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Abstract
Two-part joint models for a longitudinal semicontinuous biomarker and a ter-
minal event have been recently introduced based on frequentist estimation. The
biomarker distribution is decomposed into a probability of positive value and the
expected value among positive values. Shared random effects can represent the
association structure between the biomarker and the terminal event. The com-
putational burden increases compared to standard joint models with a single
regression model for the biomarker. In this context, the frequentist estimation
implemented in the R package frailtypack can be challenging for complexmod-
els (i.e., a large number of parameters and dimension of the random effects).
As an alternative, we propose a Bayesian estimation of two-part joint models
based on the IntegratedNested LaplaceApproximation (INLA) algorithm to alle-
viate the computational burden and fit more complex models. Our simulation
studies confirm that INLA provides accurate approximation of posterior esti-
mates and to reduced computation time and variability of estimates compared to
frailtypack in the situations considered. We contrast the Bayesian and frequen-
tist approaches in the analysis of two randomized cancer clinical trials (GERCOR
and PRIME studies), where INLA has a reduced variability for the association
between the biomarker and the risk of event. Moreover, the Bayesian approach
was able to characterize subgroups of patients associatedwith different responses

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. Biometrical Journal published by Wiley-VCH GmbH.

Biometrical Journal. 2023;2100322. www.biometrical-journal.com 1 of 22
https://doi.org/10.1002/bimj.202100322

 15214036, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202100322 by C
ochrane France, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-9708-5220
https://orcid.org/0000-0002-4334-2057
mailto:denis@rustand.fr
http://creativecommons.org/licenses/by/4.0/
http://www.biometrical-journal.com
https://doi.org/10.1002/bimj.202100322
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fbimj.202100322&domain=pdf&date_stamp=2023-02-27


2 of 22 RUSTAND et al.

to treatment in the PRIME study. Our study suggests that the Bayesian approach
using the INLA algorithm enables to fit complex joint models that might be of
interest in a wide range of clinical applications.

KEYWORDS
Bayesian estimation, computational efficiency, INLA, solid tumors cancer, two-part jointmodel

1 INTRODUCTION

Estimation of joint models for longitudinal and time-to-event data was initially introduced using maximum likelihood
estimation (Wulfsohn & Tsiatis, 1997; Henderson et al., 2000; Song et al., 2002; Chi & Ibrahim, 2006). It was further devel-
oped within the Bayesian framework in situations where maximum likelihood estimation with asymptotic assumptions
faces nonidentifiability issues. It allows flexible and more complex association structures and can handle multiple longi-
tudinal outcomes (Andrinopoulou & Rizopoulos, 2016). Bayesian joint models can be fitted with the R package JMbayes
(Rizopoulos, 2016), which has been used in many biomedical researches (Lawrence Gould et al., 2015), among other pack-
ages (e.g., rstanarm; Muth et al., 2018). Bayesian estimation is usually based on Markov Chain Monte Carlo (MCMC)
techniques (Hanson et al., 2011; R. Brown & G. Ibrahim, 2003; Xu & Zeger, 2001; Rizopoulos & Ghosh, 2011), which can
have slow convergence properties. The Integrated Nested Laplace Approximation (INLA) algorithm has been recently
introduced as an alternative to MCMC techniques for latent Gaussian models (LGM) (Rue et al., 2009; Martins et al.,
2013). Many statistical models for spatial statistics, time series, etc., can be formulated as LGMs. A key feature of INLA is
to provide approximations of the posterior marginals needed for Bayesian inference very efficiently and that still remain
very accurate compared to MCMC methods (Rue et al., 2017). By formulating complex joint models as LGMs, INLA can
be used to fit these models as developed recently (Van Niekerk et al., 2019; Van Niekerk, Bakka, Rue, & Schenk, 2021). For
the two-part joint model (TPJM), INLA is yet to be used for inference.
TPJMs for a longitudinal semicontinuous biomarker and a terminal event have been recently introduced (Rustand et al.,

2020) and applied to the joint analysis of survival times and repeated measurements of the sum of the longest diameter
of target lesions (SLD), which is a biomarker representative of tumor burden in cancer clinical trials. The TPJM uses a
conditional TPJM that decomposes the biomarker distribution into a binary outcome (zero vs. positive value) fitted with a
logisticmixed effectsmodel and a continuous outcome (positive values only) fittedwith either a linearmixed effectsmodel
on the log-transformed outcome or a log-normal mixed effects model (Rustand et al., 2021). The “conditional” form of the
two-partmodel gives the effect of covariates on themean biomarker value conditional on a positive value in the continuous
part. An alternativemarginal model has recently been proposed to get the effect of covariates on the (unconditional) mean
of the biomarker. A drawback of the marginal two-part model is that it may lead to arbitrary heterogeneity and provide
less interpretable estimates on the conditional mean of the biomarker among positive values (Smith et al., 2014). In this
article, we focus on the conditional TPJM, simply referred to as TPJM in what follows. The association with the survival
model can be specified in terms of shared random effects, that is, random effects that are shared between the different
components of themodels including the binary and continuous parts of themodel and the survival component. The TPJM
is particularly interesting for cancer clinical trials evaluation because it can help in characterizing subgroups of patients
who can benefit from a specific treatment (i.e., patients who had a complete tumor removal and no regrowth of the tumor
would have a zero value of the biomarker and this is captured by the binary part of the model) and subgroups that do not
respond or disbenefit from treatment, as it is sometimes observed when patients develop a resistance to chemotherapies
(this will be captured by the continuous part of the model). These features cannot be modeled adequately by alternative
strategies that assume a unique distribution for the zeros and the positive tumor size values (e.g., Tobit or Tweedie model;
see Kurz, 2017). Besides, the effect of treatment on patients’ subgroups can be missed and may lead to biased conclusions
as illustrated in Rustand et al. (2020).
An important limitation of the TPJM is the estimation procedure that requires a numerical approximation of the random

effects distribution, which can lead to long computation times and convergence issues with high-dimensional parameter
settings and complex association structures between the different components of the TPJMs. In this article, we propose
an efficient Bayesian estimation procedure for the TPJM which relies on the INLA algorithm, as implemented in the R
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package INLA. In practice, we used the R package INLAjoint that facilitates the fit of joint models with INLA andmake
it more user-friendly, as INLAwas not developed specifically for this class of models. The Bayesian inference is compared
to the frequentist estimation of the TPJM available in the R package frailtypack (Król et al., 2017). The remainder of the
article is structured as follows: in Section 2, we describe the TPJM and introduce the frequentist and Bayesian estimations.
In Section 3, we present a simulation study to assess the performance of these two estimation strategies in terms of bias,
coverage probability, computation time, and convergence rate. An application to two randomized clinical trials each com-
paring two treatment strategies in patients with metastatic colorectal cancer is proposed in Section 4, and we conclude
with a discussion in Section 5.

2 ESTIMATION OF THE CONDITIONAL TWO-PART JOINTMODEL

2.1 Model specification

Let𝑌ij denote the biomarkermeasurement for individual 𝑖(𝑖 = 1,⋯, 𝑛) at visit 𝑗(𝑗 = 1,⋯, 𝑛𝑖),𝑇𝑖 denotes the survival time,
and 𝛿𝑖 the censoring indicator for individual 𝑖. We use a logistic mixed effects model for the probability of a positive value
of the biomarker and a linear mixed effects model for the conditional expected biomarker value. A proportional hazards
survival model specifies the effect of covariates on survival time, adjusted for the individual heterogeneity captured in the
biomarker model. The complete model is defined as follows:

⎧⎪⎨⎪⎩
𝜂Bij = Logit(Prob(𝑌ij > 0)) = 𝑿⊤Bij𝜶 + 𝒁

⊤
Bij𝒂𝑖 (Binarypart),

𝜂Cij = E[log(𝑌ij)|𝑌ij > 0] = 𝑿⊤Cij𝜷 + 𝒁⊤Cij𝒃𝑖 (Continuouspart),

𝜆𝑖(𝑡) = 𝜆0(𝑡) exp(𝜂Si) = 𝜆0(𝑡) exp
(
𝑿⊤
𝑖
𝜸 + 𝒂⊤

𝑖
𝝋𝑎 + 𝒃

⊤
𝑖
𝝋𝑏

)
(Survivalpart),

where 𝑿Bij, 𝑿Cij, and 𝑿𝑖 are vectors of covariates associated with the fixed effects 𝜶, 𝜷, and 𝜸 , respectively. Similarly, 𝒁Bij
and 𝒁Cij are vectors of covariates associated with the random effects 𝒂𝑖 and 𝒃𝑖 in the binary and continuous parts. The
random effects are shared in the survival model, with association parameters 𝝋𝑎 and 𝝋𝑏, respectively. These two vectors
of random effects follow a multivariate normal distribution (0, 𝑸−1ab ), with covariance matrix 𝑸

−1
ab , defined as

𝑸−1ab =

[
𝚺aa 𝚺ab
𝚺ab 𝚺bb

]
.

They account for both the association between the three components of the model and the correlation between the
repeatedmeasurements in the longitudinal process (observations are independent conditional on the random effects). We
use a log-transformation of the biomarker to account for the positivity constraint and right-skewness in the continuous
part of the model. The joint distribution assumes that the vectors of random effects underly both the longitudinal and
survival process, the joint distribution of the observed outcomes for individual 𝑖 is defined by

𝑝(𝑇𝑖, 𝛿𝑖, 𝒀𝑖|𝒂𝑖, 𝒃𝑖; 𝚯) = 𝑝(𝑇𝑖, 𝛿𝑖|𝒂𝑖, 𝒃𝑖; 𝚯) 𝑛𝑖∏
𝑗=1

𝑝(𝑌ij|𝒂𝑖, 𝒃𝑖; 𝚯)
= 𝑝(𝑇𝑖, 𝛿𝑖|𝒂𝑖, 𝒃𝑖; 𝚯) 𝑛𝑖∏

𝑗=1

𝑝(𝑌ij|𝑌ij > 0; 𝒂𝑖, 𝒃𝑖; 𝚯) 𝑝(𝑌ij > 0; 𝒂𝑖, 𝒃𝑖; 𝚯)
with𝚯 the full parameter vector, including the parameters for the binary, continuous, and survival outcomes, the baseline
hazard function, and the random effects covariance matrix, such that the full conditional distribution is given by

𝑝(𝑻, 𝜹, 𝒀|𝒂, 𝒃;𝚯) = 𝑛∏
𝑖=1

𝑝(𝑇𝑖, 𝛿𝑖, 𝒀𝑖|𝒂𝑖, 𝒃𝑖; 𝚯).
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The likelihood contribution for the 𝑖th subject can be formulated as follows:

𝐿𝑖(𝚯|𝒀𝑖, 𝑇𝑖, 𝛿𝑖) = ∫
𝒂𝑖
∫
𝒃𝑖

𝑛𝑖∏
𝑗=1

exp
(
𝑿⊤Bij𝜶 + 𝒁

⊤
Bij𝒂𝑖

)𝑈ij (
1 −

exp(𝑿⊤Bij𝜶 + 𝒁
⊤
Bij𝒂𝑖)

1 + exp(𝑿⊤Bij𝜶 + 𝒁
⊤
Bij𝒂𝑖)

)

×

⎧⎪⎨⎪⎩
1√
2𝜋𝜎2𝜀

exp
⎛⎜⎜⎝−
(log(𝑌ij) − 𝑿

⊤
Cij𝜷 − 𝒁

⊤
Cij𝒃𝑖)

2

2𝜎2𝜀

⎞⎟⎟⎠
⎫⎪⎬⎪⎭
𝑈ij

× 𝜆𝑖(𝑇𝑖|𝒂𝑖, 𝒃𝑖)𝛿𝑖 exp(−∫
𝑇𝑖

0

𝜆𝑖(𝑡|𝒂𝑖, 𝒃𝑖)d𝑡)𝑝(𝒂𝑖, 𝒃𝑖)d𝒃𝑖d𝒂𝑖,
where 𝑈ij = 𝐼[𝑌ij > 0], 𝛿𝑖 = 𝐼[𝑇𝑖 is not censored] and 𝜆𝑖(𝑡|𝒂𝑖, 𝒃𝑖) = 𝜆0(𝑡|𝒂𝑖, 𝒃𝑖) exp{𝑿𝑖(𝑡)⊤𝜸 + 𝒂⊤𝑖 𝝋𝑎 + 𝒃⊤𝑖 𝝋𝑏}.
2.2 Bayesian estimation of the TPJM

Define 𝑫 ≡ {𝑇𝑖, 𝛿𝑖, 𝑌ij ∶ 𝑖 = 1,⋯, 𝑛; 𝑗 = 1,⋯, 𝑛𝑖} the observation variables. The goal of the Bayesian inference is to
estimate the posterior distribution 𝜋(𝚯|𝑫). The joint posterior distribution 𝜋(𝚯|𝑫) is given by Bayes theorem as

𝜋(𝚯|𝑫) = 𝑝(𝑫|𝚯)𝜋(𝚯)
𝜋(𝑫)

∝ 𝑝(𝑫|𝚯)𝜋(𝚯),
where 𝑝(𝑫|𝚯) is the likelihood and 𝜋(𝚯) is the joint prior. The marginal likelihood 𝜋(𝑫) = ∫

𝚯
𝑝(𝑫|𝚯)𝜋(𝚯)d𝚯 acts as

a normalizing constant. The posterior marginal distribution of each parameter is then obtained by integrating out the
other parameters of the model. In many cases, the posterior distribution is not analytically tractable and sampling-based
methods like MCMC can be used. Approximate methods like INLA provide exact approximations to the posterior at a
lower cost than sampling-based methods. The INLAmethodology is based on the assumption that the statistical model is
a latent Gaussian model, which we show in the next section for the TPJM.

2.3 Formulation of the TPJM as a latent Gaussian model (Gaussian priors)

We now decompose 𝚯 into the Gaussian latent field 𝒖 ≡ (𝜼𝐵, 𝜼𝐶, 𝜼𝑆, 𝒂, 𝒃, 𝜶, 𝜷, 𝜸, 𝝀, 𝝋) and the set of hyperparameters
𝜽 ≡ (𝜽1, 𝜽2). The hyperparameters 𝜽1 pertain to the latent field precision structure, while 𝜽2 contains the likelihood
hyperparameters. The hyperparameters can follow any distribution and do not need to be Gaussian. Note that the first∑𝑛

𝑖=1
𝑛𝑖 +

∑𝑛

𝑖=1
𝑛𝑖 + 𝑛 elements of 𝒖 are the linear predictors of the TPJM and the rest of the elements are the latent

unobserved variables. The linear predictors are included in the latent field so that each observation depends on the
latent Gaussian field 𝒖 only through one single element, which greatly simplifies the computations needed in the INLA
algorithm (see Rue et al., 2009, 2017). We assume 𝒂𝑖, 𝒃𝑖|𝑸ab ∼ (0, 𝑸−1ab ), where 𝑸ab is the precision matrix of the
shared random effects with corresponding hyperparameters 𝝉aa, 𝝉ab, 𝝉bb. We also assume 𝜶 ∼ (0, 𝜏𝛼𝑰), 𝜷 ∼ (0, 𝜏𝛽𝑰),
𝜸 ∼ (0, 𝜏𝛾𝑰), and 𝝋 ∼ (0, 𝜏𝜑𝑰). Let 𝝀 denote a vector of coefficients associated with a randomwalk order one or order
two used to approximate the log-baseline hazard function log(𝜆0(𝑡)) of the survival model. These models are stochastic
spline models with precision parameter 𝜏𝜆. Thus, the latent field 𝒖 is multivariate Gaussian with zero mean and precision
matrix 𝑸(𝜽1), that is,

𝒖|𝜽1 ∼ (0, 𝑸−1(𝜽1)).

Note that 𝑸(𝜽1) is a sparse matrix indexed by a low dimension of parameters 𝜽1. This implies that the latent field 𝒖 is
a Gaussian Markov random field. The distribution of the observation variables 𝑫 is denoted by 𝑝(𝑫|𝒖, 𝜽), and they are
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conditionally independent given the Gaussian random field 𝒖 and hyperparameters 𝜽 that is,

𝑫|𝒖, 𝜽 ∼ 𝑛∏
𝑖=1

𝑝(𝒅𝐢|𝑢𝑖, 𝜽).
Then the posterior of (𝒖, 𝜽) can be written as

𝜋(𝒖, 𝜽|𝑫) ∝ 𝜋(𝜽)𝜋(𝒖|𝜽) 𝑛∏
𝑖=1

𝑝(𝒅𝑖|𝑢𝑖, 𝜽),
∝ 𝜋(𝜽)|𝑸(𝜽1)|𝑛∕2 exp[12𝒖⊤𝑸(𝜽1)𝒖 + 𝑛∑

𝑖=1

log{𝑝(𝒅𝑖|𝑢𝑖, 𝜽)}] .
This construction then shows that the TPJM is in fact an LGM since the latent field is a Gaussian Markov field and each
data contribution depends on only one element of the latent field.
The main aim of INLA is then to approximate the posterior marginals 𝜋(𝑢𝑖|𝑫), 𝑖 = 1,⋯, 𝑛, 𝜋(𝜽|𝑫) and 𝜋(𝜃𝑚|𝑫),𝑚 =

1,⋯, dim(𝜽), as presented in the next section.

2.4 Integrated nested Laplace approximation

The INLA methodology introduced by Rue and Held (2005) is a major contribution to achieving efficient Bayesian infer-
ence, especially for complex or largemodels. INLA uses a unique combination of Laplace approximations and conditional
distributions to approximate the joint posterior density as well as the marginals of the latent field and hyperparameters.
It is thus not a sampling-based method like MCMC and such.
For the sake of brevity, the INLA methodology can be presented in the following three steps:

1. Approximate the marginal posterior distribution of hyperparameters using the Laplace approximation,

𝜋(𝜽|𝐷) = 𝜋(𝑢, 𝜽|𝐷)
𝜋(𝑢|𝜽, 𝐷) ≈ 𝜋(𝜽)𝜋(𝑢|𝜽)𝑝(𝐷|𝑢, 𝜽)𝜋̃𝐺(𝑢|𝜽, 𝐷) |𝑢=𝑢∗(𝜽),

where 𝜋̃𝐺(𝑢|𝜽, 𝐷) is the Gaussian approximation of 𝜋(𝑢|𝜽, 𝐷) at the mode 𝑢∗(𝜽) of the latent field for a given configu-
ration of 𝜽. Themarginal posterior𝜋(𝜃𝑚|𝐷) can be approximated by integrating 𝜽−𝑚 out in the previous approximation
(while a good approximation of 𝜋(𝑢𝑖|𝜃, 𝐷) is required to approximate the posterior marginal 𝜋(𝑢𝑖|𝐷)).

2. Approximate the conditional posterior distributions of the latent field,

𝜋(𝑢𝑖|𝜃, 𝐷) ∝ 𝜋(𝑢, 𝜽|𝐷)
𝜋(𝑢−𝑖|𝑢𝑖, 𝜽, 𝐷) ,

using a Gaussian approximation (option 1), a Laplace approximation in a similar way as mentioned in step 1 (option
2), or using a “simplified Laplace approximation” (Rue et al., 2009), which corrects the Gaussian approximation for
location and skewness by expanding the numerator and denominator up to a third-order Taylor series expansion in the
Laplace approximation (option 3).

3. Use numerical integration to approximate the marginal posterior distributions of the latent field,

𝜋(𝑢𝑖|𝐷) ≈ 𝐻∑
ℎ=1

𝜋̃(𝑢𝑖|𝜽∗ℎ, 𝐷)𝜋̃(𝜽∗ℎ|𝐷)Δℎ,
from steps 1 and 2. The integration points {𝜽∗1 ,⋯, 𝜽

∗
𝐻} are selected from a rotation using polar coordinates and based

on the density at these points, and Δℎ are the corresponding weights. The approximation of the posterior marginal for
each element of the latent field and each hyperparameter, using numerical integration, forms the “integrated” part of
the INLA algorithm while the first two steps above correspond to the “nested Laplace” approximation steps of INLA.
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2.5 Priors for the hyperparameters, 𝜽

From the formulation of the TPJM as an LGM, the prior for the hyperparameters, 𝜋(𝜃), should be specified. This prior
can assume any form while keeping the TPJM an LGM. Amidst the debate about priors, Simpson et al. (2017) proposed
a framework to construct principled priors for hyperparameters, namely penalizing complexity (PC) priors. These priors
are derived based on the distance from a complex model to a simpler (base) model, with a user-defined parameter that
informs the strength of contraction towards the simpler model. This parameter defines whether the PC priors are vague,
weakly informative, or strongly informative based on the departure from the base model measured by the Kullback–
Leibler distance. It is based on the principle of parsimony, simplifying the interpretation of the results by ensuring that
the priors do not overfit. For example, the PC prior for the precision of the random walk model (baseline hazard) is
derived to contract towards infinity, which in turn results in zero variance. The base model thus is a constant level model
(constant baseline hazard, point mass at zero), while the complex model stems from finite precision as a random spline
with zero mean.
In our case, we have various precision hyperparameters, {𝝉aa, 𝝉ab, 𝝉bb, 𝜏𝛼, 𝜏𝛽, 𝜏𝛾, 𝜏𝜑, 𝜏𝜆}. We assign weakly informative

priors to the fixed effects such that 𝜏𝛼 = 𝜏𝛽 = 𝜏𝛾 = 𝜏𝜑 = 10
−3. We thus need to formulate priors for the elements of 𝑸ab

and 𝜏𝜆. For all these hyperparameters (precision and correlation parameters), we assume the respective PC priors as given
in Simpson et al. (2017).
As an illustration, we give the details for the precision of the random intercept in the binary part of the TPJM (i.e., 𝑎)

assuming the model proposed in the next section, 𝜏𝑎 = Σ−1aa . The PC prior is derived as

𝜋(𝜏𝑎) =
𝜌

2
𝜏
−3∕2
𝑎 exp(−𝜌𝜏

−1∕2
𝑎 ),

with the user-defined scaling parameter 𝜌 = −ln(𝑣)
𝑤
. This parameter is chosen based on the desired tail behavior (or

strength of contraction towards the base model 𝜎𝑎 = 𝜏
−1∕2
𝑎 = 0) in the sense that 𝑣 and 𝑤 are such that

𝑃[𝜎𝑎 > 𝑤] = 𝑣, 𝑤 > 0, 0 < 𝑣 < 1.

Larger values of 𝑣 and 𝑤 result in higher prior density away from the base model, whereas smaller values of 𝑣 place more
density closer to the base model. The same principle is used for specifying 𝜋(𝜏𝜆).

3 SIMULATION STUDY

3.1 Settings

We designed simulation studies to compare the performances of INLA and frailtypack in terms of bias of the parameter
estimates, coverage probabilities, computation time, and convergence rates. The main factor driving the performance is
themodel complexity defined by the number of parameters. In particular, the number of correlated random effects defines
the dimension of the integration that needs to be numerically approximated. We propose four simulation scenarios where
the parameter values of the simulationmodels and proportion of zeros are based on the results obtained from the real data
analyses. The first scenario includes a random intercept in the binary and continuous parts of the TPJM that are correlated.
The second simulation scenario includes an additional random effect for the individual deviation from the mean slope in
the continuous part, thus three correlated random effects. These two first simulation scenarios include 200 individuals in
each dataset, corresponding to a small sample size commonly seen in randomized clinical trials while the third simulation
scenario includes 500 individuals in each dataset. The last simulation scenario includes a sample size of 200 individuals
and natural cubic splines for the biomarker specified with the ns() function in R, with a knot at the sample median of
observed times. This generates three bases for the continuous part (one intercept and two slopes separated by the knot)
and one basis for the binary part (intercept). The bases are then assumed correlated random effects in the model. For each
scenario, we generate 1000 datasets; we first sample the positive longitudinal biomarker repeated measurements from
a Gaussian distribution and include the zero values sampled from a binomial distribution. The association between the
probability of zero value and the positive values is given by the correlated random effects. Survival times for the terminal
event are generated from an exponential baseline hazard function with a scale of 0.2, and administrative censoring is
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RUSTAND et al. 7 of 22

assumed to occur at the end of the follow-up (4 years). The rate of zeros is 8% (SD = 1%) for the first three scenarios and
5% for the last scenario, which is in between what we observed in our two real datasets (12% of zeros in application 1
and 4% in application 2). A zero value observation corresponds to a patient who experienced a complete disappearance of
his/her target lesions and thus is extremely informative about treatment effect. The model for data generation is given by

⎧⎪⎨⎪⎩
Logit[Prob(𝑌ij > 0)] = 𝛼0 + 𝑎𝑖 + 𝛼1 ⋅ tim𝑒𝑗 + 𝛼2 ⋅ tr𝑡𝑖 + 𝛼3 ⋅ tim𝑒𝑗 ⋅ tr𝑡𝑖,
E[log(𝑌ij)|𝑌ij > 0] = 𝛽0 + 𝑏0𝑖 + (𝛽1 + 𝑏1𝑖) ⋅ tim𝑒𝑗 + 𝛽2 ⋅ tr𝑡𝑖 + 𝛽3 ⋅ tim𝑒𝑗 ⋅ tr𝑡𝑖 + 𝜀ij,
𝜆𝑖(𝑡|𝑌ij) = 𝜆0(𝑡) exp (𝛾 ⋅ tr𝑡𝑖 + 𝜑𝑎 ⋅ 𝑎𝑖 + 𝜑𝑏0 ⋅ 𝑏0𝑖 + 𝜑𝑏1 ⋅ 𝑏1𝑖]) ,

⎡⎢⎢⎣
𝑎𝑖
𝑏0𝑖
𝑏1𝑖

⎤⎥⎥⎦ ∼ MVN
([
𝟎

𝟎

]
,

[
𝚺aa 𝚺ab
𝚺ab 𝚺bb

])
≡ MVN

⎛⎜⎜⎜⎝
⎡⎢⎢⎣
0

0

0

⎤⎥⎥⎦ ,
⎡⎢⎢⎢⎣
𝜎2𝑎 𝜎𝑎𝑏0 𝜎𝑎𝑏1
𝜎𝑎𝑏0 𝜎

2
𝑏0
𝜎𝑏0𝑏1

𝜎𝑎𝑏1 𝜎𝑏0𝑏1 𝜎
2
𝑏1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ .

Note that in the first simulation scenario, we consider only a random intercept in the continuous part and the covariance
matrix of the random effects is only defined by its first two lines and columns while in the second and third scenarios we
use the full matrix. For the last scenario, the evolution of the biomarker over time in the continuous part is captured by
two spline bases, each one has an interaction with treatment and is associated with a random effect. The baseline hazard
function in the survival part of the model is approximated by a randomwalk model with INLA (Martino et al., 2011) such
that for𝑚 bins on the time axis,

𝜆𝑘 − 𝜆𝑘−1 ∼ 𝑁(0, 𝜏𝜆),

where the PC prior (see Section 2.5) is used is used for the prior of 𝜏𝜆.
The random walk order one model is a stochastic smoothing spline that smooths based on first-order differences. The

number of bins is not influential (as opposed to knots of other splines) since an increase in the number of bins only results
in an estimate closer to the stochastic model. In the simulations and applications, we use the random walk order two
model that provides a smoother spline since the smoothing is then done in the second order. (See Van Niekerk, Bakka,
& Rue, 2021, for more details on the use of these random walk models as Bayesian smoothing splines.) This approxi-
mation is different from frailtypack that uses cubic M-splines with five knots. A penalization ensures that the baseline
hazard is smooth (a smoothing parameter is chosen using an approximate cross-validation criterion from a separate Cox
model). The Levenberg–Marquardt algorithm, a robustNewton-like algorithmmaximizes the log-likelihood functionwith
frailtypack (Marquardt, 1963). The convergence of the algorithm depends on three conditions: The difference between
the log-likelihood, the estimated coefficients, and the gradient of the log-likelihood of two consecutive iterations must
be under 10−3. These convergence criteria avoid spurious convergence, making this algorithm more reliable than classi-
cal alternatives (e.g., Expectation-maximization or Broyden-Fletcher-Goldfarb-Shanno; see Philipps et al., 2021). We use
a Monte Carlo approximation for the approximation of the integrals over the random effects in the likelihood function,
with 1000 integration points, which is a reasonable trade-off between the precision of the approximation and computa-
tion time (using 2000 integration points doubled the computation time with negligible improvements of the results). The
simulation studies are performed with 80 CPUs, frailtypack uses message passing interface (MPI) for parallel compu-
tation while the conjunction of INLA with the PARDISO library provides a high-performance computing environment
with parallel computing support using OpenMP (Schenk & Gärtner, 2004). In practice, the 80 CPUs are mainly useful to
reduce the computation time with frailtypack because the computation time with INLA is very low regardless of the
number of threads because of the small sample size and number of hyperparameters.

3.2 Results

In the results, we are comparing a Bayesian and a frequentist method, which each has usually its own evaluation criteria.
Frequentist bias is used to evaluate the results from frailtypack, while the plausibility of the result based on 95% credible
intervals is used to evaluate the results from INLA (Hespanhol et al., 2019). However, we are interested in the Bayesian
approximation of the maximum likelihood estimation (i.e., noninformative priors) and therefore we provide an inter-
pretation in this context (Walker, 1969). These 95% credible intervals are obtained by truncating the tails of the posterior
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F IGURE 1 Simulations with two correlated random effects (the black dot is the mean value with 95% confidence intervals and the true
value is the red vertical bar).

distributions of each parameter with INLA, while 95% confidence with frailtypack is obtained with the inverse Hessian
of the model, assuming Gaussian distribution for each parameter.

3.2.1 Scenario 1: Two correlated random effects

The results are displayed in Figure 1 and detailed in Table S1 of the Supporting Information. The fixed effect parameters
from the binary and continuous parts are properly estimated with both algorithms, with similar precision and coverage
probabilities (CP) close to the expected 95% level. The parameter for the treatment effect in the survival part (𝛾1 = 0.2) is
associated with a larger variability with frailtypack (𝛾1 = 0.22, SD= 0.36, CP= 96%) compared to INLA (𝛾1 = 0.19, SD=
0.28, CP =95%). The true value of the standard deviation of the random intercept in the binary part (𝜎𝑎 = 1) is within the
95% credible interval with INLA (𝜎𝑎 = 0.93, SD = 0.19, CP = 92%), with a slightly lower posterior mean value compared
to frailtypack’s estimate (𝜎𝑎 = 0.96, SD = 0.21, CP = 94%). The random intercept’s standard deviation in the continuous
part is found similar to both algorithmswith a slightly lower coverage probability of the true valuewith frailtypack (87%),
but the correlation between the random intercepts of the binary and continuous parts (𝜌ab = 0.5) has a reduced variability
estimate with INLA (𝜌ab = 0.47, SD = 0.11, CP = 94%) compared to frailtypack (𝜌ab = 0.49, SD = 0.16, CP = 93%). The
main difference observed is the estimation of the parameters for the association of the random effects with the risk of
event, which links the biomarker to the terminal event. The association involving the random intercept from the binary
part (𝜑𝑎 = 1) has much lower variability with INLA (𝜑𝑎 = 0.99, SD= 0.13, CP= 99%) and is unbiased with good coverage
with frailtypack (𝜑𝑎 = 1.06, SD = 0.89, CP = 94%). The association involving the random intercept from the continuous
part (𝜑𝑏 = 1) is biased upwards with frailtypack with large variability (𝜑𝑏 = 1.40, SD = 1.28, CP = 92%), while INLA’s
posterior estimate recovers the true value (𝜑𝑏 = 1.07, SD = 0.15, CP = 98%). This could be due to the small sample size
problems that cause more convergence issues under the frequentist framework. Although INLA yields accurate posterior
estimates with small variability for these parameters, the coverage probabilities are higher than the expected 95%. The
computation times are much lower with INLA (6 seconds per model, SD =1) compared to frailtypack (74 seconds per
model, SD = 29). Finally, 9% of the 1000 models did not reach convergence with frailtypack.

3.2.2 Scenario 2: Three correlated random effects

The results are displayed in Figure 2 and detailed in Table S2 of the Supporting Information. With an additional random
effect parameter compared to scenario 1, the fixed effects parameters are still properly estimated with INLA. The coverage
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F IGURE 2 Simulations with three correlated random effects (the black dot is the mean value with 95% confidence intervals and the true
value is the red vertical bar).

probabilities are low with frailtypack for the slope and treatment by slope parameters in the continuous part (𝛽1 = −0.3
and 𝛽3 = 0.3), while the parameter estimates remain unbiased. The variability for these two parameters is lower with
INLA (𝛽1 = −0.30, SD = 0.06, CP = 94% and 𝛽3 = 0.30, SD = 0.08, CP = 95%) compared to frailtypack (𝛽1 = −0.25,
SD = 0.12, CP = 44% and 𝛽3 = 0.29, SD = 0.15, CP = 47%). As observed in the first scenario, the treatment effect’s pos-
terior estimate in the survival model has lower variability with INLA (𝛾1 = 0.19, SD = 0.30, CP = 94%); moreover, the
coverage probability for this parameter is lower than expected with frailtypack (𝛾1 = 0.25, SD= 0.53, CP= 82%). For the
random effects covariance structure estimation, the posterior mean from INLA is slightly lower than the true value of
the random intercept’s standard deviation in the binary part (𝜎𝑎 = 0.93, SD= 0.15, CP=95%) while frailtypack’s value is
slightly higher than the true value (𝜎𝑎 = 1.12, SD= 0.29, CP= 91%). Overall, INLA has lower variability for the standard
deviation and correlation terms and frailtypack has poor coverage for these parameters (e.g., 22% for 𝜎𝑏1 and 23% for
𝜌𝑏0𝑏1). The association parameters (𝜑𝑎 = 1, 𝜑𝑏0 = 1, 𝜑𝑏1 = 1) are recovered well and have much lower variability with
INLA (𝜑𝑎 = 0.98, SD = 0.12, CP = 99%; 𝜑𝑏0 = 1.10, SD = 0.14, CP = 98%; 𝜑𝑏1 = 1.07, SD = 0.14, CP = 98%) compared to
frailtypack (𝜑𝑎 = 0.89, SD = 1.86, CP = 89%; 𝜑𝑏0 = 1.09, SD = 1.82, CP = 89%; 𝜑𝑏1 = 1.46, SD = 1.81, CP = 89%), but still
with conservative coverage probabilities. Computation times remain much lower with INLA (6 seconds per model, SD
= 1) compared to frailtypack (181 seconds per model, SD = 57) for which the time increased substantially when adding
the third random effect. Moreover, the convergence rate of the model is reduced with frailtypack for this scenario (81%),
because the model complexity increased.

3.2.3 Scenario 3: Similar to Scenario 2 with increased sample size of n = 500

The results are displayed in Figure 3 and detailed in Table S3 of the Supporting Information. With 𝑛 = 500 instead of
𝑛 = 200, the standard deviations of the mean parameters are reduced overall. However, the coverage probabilities for the
slope and treatment by slope parameters in the continuous part (𝛽1 = −0.3 and 𝛽3 = 0.3) remain low with frailtypack
(𝛽1 = −0.30, SD = 0.08, CP = 45% and 𝛽3 = 0.29, SD = 0.10, CP = 46%), while the parameter estimates are unbiased.
INLA has a lower variability and better coverage probabilities for these parameters (𝛽1 = −0.30, SD = 0.04, CP = 92%
and 𝛽3 = 0.30, SD = 0.05, CP = 95%) compared to frailtypack. For the random intercept’s standard deviation in the
binary part (𝜎𝑎 = 1), the posterior mean from INLA is slightly closer to the true value (𝜎𝑎 = 0.96, SD = 0.11) compared
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F IGURE 3 Simulations with 𝑛 = 500 (the black dot is the mean value with 95% confidence intervals and the true value is the red vertical
bar).

to Scenario 2 while frailtypack’s estimate remains unbiased with a larger variability (𝜎𝑎 = 1.01, SD = 0.14). The other
parameters in the random effects covariance structure are well recovered with lower variability for the standard deviation
and correlation terms overall with INLA. The association parameters (𝜑𝑎 = 1, 𝜑𝑏0 = 1, 𝜑𝑏1 = 1) are recovered similarly
as in Scenario 2 with INLA (𝜑𝑎 = 0.91, SD= 0.17, CP= 96%; 𝜑𝑏0 = 1.12, SD= 0.18, CP= 94%; 𝜑𝑏1 = 1.09, SD= 0.15, CP=
97%), while their variability and bias are reducedwith frailtypack (𝜑𝑎 = 0.99, SD= 1.02, CP= 92%;𝜑𝑏0 = 1.06, SD= 0.96,
CP= 89%, 𝜑𝑏1 = 1.08, SD= 1.00, CP= 89%) but remains much higher compared to INLA. Note that the high coverage for
the association parameters with INLA in the first two scenarios was likely explained by the small sample size, leading to a
higher importance of the noninformative priors and resulting in high coverage. In this scenario with an increased sample
size, the coverage is getting closer to the nominal 95% level. We observe an increased difference in computation times
between INLA (11 seconds per model, SD = 1) and frailtypack (340 seconds per model, SD = 89) compared to scenario
2. Finally, the convergence rate of the model has improved with frailtypack under this scenario (96%).

3.2.4 Scenario 4: Similar to Scenario 2 with two natural cubic splines for the trend in the
continuous part (four correlated random effects, 200 individuals)

The last scenario illustrates the behavior of INLAwith amore flexible trend in the continuous part. It includes four corre-
lated random effects and 200 individuals. The results are displayed in Figure 4 and detailed in Table S4 of the Supporting
Information. The estimation with frailtypack had increased convergence issues compared to previous scenarios, 46% of
the 1000 models did not reach convergence. Moreover, fixed effects related to spline functions (𝛽1 = −1, 𝛽2 = −1) have
poor coverage and higher standard deviation with frailtypack (𝛽1 = −1.00, SD = 0.13, CP = 88%; 𝛽2 = −1.02, SD = 0.16,
CP = 85%) compared to INLA (𝛽1 = −0.99, SD = 0.09, CP = 95%; 𝛽2 = −1.00, SD = 0.09, CP = 92%). Finally, the random
effects variance and covariance parameters have higher variability and poorer coverage with frailtypack compared to
INLA, in particular, the random intercept from the binary part (𝜎𝑎 = 0.5) has a mean value of the true value (𝜎𝑎 = 0.78,
SD = 0.25, CP = 89%) with frailtypack, while INLA is recovering this parameter with more accuracy (𝜎𝑎 = 0.55, SD =
0.10, CP = 98%). Note that this scenario is associated with a lower zero rate on average (5%), which may explain the poor
result of frailtypack for this parameter.
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F IGURE 4 Simulations with splines (the black dot is the mean value with 95% confidence intervals and the true value is the red vertical
bar).
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F IGURE 5 Quantiles at 2.5%, 50%, and 97.5% of the baseline survival curves estimated with frailtypack and INLA in the simulations
(Section 3).

3.3 Conclusions

Our method comparison suggests that the frequentist approach, implemented in frailtypack, reaches some limitations
when fitting the more complex TPJMs, compared to the Bayesian approach implemented in INLA, which provides accu-
rate approximations of posterior quantities. Convergence might be an issue, and estimation of the association parameters
is highly variable with frailtypack. A representation of the baseline survival curves estimated under both scenarios is
displayed in Figure 5. The median of the estimated survival curves is unbiased with both estimation strategies, but INLA
has a reduced variability compared to frailtypack. Note that INLA is a deterministic algorithm, the notion of “conver-
gence rate” does not apply and is only provided in the results for comparison with the iterative algorithm implemented
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TABLE 1 Description of the GERCOR and PRIME study datasets.

Study GERCOR PRIME
treatment Arm A Arm B Arm A Arm B

FOLFIRI/FOLFOX6 FOLFOX6/FOLFIRI FOLFOX4 Panitumumab/FOLFOX4
Number of patients enrolled 109 111 593 590
Number of patients for the analysis 101 104 223 219
number of repeated measurements of the SLD 748 727 1192 1081
Number of zero values (%) 118 (16.2%) 56 (7.5%) 47 (3.8%) 52 (4.6%)
Number of death (%) 83 (82.2%) 82 (78.8%) 164 (73.5%) 164 (74.9%)
Median OS (years) 1.8 (1.4–2.3) 1.8 (1.5–2.2) 1.7 (1.5–1.9) 1.4 (1.3–1.7)
KRAS exon 2 at codons 12 and 13
Nonmutated 132 (59.2%) 128 (58.4%)
Mutated 91 (40.8%) 91 (41.6%)
Not available 101 (100%) 104 (100%)

in frailtypack. R codes including data simulation and model estimation with frailtypack and INLA assuming a con-
ditional TPJM are available at github.com/DenisRustand/TPJM_sim/blob/master/TPJM_INLA.R and in the Supporting
Information for Scenario 2, other scenarios follow trivially.

4 APPLICATION

We applied the Bayesian TPJM to two cancer clinical trials, the GERCOR, and the PRIME studies. A comparison with
frailtypack is provided only for the GERCOR data since this approach did not converge on the PRIME study. We used
the same parameterization for INLA and frailtypack, as detailed in the simulation studies but with an increased number
of integration points for the Monte Carlo method in frailtypack (i.e., 5000 points). In the context of a Bayesian approxi-
mation of the maximum likelihood estimation, we provide indications of the p-value for both frailtypack and INLA to
ease the interpretation and the comparison of the results. These p-values are computed using the Z-score, assuming nor-
mal distributions. Each package has a specific criterion for model selection that takes into account the goodness of fit and
the complexity of themodel (i.e., the number of parameters).Frailtypack uses the likelihood-based cross-validation, LCV
(Commenges et al., 2007), which accounts for its penalized likelihood while INLA is based on the deviance information
criterion, DIC (Spiegelhalter et al., 2002).

4.1 GERCOR study

4.1.1 Description

It is a randomized clinical trial investigating two treatment strategies that included a total of 220 patients with metastatic
colorectal cancer. The reference strategy (arm A) corresponds to FOLFIRI (irinotecan) followed by FOLFOX6 (oxali-
platin), while arm B involves the reverse sequence. Patients were randomly assigned from December 1997 to September
1999, and the date chosen to assess overall survival was August 30, 2002. Complete data are available on 205 individu-
als for data analysis. Among them, 165 (80%) died during the follow-up. There are 1475 repeated measurements for the
biomarker; 174 of which are zero values (12%). A summary of the dataset structure is given in Table 1. Our model uses
death as the terminal event and the repeated SLDmeasurements (in centimeters) as the semicontinuous biomarker. Addi-
tional baseline covariates collected at the start of the study are also included, including performance status (0/1/2), lung
metastatic site (Y/N), previous adjuvant radiotherapy (Y/N), previous surgery (no surgery/curative/palliative), andmetas-
tases (metachronous/synchronous). The first analysis of this dataset (Tournigand et al., 2004) did not find any significant
difference between the two treatment strategies using classic survival analysis methods (i.e., log-rank tests). A trivariate
jointmodel has been applied to this study for the simultaneous analysis of the longitudinal SLD, recurrent events (progres-
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sion of lesions not included in the SLD or new lesions), and the terminal event (Król et al., 2018). A flexible mechanistic
model using an ordinary differential equation was proposed to fit the biomarker dynamics. The results show a greater
decline of the SLD for treatment arm A compared to treatment arm B. Moreover, the model finds a strong association
between the biomarker model and the risk of terminal event. However, the interpretation of this treatment effect is diffi-
cult due to the nonlinear transformation applied to the outcome (Box–Cox) and the use of a nonlinearmechanistic model.
Finally, a conditional TPJM was recently proposed (Rustand et al., 2020), which showed a significant treatment effect on
the positive values of the biomarker (and no treatment effect on the probability of zero value). The model was able to
show that when taking into account this treatment effect on the biomarker; the risk of terminal event is not significantly
different between the two treatment arms. In the results, the mean parameters and their standard deviation are obtained
by taking the maximum likelihood estimates and the inverse Hessian matrix with frailtypack while the posterior mean
and standard deviation of the posterior distribution were used with INLA. For the evolution of the SLD over time in the
continuous part, we compared a model with a linear trend (fixed + random slope) with a more flexible model with two
natural cubic splines with a knot at themedian of observed times which corresponds to 6months of follow-up (each spline
is associated with a fixed and a random effect). The goodness-of-fit criterion was in favor of the flexible model with both
INLA (DIC = 2787 with a linear trend and DIC = 2260 with splines) and frailtypack (LCV = 0.45 with a linear trend
and LCV= 0.40 with splines). The splines are described in Figure S1 of the Supporting Information and the results with a
linear trend are given in Table S5 of the Supporting Information. The first spline corresponds to an initial increase during
the first year followed by a decrease for the rest of the follow-up, while the second spline has an initial decrease during
the first year and then increases for the rest of the follow-up.

4.1.2 Results

As presented in Table 2, the fixed effect parameter estimates in the binary, continuous, and survival parts are quite similar
between the frequentist and Bayesian approaches. The evolution of the SLD over time conditional on treatment is dis-
played in Figure 6, where random effects have been integrated out to have population average trajectories. Both treatment
arms have a similar evolution of the log SLD over time. The uncertainty is slightly reduced with INLA at the end of the
follow-up compared to frailtypack. Moreover, the mean value of the log SLD with INLA gets slightly lower over time
compared to frailtypack, but no significant difference is observed marginally despite a significant association between
the second spline and treatmentwith INLA (𝛽11 = 1.49, SD= 0.54), while frailtypack finds a lower effect size but still sig-
nificant (𝛽11 = 0.85, SD= 0.39). This effect of treatment indicates that treatment arm Bmay be associated with a stronger
reduction of the log SLD in early follow-up followed by a higher increase of the log SLD in the late follow-up compared
to treatment arm A. This difference among positive values does not translate into a significant difference in the marginal
evolution of the log SLD (i.e., including both zeros and positives), suggesting that models mixing zeros and positive (e.g.,
Tobit model) may miss this effect. Figure S2 in the Supporting Information displays observed vs. fitted longitudinal tra-
jectory of the log SLD for five patients representative of the dataset, illustrating the good fit of the model. These fitted
trajectories are only displayed with INLA since the linear predictors for each observation are directly available as part of
the model’s output, while frailtypack does not provide such information.
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14 of 22 RUSTAND et al.

TABLE 2 Application of the Bayesian and frequentist TPJMs with two natural cubic splines to the GERCOR study with INLA and
frailtypack.

Approach INLA frailtypack
Est.a (SDb) Est. (SD)

Binary part (SLD>0 versus SLD = 0)
Intercept 𝛼0 5.37*** (0.62) 5.72*** (0.71)
Time (year) 𝛼1 −2.01*** (0.37) −2.02*** (0.40)
Treatment (B/A) 𝛼2 −0.98 (0.72) −1.35 (0.69)
Performance status (1 vs. 0) 𝛼3 2.03*** (0.57) 2.17*** (0.57)
Performance status (2 vs. 0) 𝛼4 1.56 (1.12) 1.70 (1.14)
Previous_radio (Y/N) 𝛼5 0.71 (0.71) 0.59 (0.71)
Lung (Y/N) 𝛼6 1.81** (0.65) 1.54* (0.62)
Time: treatment (B/A) 𝛼7 0.31 (0.44) 0.36 (0.47)

Continuous part (E[log(𝑌ij)|𝑌ij > 0])
Intercept 𝛽0 2.26*** (0.13) 2.15*** (0.09)
Slope 1 𝛽1 −0.26 (0.20) 0.06 (0.15)
Slope 2 𝛽2 1.48*** (0.37) 1.93*** (0.29)
Treatment (B/A) 𝛽3 −0.23** (0.09) −0.23** (0.07)
Performance Status (1 vs. 0) 𝛽4 0.35*** (0.09) 0.41*** (0.07)
Performance status (2 vs. 0) 𝛽5 0.40** (0.14) 0.46*** (0.10)
Previous_surgery (curative) 𝛽6 −0.47** (0.16) −0.26* (0.11)
Previous_surgery (palliative) 𝛽7 −0.03 (0.12) 0.10 (0.09)
Previous_radio (Y/N) 𝛽8 −0.22 (0.10) −0.23 (0.08)
Metastases (metachronous vs. synchronous) 𝛽9 0.35* (0.14) 0.25* (0.10)
Slope 1:treatment (B/A) 𝛽10 0.91** (0.28) 0.53* (0.24)
Slope 2:treatment (B/A) 𝛽11 1.49*** (0.54) 0.85* (0.39)
Residual S.E. 𝜎𝜀 0.25*** (0.01) 0.25*** (0.01)

Death risk
Treatment (B/A) 𝛾1 0.25 (0.24) 0.07 (0.23)
Performance status (1 vs. 0) 𝛾2 0.94*** (0.22) 1.05*** (0.24)
Performance status (2 vs. 0) 𝛾3 1.66*** (0.36) 1.79*** (0.39)
revious_surgery (curative) 𝛾4 −0.95* (0.44) −0.70 (0.45)
Previous_surgery (palliative) 𝛾5 −0.50 (0.31) −0.39 (0.32)
Metastases (metachronous vs. synchronous) 𝛾6 0.83* (0.36) 0.71 (0.37)

Association
Intercept (binary part) 𝜑𝑎 0.05 (0.08) −0.07 (0.15)
Intercept (continuous part) 𝜑𝑏0 0.98*** (0.22) 1.26* (0.53)
Slope 1 (continuous part) 𝜑𝑏𝑠1 0.57*** (0.17) 0.76** (0.29)
Slope 2 (continuous part) 𝜑𝑏𝑠2 0.06 (0.07) 0.02 (0.08)

Random effects’ standard deviation
Intercept (binary part) 𝜎𝑎 3.08*** (0.37) 3.12*** (0.39)
Intercept (continuous part) 𝜎𝑏0 0.59*** (0.04) 0.57*** (0.03)
Slope 1 (continuous part) 𝜎𝑏𝑠1 1.52*** (0.15) 1.73*** (0.12)
Slope 2 (continuous part) 𝜎𝑏𝑠2 2.50*** (0.29) 2.97*** (0.25)

𝜌𝑎𝑏0 0.51*** (0.08) 0.53*** (0.06)
𝜌𝑎𝑏𝑠1 0.59*** (0.12) 0.70*** (0.07)
𝜌𝑎𝑏𝑠2 0.32* (0.16) 0.55*** (0.09)
𝜌𝑏0𝑏𝑠1 −0.14 (0.10) −0.03 (0.05)
𝜌𝑏0𝑏𝑠2 −0.09 (0.12) 0.08 (0.05)
𝜌𝑏𝑠1𝑏𝑠2 0.72 (0.08)*** 0.78*** (0.03)

(Continues)
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RUSTAND et al. 15 of 22

TABLE 2 (Continued)

Approach INLA frailtypack
Est.a (SDb) Est. (SD)

Computation time (Intel Xeon Gold 6248 2.50 GHz)
Eight CPUs 13 s 11,230 s
Eighty CPUs 10 s 2355 s

Abbreviations: INLA, integrated nested Laplace approximation; SD, standard deviation; SLD, sum of the longest diameter of target lesions; TPJMs, two-part joint
models.
aPosterior mean.
bPosterior standard deviation.
***𝑝 < 0.001.
**𝑝 < 0.01.
*𝑝 < 0.05.

The hazard ratio (HR) of treatment arm B versus treatment arm A that evaluates the change in the risk of death was
higher with INLA (HR= 1.28, Confidence Interval, CI 0.80–2.06) compared to frailtypack (HR= 1.07, CI 0.68–1.69), but
not significant in both cases. Themain difference between INLA and frailtypack is in the estimation of the parameters for
the association between the two-part model for the biomarker and the survival model. There is a positive and significant
association between the random intercept (𝜑𝑏0 = 0.98, SD = 0.22) and the first spline (𝜑𝑏𝑠1 = 0.57, SD =0.17) from the
continuous part and the risk of event with INLA. This association has a higher effect size and much larger variability
with frailtypack (𝜑𝑏0 = 1.26, SD = 0.52 and 𝜑𝑏1 = 0.76, SD = 0.29). This is in line with our simulation results (Scenario
1) where the association structure was estimated with better precision with INLA. The computation time for frailtypack
increases quickly with the sample size and the model complexity (number of parameters and dimension of the random
effects). The model was estimated in 11,230 s with frailtypack with eight CPUs and this reduces to 2355 s with 80 CPUs,
while it is estimated in less than 15 swith INLA. The differences found in the association structure estimates are important
when assessing the relationship between the biomarker dynamics and the risk of event. For instance, let us assume a
clinician is interested in the top 15% patients who had the largest SLD at baseline compared to the average patient. Their
random effect 𝑏0𝑖 should be higher than 1 standard deviation, that is from Table 2, 𝑏0𝑖 > 0.59 with INLA (respectively,
𝑏0𝑖 > 0.57 with frailtypack). Conditional on 𝑏0𝑖 > 0.59 (respectively, 𝑏0𝑖 > 0.57), the mean values of the random effects
can be derived by sampling from a conditional multivariate normal distribution with a correlationmatrix given in Table 2.
These conditional means are 2.38, 0.90, −0.28, and −0.25 for 𝑎, 𝑏0, 𝑏𝑠1, and 𝑏𝑠2, respectively (2.51, 0.87, −0.07, and 0.35
with frailtypack). Therefore, these top 15% individuals increase their chance to have the terminal event (i.e., to die)
measured by a hazard ratio of HR = exp(0.05 ∗ 2.38 + 0.98 ∗ 0.90 + 0.57 ∗ (−0.28) + 0.06 ∗ (−0.25)) = exp(0.83) = 2.29,
CI= 2.15–2.40, compared to a patient who has an average longitudinal SLD profile. Frailtypack gives a similar hazard
ratio but with higher uncertainty HR = exp((−0.07) ∗ 2.51 + 1.26 ∗ 0.87 + 0.76 ∗ (−0.07) + 0.02 ∗ 0.35) = exp(0.87) =
2.40, CI=1.68–3.30. The confidence intervals were obtained by sampling parameters from the inverse Hessian matrix
with frailtypack and the posterior distribution of the parameters with INLA. Figure 7 shows the baseline survival curves
obtained with frailtypack and INLA, the survival decreases faster with INLA and has a reduced uncertainty compared
to frailtypack, although no significant differences are observed between the two estimation strategies.

4.2 PRIME study

4.2.1 Description

The Panitumumab Randomized Trial in Combination with Chemotherapy for Metastatic Colorectal Cancer to Determine
Efficacy (PRIME) study is a more challenging application for fitting the TPJM because it includes information about
the KRAS mutation status (exon 2 codons 12/13), which has been shown to impact the clinical response to treatment
in metastatic colorectal cancer patients (Van Cutsem et al., 2008; Normanno et al., 2009; Bokemeyer et al., 2008). It is,
therefore, an important risk modifier, and clinicians are interested to assess treatment by mutation interaction in order to
tailor treatment to patients’ genetic risk (Marabelle et al., 2020). This dataset is freely available on ProjectDataSphere.org
(PDS UID: Colorec_Amgen_2006_309).
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F IGURE 7 Baseline survival curves and their 95% confidence and credible intervals obtained from the application of the TPJM to the
GERCOR study with frailtypack and INLA, respectively.

The PRIME study is a randomized clinical trial that compares the efficacy and safety of panitumumab (anti-EGFR)
in combination with FOLFOX4 (chemotherapy) with those of FOLFOX4 alone in the first-line treatment of patients,
according to KRAS exon 2 status (wild type or mutant type). Between August 2006 and February 2008, 1183 patients were
randomly assigned to receive treatment arm A (FOLFOX4 alone) or treatment arm B (panitumumab + FOLFOX4). The
data for analysis include a subset of 442 patients (i.e., 741 excluded from the publicly available dataset). There are 2372
repeated measurements of the SLD, 99 of which are zero values (4%). The small rate of zero measurements in the SLD
distribution leads to large variability in the binary part; however, zeros correspond to patients with a complete shrinkage
of their target lesions, which is a very relevant information for clinicians about treatment effect. The number of individual
repeatedmeasurements for this biomarker varies between 1 and 24with amedian of 5. The death rate is 74%, corresponding
to 328 deaths. Summary statistics of the dataset are given in Table 1. Additional baseline covariates collected at the start
of the study are also included, including metastases to the liver at study entry (Y/N), the number of baseline metastases
sites (1/2/3/4+), age (<60/60–69/≥70), and baseline Eastern Cooperative Oncology Group (ECOG) performance status
(fully active/symptoms but ambulatory/in bed less that 50% of the time). We used a global backward selection procedure
for each component of themodel to select the covariates to include in the final jointmodel. The conclusions of the study are
presented in Douillard et al. (2013) and show the importance of taking into account the mutation status when assessing
treatment effect. Among patients without mutated KRAS, treatment arm B was associated with a slightly significantly
reduced risk of death compared to treatment arm A. For patients with mutated KRAS, treatment arm B was associated
with a nonsignificant increase in the risk of death compared to treatment arm A. Unlike the first application, we assume
a linear trend on the log scale for the continuous part of the TPJM because the model with spline functions was not fitting
well the data (high variability of the posterior parameter estimates that reflects the noninformative priors), suggesting
that the data is not informative enough to fit all the parameters properly (small sample size, short follow-up due to high
death rate, and many added parameters due to interactions between splines, treatment, and KRAS mutation status).

4.2.2 Results

As presented in Table 3, in the binary part of the TPJM, the intercept is very large (𝛼̂0 = 16.50, SD = 3.49), corresponding
to a high probability of positive value at baseline. This probability is increased for patients with mutated KRAS (𝛼̂3 =
6.18, SD = 4.54) and patients receiving treatment arm B (𝛼̂2 = 3.15, SD =3.68) but with large standard deviations so
that these effects are not significant. The slope parameter with time is negative and significant (𝛼̂1 = −8.31, SD =1.66),
meaning that patients without mutated KRAS and receiving treatment A have a higher odds of zero SLD value over time,
that is, complete response to treatment. This odds decreases, but not significantly, among patients with either mutated
KRAS (𝛼̂6 = 0.64, SD= 2.36) or receiving treatment B (𝛼̂5 = 1.27, SD= 1.81) and in patients with both mutated KRAS and
receiving treatment arm B (𝛼̂7 = 0.73, SD = 4.42).
In the continuous part of the TPJM, patients with the wild-type KRAS status and in treatment arm A are associated

with a decrease in the SLD value over time conditional on a positive SLD value (𝛽1 = −1.64, SD= 0.10). This reduction of
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TABLE 3 Application of the Bayesian TPJM with shared random effects to the PRIME study with the R package R-INLA.

Approach R-INLA
Est.a (SDb)

Binary part (SLD>0 versus SLD=0)
Intercept 𝛼0 16.50*** (3.49)
Time (year) 𝛼1 −8.31*** (1.66)
Treatment (B/A) 𝛼2 3.15 (3.68)
KRAS (MT/WT) 𝛼3 6.18 (4.54)
Treatment (B/A):kras (MT/WT) 𝛼4 −1.26 (6.73)
Time: treatment (B/A) 𝛼5 1.27 (1.81)
Time: KRAS (MT/WT) 𝛼6 0.64 (2.36)
Time: treatment (B/A):kras (MT/WT) 𝛼7 0.73 (4.42)

Continuous part E[log(𝑌ij)|𝑌ij > 0]
Intercept 𝛽0 2.55*** (0.17)
Time (years) 𝛽1 −1.64*** (0.10)
Treatment (B/A) 𝛽2 −0.22* (0.10)
KRAS (MT/WT) 𝛽3 −0.24* (0.11)
Liver metastases (Y/N) 𝛽4 0.56*** (0.13)
Eastern Cooperative Oncology Group performance status (symptoms but ambulatory vs. fully active) 𝛽5 0.18* (0.07)
Eastern Cooperative Oncology Group performance status (in bed less than 50% of the time vs. fully active) 𝛽6 0.49** (0.17)
Baseline metastases sites (2 vs. 1) 𝛽7 0.08 (0.11)
Baseline metastases sites (3 vs. 1) 𝛽8 0.23* (0.11)
Baseline metastases sites (4+ vs. 1) 𝛽9 0.18 (0.12)
Treatment (B/A): KRAS (MT/WT) 𝛽10 0.23 (0.15)
Time: treatment (B/A) 𝛽11 0.93*** (0.14)
Time: KRAS (MT/WT) 𝛽12 1.18*** (0.15)
Time: treatment (B/A):kras (MT/WT) 𝛽13 −1.12*** (0.20)
Residual S.E. 𝜎𝜀 0.27*** (0.01)

Death risk
Treatment (B/A) 𝛾1 0.08 (0.17)
KRAS (MT/WT) 𝛾2 0.18 (0.18)
Treatment (B/A):kras (MT/WT) 𝛾3 0.07 (0.24)
Age (60-69 vs. <60) 𝛾4 0.10 (0.13)
Age (70+ vs. <60) 𝛾5 0.25 (0.14)
Liver metastases (Y/N) 𝛾6 0.05 (0.23)
Eastern Cooperative Oncology Group performance status (symptoms but ambulatory vs. fully active) 𝛾7 0.31* (0.12)
Eastern Cooperative Oncology Group performance status (in bed less than 50% of the time vs. fully active) 𝛾8 0.85** (0.26)
Baseline metastases sites (2 vs. 1) 𝛾9 0.13 (0.20)
Baseline metastases sites (3 vs. 1) 𝛾10 0.33 (0.20)
Baseline metastases sites (4+ vs. 1) 𝛾11 0.44* (0.21)

Association
Intercept (binary part) 𝜑𝑎 0.00 (0.01)
Intercept (continuous part) 𝜑𝑏0 0.47*** (0.10)
Slope (continuous part) 𝜑𝑏1 0.10 (0.14)

(Continues)
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TABLE 3 (Continued)

Approach R-INLA
Est.a (SDb)

Random effects’ standard deviation
Intercept (binary part) 𝜎𝑎 8.61
Intercept (continuous part) 𝜎𝑏0 0.73
Slope (continuous part) 𝜎𝑏1 0.73

𝜌𝑎𝑏0 0.00
𝜌𝑎𝑏1 0.76
𝜌𝑏0𝑏1 −0.23

Computation time (Intel Xeon E5-4627 v4 2.60 GHz)
Eight CPUs 46 s
Eighty CPUs 39 s

Abbreviations: INLA, integrated nested Laplace approximation; MT, mutant type; SD, standard deviation; SLD, sum of the longest diameter of target lesions;
TPJMs, two-part joint models; WT, wild type.
aPosterior mean.
bPosterior standard deviation.
***𝑝 < 0.001.
**𝑝 < 0.01.
*𝑝 < 0.05.

SLD over time is attenuated in patients with mutated KRAS (𝛽12 = 1.18, SD = 0.15) or receiving treatment B (𝛽11 = 0.93,
SD= 0.14). Patients with the KRASmutation and who received treatment B have a similar SLD trend over time as patients
with the KRAS mutation who received treatment A or patients who received treatment B but with the wild-type KRAS
status because of the negative interaction term between time, treatment, and KRAS status (𝛽13 = −1.12, SD = 0.20).
In the survival part, the model shows no significant difference between treatment arms for the risk of death (𝛾1 = 0.08,

SD = 0.17). Besides, patients with mutated KRAS have a similar risk of death compared to patients with the wild type
(𝛾2 = 0.18, SD= 0.18), so do patients with mutated KRAS receiving treatment B (𝛾3 = 0.07, SD= 0.24). The random effect
from the binary part and the random slope from the continuous part is not associated with the risk of death (𝜑𝑎 = 0.00,
SD = 0.01 and 𝜑𝑏1 = 0.10, SD = 0.14), but the random intercept from the continuous part (𝜑𝑏0 = 0.47, SD = 0.10) has
a positive and highly significant association with the risk of event. This means that conditional on a positive value, the
individual deviation from the mean baseline value of the SLD is predictive of the risk of event. Similarly to the GERCOR
study, we can compare the top 15% patients with the smallest SLD at baseline to the average patient, their risk of death is
reduced by 39% (HR = 0.61, CI = 0.51–0.75).
In conclusion, we did not find a direct effect of treatment B versus A on the risk of death while the initial study (Douil-

lard et al., 2013) finds a slightly significant improvement in overall survival for patients with wild-type KRAS status (HR
= 0.78, CI = 0.62–0.99), likely because of the reduced sample size available for our analysis (publicly available dataset
only includes 37% of the original set of patients). Interestingly, the analysis of the continuous part of the TPJM suggests
that the reduction of the SLD over time conditional on a positive value is attenuated with treatment B compared to treat-
ment A for patients with wild-type KRAS status. A graphical representation of the mean biomarker evolution over time
according to KRAS mutation status and treatment received is depicted in Figure 8. It confirms the suggested significant
difference between treatment arms for patients with wild-type KRAS status and shows no treatment effect for patients
with mutant KRAS.

5 DISCUSSION

In this article, we developed a Bayesian estimation approach based on the INLA algorithm for TPJMs for a longitudinal
semicontinuous biomarker and a terminal event. We also provided a comparison with a frequentist alternative approach
implemented into the frailtypack package, using small sample sizes as seen in cancer clinical trial evaluation. The fre-
quentist estimation faced some limitations when fitting complex joint models with a high number of random effects and
much increased computation time compared to INLA. The Bayesian estimation proposed in the R package INLA has
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F IGURE 8 Mean biomarker value according to treatment received for patients with wild-type KRAS status (left) and mutant KRAS
status (right). The 95% credible intervals are obtained by resampling from the posterior parameter distributions.

been recently introduced to fit complex joint models (Van Niekerk, Bakka, Rue, & Schenk, 2021) but, to our knowledge,
has never been proposed for TPJMs. Accounting for the semicontinuous nature of the biomarker, that is, the SLD, and
being able to fit joint models with more complex association structures between the biomarker and the terminal event,
can be quite relevant in clinical applications by providing critical insights into the direct and indirect effect of a treatment
on the event of interest. This was illustrated in our simulations and applications to two randomized cancer clinical trials.
In our simulation studies, the estimation with INLA was found superior to frailtypack in terms of computation time

and precision of the fixed effects estimation. The point estimates from frailtypack yielded closer results to the true values
of the random effects’ standard deviations, the residual error term, and the baseline hazard function than the posterior
mean from INLA, even though INLA recovered all parameters well based on the estimated credible intervals.
Our first application to the GERCOR randomized clinical trial investigating two treatment lines to treat metastatic col-

orectal cancer shows some differences between the two estimation approaches. In linewith our simulations, the variability
of the association parameters estimates between the biomarker and the survival outcome is reducedwith INLA compared
to frailtypack. Moreover, the computation time is reduced by a factor of more than 200 with INLA compared to frailty-
pack for this application to GERCOR data. The second application to the PRIME study illustrates the fact that treatment
response might depend on genetic alterations or tumor biomarker status (DNA/RNA/protein features). There is now a
great interest in identifying subgroups of patients with specific patterns of responses; however, most methods provide an
average effect of covariates. Instead, ourmodel can distinguish complete responders (i.e., SLD= 0) frompartial responders
(i.e., SLD> 0). This leads also to an increase inmodel complexity as additional covariates and random effects are included
in each submodel of the TPJM. The frequentist approach proposed in frailtypackmight have convergence issues in that
situation. Interestingly, the analysis of the continuous part of the TPJM suggested that the subgroup of patients with the
KRASmutation receiving treatment B had a similar decrease of the SLD over time compared to the KRASmutation group
receiving treatment A or patients who received treatment Bwith wild-type KRAS status. Therefore, the lack of response to
the addition of anti-EGFR to FOLFOX4 chemotherapy was not fully explained by the KRAS mutation status. This could
motivate further investigations of the interaction between KRAS mutation and anti-EGFR therapies to treat advanced
colorectal cancer patients, in particular by including information on other somatic tumor mutations (e.g., BRAF or NRAS
mutations).
Our work has several limitations. Our applications focused on clinical trials of very advanced cancers, which often have

high death rates, short follow-up, and small proportions of complete responses (i.e., SLD= 0). In situations where we have
a higher proportion of complete responders, the relative performances of INLA versus frailtypack could be different. The
conclusions might be different for different settings (i.e., with a higher zero rate and reduced censoring). For instance,
a meta-analysis evaluating the responses among non-Hodgkin’s lymphoma patients estimated complete response rates
(i.e., SLD = 0) ranging from 1.2% to 84% in the different pooled clinical trials (Mangal et al., 2018). We also notice that
the two models estimated with INLA and frailtypack are not completely comparable because of the difference in the
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approximation of the baseline hazard function. Besides the shared random effects, other association structures have also
been proposed such as the current value association, that is, it uses the current level of the biomarker and is available in
frailtypack. For the TPJMs, the current value of the biomarker is defined as E[𝑌ij] = Prob(𝑌ij > 0)E[𝑌ij|𝑌ij > 0], which
is nonlinear. It cannot be directly defined as part of the latent Gaussian model, and more work is warranted to include
this development in INLA. So at the stage of development, frailtypack still provides more flexibility when specifying
an association structure between the biomarker and the survival outcome. Besides, dynamic predictions of the event of
interest are not yet implemented in INLA and thus require postcomputations but are a major component of frailtypack,
available for a wide range of jointmodels. It would also be interesting to consider a Bayesian development for themarginal
TPJM we recently proposed (Rustand et al., 2021). Finally, the definition of the hyperparameter prior distributions is an
important aspect of Bayesian estimation. In this work, the PC priors provided a general setting for the priors since they
provide a natural avenue to incorporate knowledge from the practitioner about the expected size of the parameter and
they are constructed to be proper and avoid overfitting. Alternative prior choices for the hyperparameters can be used in
INLA if the practitioner possesses motivation for it from an expert or prior knowledge.
The reduction in the computation times with INLA was beyond our expectations. It improves drastically the appli-

cability of the Bayesian estimation for complex models such as the TPJMs and other families of joint models, such as a
bivariate joint model for recurrent events and a terminal event or a trivariate joint model for a longitudinal biomarker,
recurrent events, and a terminal event, which are currently available in frailtypack. Finally, INLA can accommodate
multiple longitudinal outcomes while frailtypack is currently limited to a single longitudinal outcome.
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