phonons [15]. Scuracchio et al [127]
derived a coupled integrodifferential equations for acoustic
sound waves and phonon density fluctuations and eventually
derived hydrodynamic equations for 2D two-dimensional (2D)
crystals. Using Callaway’s dual relaxation model, Guo and
Wang [168] developed a discrete-ordinate-method to study
heat transport in 2D materials. Li and Lee [169, 176] stud-
ied the hydrodynamicphonon transport in suspended graphene
using deviational Monte Carlo scheme coupled with ab initio
method to obtain the scattering matrix. Ab initio LBTE stud-
ies [15, 17] reveal a wide temperature window for featur-
ing phonon hydrodynamics for graphene (≈50–300 K), BN
(≈100–300 K) and graphene (≈100–300 K) employing GK
conditions related to the analysis of scattering rate hierar-
chy. Torres et al [144] investigated low-thermal conductiv-
ity 2D metal dichalcogenide materials (MoS2, MoSe2, WS2,
WSe2) using first-principles method with KCM adopted from
GK hydrodynamic equation and found phonon hydrodynamic
window below 20 K, using the nonlocal length assessment,
present in the GK type hydrodynamicequation. Due to isotopic
abundance, the difference between N and resistive scattering
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Figure 10. Various influencing factors for featuring phonon hydrodynamics in solids. (a) Effect of sample width on featuring phonon hydro-
dynamics, realized using the scaling exponent (α = ∂ln(κ)/∂ln(d)) of the width (d) variation of thermal conductivity of graphite ribbon. At
50 K, α > 1 which is a marker of having phonon hydrodynamics, contrary to the T = 100 K and 300 K. Reprinted with permission from [49].
Copyright (2018) American Chemical Society. (b) Effect of isotopes on phonon hydrodynamics realized in ab initio simulations of graphene
with two different isotope contents (0.1% and 1.1%). R scattering is found to increase for higher isotopically enriched graphene sample, low-
ering the gap between N and R scattering. Reproduced from [15], with permission from Springer Nature. (c) Effect of vacancies on phonon
hydrodynamics: first-principles simulations of crystalline GeTe of fixed grain-size showed a cut-off vacancy density (x = 0.001%) in the crys-
tal above which hydrodynamic window vanishes and below which the hydrodynamic window opens up. Reprinted (figure) with permission
from [50], Copyright (2020) by the American Physical Society. (d) Effect of structural instability on phonon hydrodynamics: crystal structure
of SrTiO3 possesses two soft modes and the temperature dependence of these two soft modes are shown. These low frequency soft modes can
interact with acoustic modes to give a strong anharmonicity favourable for phonon hydrodynamics. Reprinted (figure) with permission from
[25], Copyright (2018) by the American Physical Society.

rates were found to be lower for metal dichalcogenides com-
pared to the graphene [144]. Readers are also recommended
recent perspective articles [20, 182] which cover the phonon
hydrodynamics and its implications in 2D materials.

5.3. 1D materials

Apart from graphene and other 2D materials, 1D materials like
SWCNT also possess high thermal conductivity and therefore
had been envisaged as a potential candidate to feature phonon
hydrodynamics in the literature. This high thermal conductiv-
ity of SWCNT was found to be associated with high Debye
temperature which facilitates large group velocities of acoustic

phonons and feeble Umklapp scattering at room temperature
[27]. Osman and Srivastava [119] investigated the heat pulse
propagation in armchair (5, 5) and zig-zag (10, 0) and (7, 0)
SWCNT using MD simulations and found a significant con-
tribution of the second sound waves to carry the energy of the
heat pulse. Lee and Lindsay [27] employed lattice dynamics
calculations to solve BTE (Peierls–Boltzmann transport
equation) to study the hydrodynamic phonon drift and second
sound propagation in a (20, 20) SWCNT. A wider temperature
window was observed to feature phonon hydrodynamics
(50 K < T < 300 K) with a considerable amount of total
heat was shown to be transferred by the drifting phonons
(≈70% and 90% at 300 K and 100 K respectively). Thermal
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conductivity measurements of quasi-one-dimensional
(TaSe4)2I single crystals [158] revealed sharp peaks around
1 K, which had been argued as a manifestation of the phonon
Poiseuille flow.

5.4. Low thermal conductivity materials

Naturally, most of the research related to phonon hydrody-
namics revolved around 2D and high thermal conductivity
materials as these materials are more prone to feature sec-
ond sound, Poiseuille flow and therefore emerge as natu-
ral choices for their manipulation for industrial applications.
Torres et al [144] numerically explored the phonon hydro-
dynamics for comparatively low thermal conductivity metal
dichalcogenide materials and found that at low temperatures
they exhibit phonon hydrodynamic features. However, the
study focused on the single layer transition metal dichalco-
genides and explored the scenario where the materials pos-
sess low thermal conductivity despite being 2D systems. In
a recent series of investigations [50, 145], phonon hydrody-
namics had been put under inspection for even lower thermal
conductivity, 3D chalcogenide phase change materials. These
investigations, focused on GeTe, a low thermal conductiv-
ity chalcogenide with phase change memory applications,
revealed an unusual presence of phonon hydrodynamics at low
temperatures. The ab initio study [50] coupled with complete
solution of LBTE using direct method [54] as well as KCM
[137, 141] demonstrated that phonon hydrodynamics criteria
are met at low temperature in GeTe provided a favourable
condition relating larger grain size and lower vacancy scat-
tering events are satisfied. Isotope scattering rate emerged as
an identifier to distinguish the presence and absence of the
hydrodynamic window via the conditions τ−1

I (ω) > τ−1
V (ω)

and τ−1
I (ω) < τ−1

V (ω) respectively, where τ−1
I (ω) and τ−1

V (ω)
denote isotope scattering rate and phonon-vacancy scattering
rate respectively, as a function of phonon frequency. Further,
the hydrodynamic window for low κ material GeTe was found
to be very fragile and sensitive toward the competition between
temperature and grain size. Systematic investigation of ther-
mal transport as a function of characteristic size [145] revealed
the complete hydrodynamic window in temperature-grain-size
plane via Knudsen number and average scattering rate anal-
ysis using GK conditions. Moreover, the scaling of thermal
conductivity (κ) with characteristic length (L) was found to
dictate the existence of the Knudsen minimumlike prominent
hydrodynamic feature [145]. Between ballistic (linear scaling
of κ with L) and diffusive (L independent κ) thermal transport
regime, a superlinear scaling in the intermediate L regime was
found assisting a Knudsen minimumlike hydrodynamic fea-
ture at a particular temperature [145]. On the contrary, sublin-
ear scaling leads to weak phonon hydrodynamics. The notable
visibility of collective phonon transport in GeTe was found to
be controlled by a ratio of average normal and resistive scat-
tering rates. The quest of phonon hydrodynamics in low κ, 3D
chalcogenide GeTe answered some fundamental issues: (a) it
was understood that even for a very low thermal conductivity
materials phonon hydrodynamics can be observed if peculiar
conditions relating grain size, temperature and vacancy scatter-
ing rates are satisfied. (b) Identifying the controlling parame-

ters can help understanding the generic behavior of the phonon
hydrodynamics in low thermal-conductivity materials.

6. The controlling parameters of phonon
hydrodynamics

The earlier discussions in this review lead to the central idea
that the existence, persistence and prominence of the phonon
hydrodynamics are mostly dependent on the strong presence
of the N scattering events compared to the other resistive
phonon scattering processes. Therefore, manipulating phonon
hydrodynamics boils down to the situation where the related
parameters are tuned in such a way so that the N scattering
processes show prominence. After sufficient occurrences of
the N scattering events, the phonon distribution changes from
Bose–Einstein to a displaced Bose–Einstein distribution with
a drift velocity causing a net flow of phonons in the direction
of heat conduction. It has been thoroughly discussed in liter-
ature [18, 23, 171] that N scattering cannot give rise to ther-
mal resistance on its own. Either intrinsic resistive scattering
events (Umklapp, isotope or vacancy scattering) or the char-
acteristic length of the sample (related to the grain-boundary
scattering) induces thermal resistance to yield a finite thermal
conductivity of a material. In this section, we discuss about
these parameters and how they influence the phonon hydrody-
namics. Figure 10 demonstrates a summary of various factors
studied in the literature that influence the occurrence of the
phonon hydrodynamics in a material.

6.1. Effect of thickness and characteristic length

Once N scattering alters the phonon population from follow-
ing the Bose–Einstein to a displaced Bose–Einstein distribu-
tion, a drift motion of phonons emerges that drives the phonon
flow in the heat flow direction. Once set up, this drift motion
of phonons can even sustain without any temperature gradi-
ent [18, 134]. For an infinitely large material, unless Umklapp
scattering is considered, N scattering can lead to infinite ther-
mal conductivity. This can be understood by the study of Lind-
say et al [183] on the lattice thermal conductivity of SWCNT.
Though phonons with small wave vectors are seen to satisfy
mostly the occurrence of the N scattering, they can scatter
with phonons of long wave vectors through N scattering and
facilitate U scattering and thus switching on the thermal resis-
tance [18]. It was shown by Lindsay et al [183] that the scat-
tering between acoustic and optical phonons are necessary to
incorporate Umklapp scattering and therefore thermal resis-
tance which in turn significantly reduce the room temperature
thermal conductivity of SWCNT.

A material with infinite length but finite width
(width 
 MFP of N scattering) brings about the diffuse
boundary scattering due to the grain boundaries and therefore
induces thermal resistance. As noted in earlier section in
the context of Poiseuille flow of phonons, drift velocity near
the boundaries are heavily reduced due to diffuse boundary
scattering of phonons compared to that of the center of the
width of the sample. This drift velocity gradient across the
width (perpendicular to the heat flow direction) assists in
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imparting the momentum from the center to the boundary.
However, N scattering events impede this momentum transfer
via phonon hydrodynamic viscosity. This viscous damping
decreases with the quadratic power of width (W) as was
realized via momentum balance equation of phonons [18,
169] and as a result, thermal conductivity in the phonon
hydrodynamic regime increases superlinearly with the width
of the sample. Here we note that in a situation of negligible
presence of Umklapp scattering and zero drift velocity at
the boundary, thermal conductivity actually scales as W2.
However, the unavoidable presence of Umklapp scattering in
the real samples forces the exponent to take the value α, where
1 < α < 2 [49, 145, 169]. This superlinear width dependency
of κ is strikingly distinct from the ballistic and the diffusive
thermal transport regimes where κ varies linearly and stays
constant with the width of the sample, respectively [15, 49,
145].

Lee et al [134] explored another scenario with graphitic
samples having infinite width but finite length between hot
and cold reservoirs in the heat flow direction, resembling
cross-plane heat flow in thin-film using deviation Monte Carlo
scheme. It was shown that even without Umklapp scatter-
ing, thermal resistance can be facilitated via the N scattering
when non-collective flow of phonons transformed into collec-
tive flow of phonons due to the finite length of the sample
(larger than the N scattering MFP). This resistance caused by
N scattering with finite length was found to be dictated by the
shape of the phonon dispersion and more specifically nonlinear
phonon dispersion for the graphitic materials [134]. This non-
linear phonon dispersion causes significant entropy generation
compared to that of the Debye model and gives rise to ther-
mal resistance in graphitic materials [18, 134]. Very recently,
Nie and Cao [184] explored the boundary and interfacial ther-
mal behavior in 2D systems in the context of phonon hydro-
dynamics, using Monte Carlo simulation algorithm described
in [135]. Two cases had been studied: (a) a nanofilm with
finite length and infinite width, similar to that of Lee et al
[134], and (b) two nanofilms of the same material connected to
each other, making an interface. The interfacial behaviors were
seen as the sum of the interactions in two isolated nanofilms
with the interface effects, reasonably supported via numerical
simulations.

6.2. Effect of isotopes and vacancies

Real samples normally exhibit defects, isotopes and impuri-
ties during the crystallization process which affect the coherent
phonon flow significantly. Isotope and vacancies in a sam-
ple directly reduce the probability of occurring hydrodynamic
phonon flow and shrink the phonon hydrodynamic window
in a sample as they hinder the N scattering events resistively.
Using lattice dynamical model and second-order perturbation
theory, Tamura [185] derived the scattering rate of phonons by
randomly distributed isotopes (τ−1

I ) in a material as

1
τ I
λ(ω)

=
πω2

λ

2N

∑

λ′
δ
(
ω − ω′

λ

)∑

k

gk|
∑

α

Wα (k,λ)W∗
α (k,λ) |2.
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Here, gk is the mass variance parameter, defined as

gk =
∑

i

f i

(
1 − mik

mk

)2

, (49)

where f i is the mole fraction, mik denotes the relative atomic
mass of ith isotope, mk is the average mass =

∑
i f imik, and

W is a polarization vector. The similar idea of mass variance
due to point defect was employed by Ratsifaritana and Kle-
mens [186] using a perturbation technique to derive phonon
scattering rates by vacancy defects by estimating missing mass
and missing linkage between the masses. The phonon-vacancy
scattering rate is realized as [186]

1
τV(ω)

= x

(
ΔM
M

)2
π

2
ω2g(ω)

G′ , (50)

where, x is the vacancy concentration, G′ defines the number
of atoms in the crystal, and g(ω) denotes the phonon density
of states. Realizing vacancies as isotope impurity, Ratsifari-
tana and Klemens [186] estimated mass change ΔM = 3 M,
where M is the mass of the removed atom. This comes from the
fact that a vacancy is equivalent to omitting one atom from the
material and all the linkages between the removed atom and its
neighbor. As every linkage is connected to two atoms, remov-
ing one atom with two linkages costs the removal of another
two atoms, associating a mass change of ΔM = 3 M.

Both isotope and vacancy scattering rates are found to
increase with phonon frequency. While considering the aver-
age scattering rates for isotopes, the weighted average of
modal heat capacity makes it prominent at low temperatures
and thus increases the resistive scattering rates. Moreover,
the phonon scattering rates by vacancies (equation (50)) are
found to vary linearly with the vacancy density, indicating its
larger contribution due to increased vacancies in the material.
These resistive scattering rates add up with the already intrinsi-
cally present Umklapp scattering and the total resistive phonon
lifetime (τR) is realized using Matthiessen’s rule as [23]

1
τR

=
1
τU

+
1
τI

+
1
τV

+
1
τB

(51)

and hinder the collective phonon flow driven by the N scat-
tering events, making the hydrodynamic window more fragile
and narrower. Here τU, τ I, τV and τB are phonon lifetimes
corresponding to the Umklapp, isotope, vacancy and boundary
scattering respectively.

Solid helium [16], NaF [97] are some of the materials that
are isotopically pure to visualize the signatures of phonon
hydrodynamics. Though chemical purity of Bi is lesser com-
pared to the solid helium, it exhibits sufficient isotopic purity
to feature phonon hydrodynamics [48, 100]. Effects of vacan-
cies were also found to be extremely sensitive toward opening
of the hydrodynamic window as shown for GeTe [50]. Fur-
ther, average isotope scattering rate was found [50] to act as
a marker in choosing appropriate vacancy density to enable a
hydrodynamic window.
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6.3. Effect of structural instability

Sometimes, even isotopically not so pure substances can still
possess the features of phonon hydrodynamics thanks to its
structural instability which acts in enhancing the anharmonic-
ity (or large three phonon phase space) and therefore the N
scattering processes. SrTiO3 is a representative case where
anharmonicity driven N scattering was found to play a cru-
cial role in featuring phonon hydrodynamics as studied in sev-
eral experimental and theoretical studies [25, 26, 107, 108,
113]. SrTiO3 falls under the category of displacive ferroelec-
tric material which consists of a TiO6 octahedra and has stron-
tium atoms at its vertices in its cubic elementary cell and was
found to exhibit two soft modes located at R point and zone
center respectively [25]. Gurevich and Tagantsev [113] theo-
retically indicated the possibilities of ferroelectric materials
to show phonon hydrodynamics due to the presence of the
soft modes in this class of materials. Unlike regular solids, a
displacive ferroelectric hosts at least one optical mode (soft
mode) at the center of the Brillouin zone whose frequency is
anomalously low [113]. N scattering events can be observed
to be frequent due to the strong interactions between these
low frequency (long wavelength) soft modes (optical phonons)
and the acoustic phonons. It was proposed that the second
sound waves, produced in such ferroelectrics with a wider
frequency interval (of the order of 10 GHz), can be exper-
imentally observed via the ordinary light scattering experi-
ments. This was validated by Martelli et al [25] via the thermal
conductivity measurements of SrTiO3.

We also note here the property of exhibiting flexural
acoustic (ZA) modes (for graphene like 2D materials) as an
important controlling parameter for realizing phonon hydro-
dynamics which had been discussed in the earlier section
dedicated to the 2D materials.

7. Summary and outlook

In this review, phonon hydrodynamics in crystalline mate-
rials has been discussed from both phenomenological and
material science perspectives. Starting from the microscopic
understanding of the phonon scattering, the subject has been
approached via theoretical, experimental and numerical explo-
rations. In all these different methods, a chronological, state-
of-the-art account of the subject starting from employing
kinetic theory to the advanced relaxon approach is described.
Three of the most prominent features of the phonon hydrody-
namics: second sound, Poiseuille flow and Knudsen minimum
have been chosen and thoroughly represented from the phe-
nomenological perspective along with their distinct methods
of investigations. The criteria for occurring phonon hydrody-
namics via these three realizable phenomena are also described
in detail pertaining to theoretical, numerical and experimental
results. The advanced numerical methods involving ab initio
techniques greatly helped in improving the accuracy of the
solution of the LBTE which is significantly crucial for the
identification of the signatures of phonon hydrodynamics via
thermal conductivity calculations. Apart from the physical
phenomena based approach, the subject has also been dis-

cussed from the material science perspective, which is equally
important if not more. This perspective seems decisive in car-
rying out applications related to phonon hydrodynamics. In
this context, a thorough, up to date review of the materials,
ranging from three, two and one dimensional systems, has
been carried out which exhibit phonon hydrodynamics as was
realized via theoretical or experimental observations. Though
2D materials emerge as the most promising candidates to har-
ness several crucial applications (e.g. graphene as efficient
thermal rectifier and thermal signal transmitter [15]) due to
their strong N scattering features due to the anharmonicity
caused by flexural modes, 3D materials with both high and
low thermal conductivity cases are discussed. Chalcogenide
low thermal conductivity material GeTe, used mostly as phase
change memory devices, has newly been realized [50, 145] to
feature phonon hydrodynamics if the controlling parameters
are adjusted carefully. Though the low conductivity and low
temperature occurrence of phonon hydrodynamicsof this class
of materials limit them from some technological applications,
nevertheless this helps to predict more accurate thermal con-
ductivity beyond the relaxation time applications. Moreover,
this raises the question and opens up the avenues to understand
the generic behavior and manifestations of phonon hydrody-
namics in a better way in low thermal conductivity materials.
With the help of advanced first-principles techniques, all these
studies indicate the subtle presence of phonon hydrodynam-
ics in a variety of materials. To dig up this subtle existence
and consequences of phonon hydrodynamics, it is imperative
to study the controlling parameters of phonon hydrodynamics.
Therefore, we review the effect of characteristic size, defects
and instabilities on the prominent occurrence of phonon hydro-
dynamics. This panoramic exploration of phonon hydrody-
namics will enable us understanding the captivating physics
behind these features as well as methods and ways to harness
engineering applications (thermal rectification, thermal dissi-
pator etc) for non metallic solids in general. We note here
two instances to relate two important phonon hydrodynamic
features, second sound and Poiseuille flow with two potential
applications, namely thermal rectification and thermal inter-
connect applications, respectively. Thermal rectification is a
process which allows heat transfer in one direction but block
the other [187]. This feature has several important implications
in the thermal management of micro and nanoelectronics con-
cerning thermal diode, thermal logic gates etc [12]. Poiseuille
flow of phonons can provide a better understanding of the
thermal rectification process. Moreover, the effect of diffusive
boundary scattering on the drift motion of phonons can be use-
ful to study the rectification efficiency of nanoscaled devices
with certain boundary roughness [12, 15]. The development of
micro and nanoelectronics also compels more thermally and
electrically efficient, smaller interconnects in the integrated
circuits and therefore graphene appears to be a better alter-
native to the already existing Cu interconnects [188, 189].
However, there are issues of concern related to the high resis-
tance of single layer graphene nanoribbons for this application
[190, 191]. The signature of second sound, a fast thermal
transport with negligible damping, can help improving the
understanding of graphene as thermal interconnects [15].
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Figure 11. Different possible future research directions emerging from phonon hydrodynamics, as described in this review. (a) Exploring
phonon hydrodynamics in new materials. Structure of GeTe: reprinted (figure) with permission from [192], Copyright (2020) by the Amer-
ican Physical Society. Structure of PA-II: reprinted (figure) with permission from [51], Copyright (2020) by the American Physical Society.
(b) Exploring novel approaches to understand phonon hydrodynamics with more conceptual clarity. Relaxon schematic: reproduced from
[55]. CC BY 3.0. (c) Exploring and establishing phenomenological connections with other non Fourier heat transport phenomena for better
physical understanding of the subject. (d) Exploring similar phenomena in solids (e.g. electron hydrodynamics). Electron hydrodynamics:
from [193]. Reprinted with permission from AAAS.

Thus, exploiting and manipulating second sound phenomena
of graphene can further help improving the efficiency of the
graphene thermal interconnects.

Graphene and other 2D materials show exceptional phonon
hydrodynamics even at room temperature which is why most
of the studies, dealing with novel applications on thermal
transport, had been centered around these few materials. Nev-
ertheless, the experimental, theoretical and numerical inves-
tigations opened up various other interesting physical and
material related consequences in the realm of phonon physics
and several new research pathways can be directed from
the current understanding of the phonon hydrodynamics. We
briefly discuss these possibilities here. Figure 11 summarizes
the perspectives, outlook and different future research direc-
tions emerging out of the subject of phonon hydrodynamics.

7.1. Phonon hydrodynamics of organic systems

Recently, some of the organic materials are found [51] to
display phonon hydrodynamics at moderate temperatures
(≈50 K for polyacene and polyacetylene and ≈120 K for
polyethylene). Crystalline polymers exhibit intrinsically bend-
ing acoustic modes due to the flexible property of the poly-
mers. Possessing the flexural mode similar to that of the 2D
graphene sheets enable these crystalline polymers to exhibit
a strong anharmonicity and therefore to demonstrate phonon
hydrodynamics. Weak van der Waals coupling between poly-
mer chains are found to be responsible for the existence of
the flexural phonon modes [51]. This investigation of phonon
hydrodynamics in crystalline polymers will further help under-
standing the phonon transport in more complex organic sys-
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tems. Moreover, consulting the controlling parameters, a new
direction of research can be explored finding more complex
materials with bending acoustic modes which seems to be
a crucial property to enhance N scattering and overall three
phonon scattering processes.

7.2. Unveiling the subtle phonon hydrodynamic features in
materials

With the help of advanced experimental and first-principles
techniques to solve BTE, more subtle behavior of phonon
hydrodynamics is seen to emerge from many crystalline mate-
rials that are conventionally unfit candidates for displaying
phonon hydrodynamics. Recently, in the quest of experimen-
tally observing the high frequency second sound in crystalline
bulk Ge, Beardo et al [115] carried out a frequency-domain
experiment using a rapidly varying temperature field and mon-
itoring the phase lag of the thermal response of the material.
Exploiting the second order time derivative of mesoscopic
hyperbolic heat equation of the Maxwell, Cattaneo, and
Vernotte type [124, 125], Beardo et al [115] employed an
extremely high driving frequency to dominate the thermal iner-
tial term over the damping term in the equation and therefore
opening up a wide temperature window (7 K < T < 300 K)
to observe second sound feature in the high frequency limit
in Ge which is otherwise isotopically enriched, resistive scat-
tering dominated material. This is a significant experimen-
tal advancement in the field in terms of discovering phonon
hydrodynamics in a more diverse pool of materials and there-
fore offers the scope of new physics and applications using
those materials. In a series of separate recent ab initio density
functional studies coupled with either solving complete BTE
or GK type hydrodynamic equation with kinetic collective
approach [50, 145], subtle features of phonon hydrodynamics
in crystalline GeTe, a lowκmaterial, had been evidenced. Both
qualitative and quantitative numerical explorations using GK
frequency conditions, second sound speed, thermal diffusivity,
collective mode contributions, Knudsen number analysis were
carried out and a fragile phonon hydrodynamic regime was
identified [50] as a function of both temperature and character-
istic size [145] of GeTe. Further the sensitivity of this regime
with respect to the phonon scattering events corresponding to
the isotopes and vacancies were understood. These studies lead
not only to the possibilities to discover phonon hydrodynamics
in other low κ materials but also to the controlling and manip-
ulating this feature. Therefore these experiments and numer-
ical investigations are gradually opening up the prospects of
accessing phonon hydrodynamics in more unexplored materi-
als and helping in boosting the current understanding of the
subject.

7.3. Going along the direction of the relaxon approach

In a conceptually new method, the failure of the single mode
relaxation time approach at low temperature and the advent
of advanced computational strategies, helped in developing a
complete solution of LBTE by taking into account the full scat-
tering matrix [55, 57, 59]. This approach relies on representing
collective excitations or ‘relaxon’ as an eigenvalue equation

with a measurable characteristic relaxation time. Relaxons
can be thought of a linear combinations of single phonon
excitations and thermal conductivity of materials can be real-
ized using kinetic theory applied to the ‘relaxon’ gas [55].
Apart from being computationally efficient, relaxon approach
also brings forth new understanding of the collective excita-
tions in materials. Phonon hydrodynamics was discovered and
validated for graphene, graphite like materials [55, 59] via
this method and a lot of new physics can be opened up in
future using this novel approach if further employed on new
materials.

7.4. Exploring electron hydrodynamics

Similar hydrodynamic behavior have recently been evi-
denced in the flow of electrons in strongly correlated sys-
tems [193–196] where electronic transport is driven by the
highly collective quantum states, giving a further hope to
advance the electronic device technology. Electronic trans-
port in graphene had been shown [193] to feature hydrody-
namic behavior where electrons are seen to portray features
similar to that of the viscous liquids. Though having a weak
electron–phonon scattering, above the liquid nitrogen tem-
perature electron–electron scattering events are sufficiently
frequent for graphene for local equilibrium and exhibiting vis-
cous drags and hydrodynamics of electrons [193]. Moll et al
[196] experimentally found a significant viscous contribution
to the resistance of the long conduction channels of metal
PdCoO2 of variable widths and therefore estimated electronic
viscosity for PdCoO2. Alike phonon hydrodynamics, elec-
tron hydrodynamics also occurs at specific conditions [8, 195]
and therefore this novel electronic feature also requires con-
trolled nanofabrication for detection. Further, possibilities can
emerge from a versatile material like graphene, which exhibits
both strong phonon and electron hydrodynamic behavior,
to harness exceptional thermoelectric properties by control-
ling and manipulating phonon–phonon, electron–electron and
phonon–electron scattering.

7.5. Generic phenomenological connection with other
studies on anomalous heat transport

Another pathway of research can proceed from understanding
the phenomenological connections between phonon hydro-
dynamics and other non Fourier anomalous heat transport
phenomena realized via various exactly solvable theoretical
models. Especially, the analytical as well as large scale numer-
ical simulations of the heat transport in Fermi–Pasta–Ulam
(FPU) chains (also known as Fermi–Pasta–Ulam–Tsingou
model or FPUT model) [10, 197] and other 1D systems were
found to show anomalous and non Fourier heat transport fea-
tures [11] which can be useful to compare with the phonon
hydrodynamics results of the experimentally or numerically
studied 1D systems like SWCNTs. The solution of the 1D
models (e.g. 1D diatomic hard particle gas model [198])
also indicated a superdiffusive spreading of the heat pulses
[10, 198] if a heat pulse is introduced into the system. Nonlin-
ear hydrodynamic fluctuation theory [199] suggested a Levy
walk model to describe this superdiffusive heat transport, con-
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trary to a random walk model which usually demonstrates the
diffusive heat transport [10]. This Levy flight can be thought
of as a drift motion of phonons where phonons collectively
move in one direction for sufficiently long time steps before
getting scattered. This is phenomenologically similar to the
central idea of phonon hydrodynamics, in which phonons per-
form a coherent drift motion at certain length and time scales.
Of course, it is necessary to distinguish the proper size depen-
dency of this drift to distinguish hydrodynamic with ballis-
tic heat transport. Nevertheless, future research directions can
be chalked out in creating much broader phenomenological
links between various anomalous non Fourier heat transport
phenomena.
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