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Abstract

Background: Robust and flexible infectious disease surveillance is crucial for public health. Event-based surveillance (EBS)
was developed to allow timely detection of infectious disease outbreaks by using mostly web-based data. Despite its widespread
use, EBS has not been evaluated systematically on a global scale in terms of outbreak detection performance.

Objective: The aim of this study was to assess the variation in the timing and frequency of EBS reports compared to true
outbreaks and to identify the determinants of variability by using the example of seasonal influenza epidemic in 24 countries.

Methods: We obtained influenza-related reports between January 2013 and December 2019 from 2 EBS systems, that is,
HealthMap and the World Health Organization Epidemic Intelligence from Open Sources (EIOS), and weekly virological influenza
counts for the same period from FluNet as the gold standard. Influenza epidemic periods were detected based on report frequency
by using Bayesian change point analysis. Timely sensitivity, that is, outbreak detection within the first 2 weeks before or after
an outbreak onset was calculated along with sensitivity, specificity, positive predictive value, and timeliness of detection. Linear
regressions were performed to assess the influence of country-specific factors on EBS performance.

Results: Overall, while monitoring the frequency of EBS reports over 7 years in 24 countries, we detected 175 out of 238
outbreaks (73.5%) but only 22 out of 238 (9.2%) within 2 weeks before or after an outbreak onset; in the best case, while monitoring
the frequency of health-related reports, we identified 2 out of 6 outbreaks (33%) within 2 weeks of onset. The positive predictive
value varied between 9% and 100% for HealthMap and from 0 to 100% for EIOS, and timeliness of detection ranged from 13%
to 94% for HealthMap and from 0% to 92% for EIOS, whereas system specificity was generally high (59%-100%). The number
of EBS reports available within a country, the human development index, and the country’s geographical location partially
explained the high variability in system performance across countries.

Conclusions: We documented the global variation of EBS performance and demonstrated that monitoring the report frequency
alone in EBS may be insufficient for the timely detection of outbreaks. In particular, in low- and middle-income countries, low
data quality and report frequency impair the sensitivity and timeliness of disease surveillance through EBS. Therefore, advances
in the development and evaluation and EBS are needed, particularly in low-resource settings.

(JMIR Public Health Surveill 2022;8(10):e36211) doi: 10.2196/36211
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Introduction

Infectious diseases continue to threaten populations worldwide,
as demonstrated clearly during the novel coronavirus
(SARS-CoV-2) pandemic. Infectious disease surveillance
produces crucial information for public health professionals to
make good emergency response decisions and implement
effective countermeasures to contain outbreaks [1,2]. Traditional
disease surveillance (or indicator-based surveillance [IBS])
relies on laboratory test results transmitted through public health
networks [3,4], but these systems are focused on only a few
diseases, can have a considerable reporting time lag, and lack
sensitivity, especially for novel pathogens [5-7]. Event-based
surveillance (EBS) was developed to complement IBS to enable
near real-time detection of infectious disease outbreaks [3]. To
identify possible outbreaks, EBS attempts to detect unusual
patterns related to potential events, which precede the official
confirmation of disease outbreaks [2,8]. For this purpose, EBS
systems use unstructured and mainly internet-based data such
as web-based news articles [9,10].

In addition to early disease activity detection, surveillance for
events has the potential to augment the sensitivity of IBS in
regions with few medical centers or lower health-seeking
behaviors [11]. The usefulness of EBS in resource-limited
settings has been demonstrated by its ability to detect dengue
fever [12] and Ebola outbreaks [13,14] before detection by
official bodies. Furthermore, resource-limited regions stand to
benefit the most from EBS, as they are disproportionately
affected by infectious diseases [15] and may have limited
resources to implement IBS systems. However, due to the
unstructured and unverified nature of the gathered data, EBS
systems face considerable challenges, with the overarching
problem being the accurate discrimination of true signals from
an immense amount of noise [16,17]. EBS systems are also
highly dependent on the internet coverage in the countries of
operation and filtering of languages. This may lead to a
considerable variation in EBS performance across geographical
settings, which, together with the inherent uncertainty of the
information gathered, suggests that EBS systems should be
carefully evaluated in a representative set of countries. However,
despite their widespread use, EBS systems tend to be used in
an ad hoc and informal way. This type of use could explain why
there is not much published evidence about the variation in EBS
system performance across countries. Rather, most available
literature focus on the adequate classification of health-related
events from web-based sources or the implementation of
innovative functionalities [18-20].

Therefore, as the first objective, we aimed to document the
global variation in the sensitivity and timing of the information
obtained through EBS for outbreak detection. We applied a
systematic monitoring approach to data derived from 2 EBS
systems in a representative set of countries and used seasonal
influenza outbreaks as the test case. As our second objective,
we identified factors driving the observed differences in
detection across countries. The identification of factors that
influence performance is important to identify ways to improve
EBS, especially in resource-poor settings.

Methods

Data
For this study, 24 countries from 15 influenza transmission
zones were chosen to evaluate EBS performance on a global
scale: Argentina, Australia, Brazil, Bulgaria, China, Costa Rica,
Ecuador, Egypt, France, Germany, Greece, India, Iran, Mexico,
Nigeria, Russia, Saudi Arabia, South Africa, Sweden, Thailand,
Uruguay, United Kingdom, United States, and Vietnam. These
countries were selected to represent a broad spectrum of
geographical locations, languages, and income brackets and
were sampled randomly from all influenza transmission zones.

FluNet: The Reference
FluNet is a web-based tool created by the World Health
Organization (WHO) for disseminating virologic influenza
surveillance data and serves as the reference to evaluate EBS
systems. FluNet provides publicly available counts of
laboratory-confirmed influenza cases per country, aggregated
per week, from all participating global influenza surveillance
and response system (GISRS) countries, other national influenza
reference laboratories, which are collaborating with GISRS,
and from WHO regional databases [21]. FluNet data were
collected from January 2013 to December 2019, except for
Saudi Arabia, where FluNet data were only available as of
January 2017. The beginning of the study period was chosen
to be January 2013 so that the effects of the 2009 pandemic
would not influence the analysis.

Ethical Considerations
As FluNet is an active international surveillance tool and its
data are published in an aggregated manner in the open domain,
the approval of a research ethics board was not required for this
research.

HealthMap Data
HealthMap provides real-time surveillance of infectious diseases
by collecting data from web-based news aggregators such as
Google News, expert-moderated systems such as Program for
Monitoring Emerging Diseases-Mail, and validated alerts from
official sources [10,19]. Any news article that passed through
HealthMap’s filtering algorithm from January 2013 to July 2019
and related to “human influenza” was considered an influenza
report. Duplicate reports were identified by a unique ID number
assigned to each report and removed together with reports
concerning countries’ overseas territories (9012 and 62 out of
31,796 total events, respectively), resulting in a total of 22,722
unique reports. To match gold standard data, daily report counts
from HealthMap were aggregated into a weekly format, resulting
in a total of 341 weekly data points spanning 6.5 years.

Epidemic Intelligence From Open Sources Data
In 2017, the WHO implemented the Epidemic Intelligence from
Open Sources (EIOS) system as a collaboration between
multiple public health organizations, acting on a global scale
to provide timely public health surveillance [22]. EIOS
integrates data from multiple EBS systems, including
HealthMap, and performs report deduplication before uploading
to the platform. Daily event data were provided from November
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11, 2017 (the day of EIOS implementation) through December
2019. All EIOS reports for the 24 countries of interest with the
keywords “Influenza virus not identified,” “H1N1,” “H1N1v,”
“H1N2,” “H1N2v,” “H2N1,” “H2N2,” “H3N2,” and “H3N2v”
were retrieved and aggregated into weeks, totaling 109 weeks.

Outbreak Detection Methodology and Workflow
Our overall workflow is illustrated in Figure 1. Outbreaks were
detected retrospectively in all 3 data sets based on media report
frequency or confirmed influenza case counts by using Bayesian
change point (BCP) analysis. The date of outbreak onset had
to be detected in gold standard as well as in EBS data because
FluNet did not provide a consistent epidemic indicator. Although
not initially developed for infectious disease outbreaks [23,24],
change point analysis has been used to determine the start points
of influenza epidemics [25,26]. Essentially, change point
methods identify points in time series before and after which
distributional parameters differ significantly. To do this, the
BCP algorithm breaks a time series into blocks, calculates the

mean and variance of these blocks, and derives the probability
of each break point being a change point. All BCP analyses
were conducted using the R package bcp, version 4.0.3 [23,27],
which is based on the method described by Barry and Hartigan
[24]. The posterior mean and variance, and from this, the
probability of each time point being a change point, were
estimated with 600 Markov Chain Monte Carlo iterations, and
the first 100 Markov Chain Monte Carlo iterations were
discarded as burn-in. Only 600 iterations were used, as
convergence was reached quickly after the first iterations. The
priors p0 (change point probability) and w0 (signal-to-noise
ratio) were kept at their default value of 0.2. As multiple change
points were flagged by BCP analysis during outbreaks, we
applied additional criteria to determine the start and end points
of influenza outbreaks. In short, epidemic start and end points
were the first and last change points in the rising and descending
curves, respectively. See Multimedia Appendix 1 for a more
detailed description of the BCP method and our outbreak
detection algorithm.

Figure 1. Illustration of the workflow. BCP: Bayesian change point analysis; EBS: event-based surveillance.

Performance Evaluation Metrics
The epidemic intervals detected using HealthMap and EIOS
reports were compared to the intervals detected using FluNet
to calculate sensitivity (the proportion of all outbreaks in the
gold standard data detected by the EBS systems), positive
predictive value (PPV, the proportion of all outbreaks detected
in the EBS data corresponding to an outbreak in the gold
standard), specificity (the proportion of all weeks without an
outbreak in the EBS data, during which no outbreak was
detected in the gold standard data), timeliness, and timely
sensitivity for each EBS system separately by country. The
metric of timely sensitivity describes the ability of a system to

detect an outbreak before or around the same time as traditional
surveillance systems and is defined as outbreak detection by
EBS within a window of 2 weeks before and after the start of
an outbreak in the gold standard. Our rationale for choosing
this time interval around the outbreak onset in the gold standard
data is that the reporting lag of IBS data for influenza usually
exceeds 2 weeks; so, this is the timeliness advantage possibly
gained by EBS. Moreover, we hypothesized that a true outbreak
could be detected 2 weeks before outbreak onset in the gold
standard data, but not earlier than that, to avoid detection of
false positives. Timeliness was defined as the proportion of
outbreak duration remaining at detection to circumvent the
problem of nondetected outbreaks [28].
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In the equation above, alert refers to a detected outbreak in the
EBS system data. n (weeks) is the total number of weeks in the
study for the respective system (341 for HealthMap and 109
for EIOS). Accuracy was calculated as the sum of correctly
classified weeks over the number of all weeks.

Regressions and Variable Selection Process
We conducted multivariable regressions to identify the
independent effect of country-specific factors (independent
variables) on the performance metrics (dependent variables),
while controlling for all other factors included in the model.
Highly correlated independent variables were removed from
the models until the variance inflation factors were below the
conservative threshold of 4 [29]. Influential variables were
selected in a forward selection process based on the Akaike
information criterion. By checking the residual plots of our final
models, we confirmed that all model assumptions were met.

Country-specific variables examined as explanatory variables
were the total number of media reports over the data collection
period, the maximum counts of media reports per week, global
region (temperate Northern hemisphere, temperate Southern
hemisphere, or tropical), language (official language English
yes/no), latitude, longitude, human development index (HDI),
Press Freedom Index (PFI), the total number of internet users,
and HealthMap filter language (yes/no). Latitude and longitude
were assigned to the centroid of each country. Country
languages could only be explored as a binary indicator of
English as the official language or not because of sparse strata.
Geography was explored as a categorical variable (temperate
vs tropical) and as a continuous variable (latitude/longitude).
HDI rankings from 2018 and the total number of internet users
per country in 2017 were obtained from the United Nations
Development Programme [30]. PFI values from 2018 were
obtained from Reporters without Borders [31]. The PFI ranges

from 1 to 100, with lower values indicating higher press
freedom. All regression models were fit using the R software
version 3.6.3 [32], including the packages MASS version
7.3-51.6 [33] and glmnet version 4.0 [34]. Effect estimates are
reported as point estimates and 95% CIs, and P values are
provided for orientation only. In 2 sensitivity analyses, we
selected variables based on least absolute shrinkage and
selection operator regressions and excluded the 3 countries with
low FluNet data quality (Nigeria, Thailand, and Vietnam).

Results

Sample Characteristics
Laboratory-confirmed positive influenza counts over 7 years
from FluNet were compared to HealthMap reports over 6.5
years and EIOS reports over 2 years. In most countries, the
numbers of influenza-positive specimens provided by FluNet
were high enough to allow a good distinction between epidemic
and nonepidemic periods. In Nigeria, Thailand, and Vietnam,
the signal-to-noise ratio was very high due to a low total number
of tested individuals and positive results. The number of EBS
signals varied by country, and EIOS collected more annual
reports than HealthMap due to its aggregation of sources
(Multimedia Appendix 2). Few HealthMap reports were
collected in 12 countries (Bulgaria, Costa Rica, Ecuador,
Germany, Greece, Iran, Nigeria, Saudi Arabia, South Africa,
Sweden, Thailand, and Uruguay), in which HealthMap did not
filter for news articles in the respective official languages.

Figure 2 illustrates the report frequency over time for FluNet,
HealthMap, and EIOS for selected countries. HealthMap reports
in countries with frequent reporting generally coincided with
influenza epidemics in FluNet data (eg, Argentina, India, United
States). In contrast, EIOS reports appeared to be less
synchronized with FluNet counts and tended to have a lower
signal-to-noise ratio. It is apparent from these plots that there
are substantial differences in influenza activity and EBS signals
across countries.
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Figure 2. Time series of weekly reports relating to influenza from Epidemic Intelligence from Open Sources and HealthMap and weekly virological
influenza counts from FluNet for selected countries from January 2013 to December 2019. Epidemic periods found with Bayesian change point analysis
for each system are highlighted in red, and nonepidemic periods are shown in grey. EIOS: Epidemic Intelligence from Open Sources.

Evaluation of System Performance
Overall, 22 out of 238 (9.2%) outbreaks in the data sets were
detected within a time interval of 2 weeks before or after
outbreak onset in the gold standard data. HealthMap and EIOS
did not detect any outbreaks in a timely manner in 12 (50%)
and 19 (79%) out of 24 countries, respectively (Figure 3).
HealthMap showed the best timely outbreak detection in
Bulgaria, the United Kingdom, and the United States, with 2
out of 7 (29%) detected outbreaks each. EIOS showed a timely
sensitivity of 50% in France and Vietnam, corresponding to 1
out of 2 outbreaks detected on time and 33% (1 out of 3
outbreaks detected on time) in Brazil, Sweden, and the United
Kingdom. In contrast, the sensitivity of EBS systems was much
higher than the timely sensitivity, with 100% of outbreaks
detected at any time during the outbreak in 6 countries by
HealthMap and 9 countries by EIOS. However, the

between-country variation was large. Likewise, PPV and
timeliness were very heterogeneous across countries: HealthMap
had a PPV <50% in 4 countries and >75% in 9 countries, while
EIOS’s PPV ranged from 0% in Costa Rica to 100% in Iran,
with 8 countries <50% and 8 countries >75%. Timeliness was
especially poor in EIOS, where the proportion of outbreak
duration remaining at detection was <50% in 15 countries. This
means that most EBS alerts were raised more than halfway
through the outbreak, by which point the outbreak would likely
be detected through other means.

To gain a more comprehensive understanding of system
performance, accuracy was calculated as a metric combining
sensitivity and specificity (Figure 3). HealthMap’s accuracy
was the highest in the United States (81%), Ecuador, and Brazil
(both 77%), and the lowest in Saudi Arabia (47%) and Vietnam
(44%). EIOS showed the highest accuracy in Brazil and Russia
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(both 75%), Bulgaria, and Ecuador (both 72%), and the lowest
accuracy in Saudi Arabia (46%) and Vietnam (32%) as well.

As an illustrative example, HealthMap showed consistently
high evaluation metrics in the United States because HealthMap
reports were well synchronized with seasonal influenza
epidemics reflected in FluNet counts (Figure 2 and Multimedia
Appendix 3). In a country with no clear influenza seasonality,
such as India, HealthMap’s timeliness and sensitivity were lower
than that in the United States (timeliness: 50% vs 94%,

sensitivity: 55% vs 100%, respectively), but overall accuracy
was not markedly reduced (76% vs 81%, respectively) because
of high specificity (88% vs 78%, respectively). In contrast,
EIOS detected many epidemic signals in the United States in
the nonepidemic season of 2018, which decreased its
performance metrics relative to India, where EIOS had equal
sensitivity (both 50%) but higher specificity (95% vs 69%,
respectively). Clearly, a set of country-specific factors must
lead to these differences in system performance between the
United States and India.

Figure 3. HealthMap and Epidemic Intelligence from Open Sources performance metrics for the detection of influenza outbreaks from January 2013
to July 2019 (HealthMap) or from November 2017 to December 2019 (Epidemic Intelligence from Open Sources). All metrics were calculated with
FluNet data as reference. EIOS: Epidemic Intelligence from Open Sources.

Identification of Factors Influencing the System
Performance
Next, we identified factors associated with the variation of
performance indicators across countries stratified by system. It
was not possible to identify predictors of timely sensitivity for
either system since assumptions of linear regressions were not
met and logistic regressions were problematic, as some of the

explanatory variables showed perfect separation. Only a
moderate amount of the variation in the metrics was explained

by the variables examined, as the R2 values ranged between
0.144 and 0.587. In HealthMap (Table 1), higher sensitivity
was associated with a higher total number of reports and higher
HDI. Increasing press freedom (corresponding to a lower PFI)
and English as the official language were associated with a
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lower sensitivity of HealthMap. Higher sensitivity of EIOS
(Table 2) was independently associated with higher latitude and
lower press freedom. In contrast, a higher HDI reduced
HealthMap’s specificity while increasing PFI decreased
specificity. EIOS’s specificity was markedly higher in tropical
regions than in temperate regions. None of the examined
variables was significantly associated with HealthMap’s PPV,

while a country’s latitude and PFI influenced EIOS’s PPV.
Timeliness of outbreak detection was associated with a higher
number of reports, higher HDI, and increasing latitude in
HealthMap, and with higher number of reports, increasing
latitude, and not having English as the official country language
in EIOS. Both sensitivity analyses showed very similar results
to those of the main analysis.

Table 1. Effect of country-specific covariates on HealthMap performance in detecting influenza outbreaks from January 2013 to July 2019.

Adjusted R²P valueCoefficient (95% CI)Category/incrementOutcome, covariate

0.456Sensitivity

.130.039 (–0.012 to 0.091)1 logLog (total reports)

<.0010.017 (0.008 to 0.025)1 scoreHuman development index

.100.003 (–0.001 to 0.008)1 scorePress freedom index

.16–0.128 (–0.313 to 0.057)EnglishOfficial language (reference: not English)

Positive predictive value

0.144Specificity

.11–0.004 (–0.009 to 0.001)1 scoreHuman development index

.03–0.003 (–0.005 to –0.0003)1 scorePress freedom index

0.504Timeliness

.0090.047 (0.013 to 0.082)1 logLog (total reports)

.080.007 (–0.001 to 0.015)1 scoreHuman development index

.120.004 (–0.001 to 0.009)1°Latitude

Table 2. Effect of country-specific covariates on the performance of Epidemic Intelligence from Open Sources in detecting influenza outbreaks from
November 2017 to December 2019.

Adjusted R²P valueCoefficient (95% CI)Category/incrementOutcome, covariate

0.229Sensitivity

.020.008 (0.002 to 0.014)1°Latitude

.060.005 (–0.0003 to 0.010)1 scorePress freedom index

0.587Positive predictive value

.94–0.008 (–0.219 to 0.203)Temperate SouthernGlobal region (reference: Temperate
Northern)

<.0010.481 (0.271 to 0.692)TropicalGlobal region (reference: Temperate
Northern)

<.0010.012 (0.006 to 0.018)1°Latitude

.100.003 (–0.001 to 0.007)1 scorePress freedom index

0.284Specificity

.74–0.019 (–0.137 to 0.099)Temperate SouthernGlobal region (reference: Temperate
Northern)

.0060.143 (0.046 to 0.240)TropicalGlobal region (reference: Temperate
Northern)

0.430Timeliness

.090.074 (–0.015 to 0.164)1 logLog (total reports)

 .17–0.212 (–0.520 to 0.095)EnglishOfficial language (reference: not English)

 .0060.008 (0.003 to 0.014)1°Latitude
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Discussion

Main Findings
To our knowledge, this study is the first to rigorously evaluate
2 EBS systems, HealthMap and EIOS, against a gold standard
on a global scale, permitting the quantification of global
variation in EBS performance and identification of
country-specific factors determining this variation. High
generalizability was guaranteed because 24 countries from 15
influenza transmission zones worldwide were included with
multiple outbreak patterns of seasonal influenza.

We introduced the metric of timely sensitivity to assess the
ability of each system to detect infectious disease outbreaks
before or around the same time as traditional surveillance
systems. Contrasting sensitivity with timely sensitivity highlights
the discrepancy between the proportion of outbreaks that the
systems provide information on (175/238, 73.5%) and the
proportion of outbreaks where EBS could have led to early
detection (22/238, 9.2%). These results demonstrate that
monitoring report frequency in EBS may be insufficient for
outbreak detection, and they suggest the need to reconsider
assumptions about how EBS systems should be used to achieve
timely outbreak detection across countries.

As we documented a significant variability in sensitivity, PPV,
and timeliness of outbreak detection across countries, we
analyzed several covariates as the potential drivers of this
variability. We found that the number of reports gathered
explained the performance variability of both systems, while a
higher HDI improved HealthMap’s sensitivity and timeliness
but decreased PPV. The most important predictor of EIOS
performance was a country’s geographic location, with higher
sensitivity, timeliness, and PPV, but reduced specificity in
countries further away from the equator, indicating that EIOS
is better in detecting clearly seasonal epidemic patterns.
Surprisingly, EBS filter language was not found to be a
determinant of between-country variation. Overall, the results
suggest that both EBS systems had the best performance in
high-income countries, although the systems failed to detect a
considerable number of outbreaks in a timely manner in these
countries. These results do not necessarily conflict with the
findings that EBS does confer a timeliness advantage over
traditional surveillance systems in the detection of Ebola or
dengue fever [12-14].

The important influence of the number of gathered reports on
system performance is likely due to measured and unmeasured
factors. Unexpectedly, in our data set, there were no significant
correlations between the total number of reports and a country’s
HDI or PFI. Unmeasured factors that would explain this finding
could be the country-specific news landscape, which news
sources are included in news aggregators filtered by the EBS
systems, and local internet availability and usage. With growing
connectedness in low-income countries, the opportunity for the
usage of social media arises. For example, during the Ebola
epidemic in Western Africa in 2014/2015, monitoring of Twitter
activity was retrospectively shown to produce earlier alerts than
alerts by official bodies [14,35]. However, using social media
as a data stream for disease surveillance raises additional

challenges such as limited representativeness of the general
public by social media users and a strong potential for
misinformation [36,37].

Social media surveillance is an interesting way to complement
current EBS [38,39], but from an evaluation perspective, it is
imperative to first understand the performance of individual
data streams before analyzing combined data sources. Since the
number of gathered reports has an important influence on system
performance, the usefulness of setting thresholds on report
numbers for alerting EBS system users could be an interesting
avenue to explore. For example, to contextualize information,
alerts based on low reports numbers could be flagged and
provided with a warning that EBS system information is likely
unreliable because it is based on too little information.

Comparison With Prior Work
Although there are many approaches to digital disease
surveillance in general and digital influenza surveillance [40,41],
in particular, we focused our evaluation on the utility of 2 EBS
systems, which are based on digital news media. We focused
on these systems as they are used routinely in public health
practice internationally and within many countries. Given their
regular use, it is important to develop a sound evidence base to
guide their effective implementation and operation. In addition
to EBS, many other approaches to digital disease surveillance
have been proposed, including surveillance of web-based search
queries, social media, or participatory online systems specifically
for influenza. Although some of these approaches have gained
attention, they are not widely used in public health practice [42].
One example is Google Flu Trends, a system developed by
Google researchers using web-based search queries to nowcast
regional influenza activity, which was found to correlate well
with IBS systems and predict influenza-like illness incidence
accurately [5]. However, Google Flu Trends was discontinued
after it failed to detect the A/H1N1 pandemic and overestimated
the 2012-13 influenza season [40,41,43]. Monitoring social
media, mainly Twitter, has also shown potential for predicting
disease outbreaks in multiple studies and correlates well with
IBS data [44,45], but its use has been sporadic, often with a
focus on large gatherings.

In one of the few published studies to quantify the performance
of implemented EBS systems, Barboza et al [46] found that
HealthMap detected H5N1 outbreaks worldwide on average 12
days before their gold standard with a detection rate of 43% and
a PPV of 12% (compared to 75% and 66% in our study,
respectively). Discrepancies may be due to differences in study
design, as the authors of that paper took the first report of an
H5N1 outbreak as the epidemic start point and used different
gold standards. Interestingly, in the same study, the authors
simulated a virtual system by aggregating data from 6 sources
and assessed its performance [46]. This virtual combined system
achieved a 93% detection rate of H5N1 outbreaks but only a
7% PPV as compared to a lower mean sensitivity (73%) but
higher mean PPV (60%) of EIOS—the realization of a combined
system—in our study. In another study, Barboza et al [18] also
identified system type, filter language, outbreak region, and
type of infectious disease as determinants of system performance
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but did not assess how the effect of these determinants varied
by country.

Limitations of This Study
Despite the use of influenza in other evaluations of EBS systems
[46], there are limits to how well findings from such evaluations
generalize to other infectious disease outbreaks due to the clear
seasonality, high prevalence, and consequent potential lack of
newsworthiness of influenza. Moreover, influenza shares
important keywords for digital disease detection with other
conditions of interest such as the common cold. Consequently,
we expect our results may underestimate EBS performance
because outbreaks of common infections such as influenza are
likely more difficult to detect through EBS compared to less
frequent and more newsworthy infectious diseases such as
Ebola. Indeed, as EBS detection mechanisms might differ
between communicable diseases more generally, we suggest
separate performance evaluations of EBS systems for the
detection of other types of diseases, using this study as a
blueprint. For example, in the case of a hemorrhagic fever such
as Ebola, EBS systems might give a greater lead in detection
over traditional surveillance systems due to large reporting
delays and poor data availability [13,14,47]. However,
quantitative evaluation of EBS for diseases such as hemorrhagic
fevers is hampered by the small number of outbreaks and the
limited availability of gold standard data, particularly early in
an outbreak. For these reasons and given the small number of
EBS evaluation studies, we aimed to first advance the
understanding of EBS performance by using a disease with
sufficient report numbers to make valid statistical inferences.
Traditional influenza surveillance through FluNet provides such
a gold standard with high report numbers and almost global
coverage.

However, there were some limitations to FluNet for this
evaluation. Most notably, epidemic intervals were not labelled
explicitly in these data; therefore, we had to apply a statistical
method to detect influenza outbreaks, allowing these intervals
to labelled in the gold standard data. Although this approach
appeared to work well for most countries, the performance was
not good in Nigeria, Thailand, and Vietnam due to the low
number of reported cases and the inherently more irregular
influenza activity in these countries. Moreover, as FluNet
influenza counts represent only people having sought health
care, the total amount of influenza activity is underestimated,
and differences in health care resources and surveillance
activities may influence the number of specimens reported. A
further complication is that some countries modify their testing
and surveillance strategies over the course of an epidemic [48].
For instance, France reported influenza cases to FluNet only
from the beginning of October to the beginning of May of each
year.

Examples of other gold standard data used to evaluate EBS
include the Centers for Disease Control and Prevention
Influenza-like Illness Surveillance Network [5], WHO reports
on H5N1 [46], and the Centers for Disease Control and
Prevention Yellow Book [12]. All these data are dependent on
health care–seeking behaviors or passive reporting from health
care providers. Moreover, WHO and Yellow Book reports

experience delays as they require official notification by a
national authority. In fact, one could argue that a proper gold
standard for influenza (or any other disease) does not exist, as
all IBS systems are affected by delays, overreporting, and
underreporting [49,50] and frequently capture only those cases
seeking medical care [51]. The lack of a reliable gold standard
for comparing the performance of EBS systems not only leads
to differential results in the evaluation metrics for multiple
systems but also creates problems when comparing the same
system across diseases and regions. Given the challenges in
identifying a suitable gold standard, we believe that the FluNet
is a reasonable choice as it displays many characteristics of a
good gold standard: (1) influenza cases are
laboratory-confirmed, so FluNet is highly specific and has a
high PPV for cases. These features are more important for
determining the start and end of the epidemic than sensitivity
(ie, absolute case counts), as laboratory-confirmed case counts
accurately reflect the start and end points of epidemic periods,
which is the information of interest in the gold standard in this
case; (2) case count numbers are sufficiently high to make valid
statistical inferences; (3) FluNet data cover a wide range of
countries allowing measurement across many regions and
seasons; and (4) our retrospective data extraction avoids the
introduction of errors due to data delays and corrections.
Moreover, the automated epidemic detection process we chose
to apply likely differs from how EBS systems are used in
practice. However, detection of outbreaks with BCP was a
standardized way of looking at report frequency.

The variation of the performances of the systems could be
explored but was limited. Since data were only available for 24
countries, regressions had to be performed with a small number
of degrees of freedom and low numbers of countries per
category in the categorical variables. Therefore, it was not
possible to disentangle the effect of all variables in every
situation.

Finally, the aggregation of daily EBS reports into weekly counts
was an important limitation affecting our capacity to ascertain
timely sensitivity, but it was necessary to guarantee
comparability with the gold standard data. Similarly, as the EBS
data were aggregated per country, they did not capture any
regional diversity within countries. This is especially
problematic for noncontiguous landmasses and large countries
spanning diverse climatic regions such as Brazil and China,
with different epidemic properties of influenza [48], but again
necessary to guarantee comparability.

Conclusion
As the SARS-CoV-2 pandemic has made clear, infectious
diseases will continue to be major risks for global health
security. The results from this study can help to guide
development toward better EBS to prevent future large
outbreaks. As demonstrated by the poor timely outbreak
detection in this study, advances in the use and evaluation of
EBS are needed.

Our analysis documented considerable performance variations
across settings. Depending on what exists as routine public
health surveillance, related infrastructure, and media landscape,
there are situations where EBS can currently be useful,
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especially in high-income countries for seasonal influenza
epidemic surveillance. Efforts need to be made to better
understand the determinants of outbreak detection through EBS,
particularly in low- and middle-income countries, as current
EBS systems were found to be a disadvantage in tropical regions

and regions with lower HDI. The inequalities created by biases
in EBS, such as low media and internet coverage and low
newsworthiness of tropical diseases, should be explored in future
research, and the needs of resource-poor settings should be met
through further development of EBS.
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