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Abstract 

Background: Multiple factors shape the temporal dynamics of the COVID-19 pandemic. 

Quantifying their relative contributions is key to guide future control strategies. Our objective 

was to disentangle the individual effects of non-pharmaceutical interventions (NPIs), 

weather, vaccination, and variants of concern (VOC) on local SARS-CoV-2 transmission. 

Methods: We developed a log-linear model for the weekly reproduction number (R) of 

hospital admissions in 92 French metropolitan departments. We leveraged (i) the 

homogeneity in data collection and NPI definitions across departments, (ii) the spatial 

heterogeneity in the timing of NPIs, and (iii) an extensive observation period (14 months) 

covering different meteorological conditions, VOC proportions, and vaccine coverage levels. 

Results: Three lockdowns reduced R by 72.9% (95%CI: 71.4-74.2), 70.4% (69.2-71.6) and 

60.4% (56.1-64.3), respectively. Curfews implemented at 6/7pm and 8/9pm reduced R by 

34.5% (28.1-40.4) and 18.4% (11.4-24.8), respectively. School closures reduced R by only 

4.6% (1.6-7.4). We estimated that vaccination of the entire population would have reduced R 

by 74.0% (59.4-83.3), whereas the emergence of VOC (mainly Alpha during the study 

period) increased transmission by 46.9% (38.2-56.0) compared with the historical variant. 

Winter weather conditions (lower temperature and absolute humidity) increased R by 41.7% 

(37.0-46.7) compared to summer weather conditions. Additionally, we explored 

counterfactual scenarios (absence of VOC or vaccination) to assess their impact on hospital 

admissions. 

Conclusions:  Our study demonstrates the strong effectiveness of NPIs and vaccination 

and quantifies the role of meteorological factors while adjusting for other confounders. It 

highlights the importance of retrospective evaluation of interventions to inform future 

decision-making. 
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Background 

 

Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, several factors 

have contributed to the transmission dynamics of severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) in time and space. First, many countries around the world have 

implemented non-pharmaceutical interventions (NPIs), such as lockdowns, curfews, and 

school closures (1). Before the introduction of vaccines, NPIs were the primary means to 

control disease spread. By the end of 2020 onwards, mass vaccination campaigns have 

helped mitigate the transmission of SARS-CoV-2 (2), while the concurrent emergence of 

more transmissible and immune escape variants of concern (VOC) has fostered virus spread 

(3). Finally, the weather may also have modulated disease transmission (4). Quantifying the 

relative contributions of each of these factors is key to better anticipate epidemic trends and 

guide future control strategies. However, this is challenging due to potential confounding, 

interaction effects, and a lack of identifiability of single effects when interventions or other 

factors are concomitant. 

 

Several studies have investigated the effectiveness of NPIs at reducing SARS-CoV-2 

transmission. The vast majority consisted of meta-analyses that combined data from multiple 

countries (1,5–10). However, conclusions drawn from such international comparisons may 

be affected by differences in local settings, data quality, NPI definitions, and population 

adherence to NPIs. In addition, most of these studies have only estimated the effect of NPIs 

during the first pandemic wave. Only a few have examined how the magnitude of NPI effects 

may have changed over time and in subsequent COVID-19 waves (11,12). In particular, the 

effect of NPIs that were only applied later in the pandemic, such as curfews, is still unclear. 

In addition to NPIs, the influence of meteorological factors on disease spread has been 

https://paperpile.com/c/YmfsoO/Y6Mb
https://paperpile.com/c/YmfsoO/4Ef8
https://paperpile.com/c/YmfsoO/6DP1
https://paperpile.com/c/YmfsoO/4lvR
https://paperpile.com/c/YmfsoO/cbCo+KIQV+Kstj+Y6Mb+yudT+7aYf+fG7k
https://paperpile.com/c/YmfsoO/7xyv+3wIS
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much debated (13,14). Previous statistical studies investigating the role of weather variables 

generally relied on single estimates of the reproduction number R, measured at different 

locations (4,15–17) and early in the pandemic only. Thus, although these studies were timely 

and informative, they only covered a limited time period, when meteorological factors were 

likely less important to disease spread than governmental restrictions (18). Importantly, only 

a limited number of meteorological studies controlled for other factors such as NPIs 

(16,19,20); yet, not adjusting for sources of confounding may lead to spurious associations 

between weather and transmission. Now that data from a longer timespan are available, the 

role of weather conditions can be better elucidated. 

 

To disentangle the effects of NPIs, weather, vaccination, and VOC on local SARS-CoV-2 

transmission, we developed a statistical model to explain the time-varying reproduction 

number R reconstructed from the dynamics of hospital admissions, at the departmental level 

in metropolitan France, from March, 2020 to May, 2021. First, we leveraged the 

homogeneity in data collection and NPI definitions across departments. Indeed, in France, 

the number of patients hospitalized with COVID-19 was monitored through a single 

surveillance system implemented in all departments. In addition, most of the decisions on 

NPI implementation were made in a centralized manner. Such a standardized approach 

enabled harmonization of both data collection processes and NPI definition across 

departments, which benefited our study. Second, we leveraged spatial heterogeneity in the 

timing of NPI implementation. For example, lockdowns, curfews, and school closures were 

not systematically implemented at the same time in all departments, depending on the phase 

of the pandemic. This pattern in the timing of NPIs allowed us to circumvent the difficulty of 

assessing the impact of NPIs arising when measures are applied simultaneously across 

locations. Third, our study spanned a long observation period (14 months) that included 

varying meteorological conditions, VOC proportions, and vaccine coverage levels. This 

extensive study period covered three pandemic waves, thereby allowing us to examine the 

https://paperpile.com/c/YmfsoO/JTHP+In97
https://paperpile.com/c/YmfsoO/4lvR+rEi0+Pchz+fwp7
https://paperpile.com/c/YmfsoO/jFrv
https://paperpile.com/c/YmfsoO/Pchz+weXS+7Wew
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impact of successive NPIs, vaccine distribution, and the emergence of VOC. Capturing a full 

seasonal cycle allowed us to quantify the role of meteorological factors. 

 

Material and Methods 

 

COVID-19 data 

Hospital data were obtained from the SI-VIC database, which is the national inpatient 

surveillance system used during the pandemic. This database is maintained by the ANS 

(Agence du Numérique en Santé) and provides real-time data on COVID-19 patients 

hospitalized in French public and private hospitals. All cases are either biologically confirmed 

or present with a PET scan image highly suggestive of SARS-CoV-2 infection. New daily 

hospital admissions were defined as the incremental number of patients admitted to a 

general ward or intensive care unit, indexed by date of admission (rather than date of 

reporting). Data were aggregated by department (administrative unit), based on hospital 

location. Of note, metropolitan France consists of 96 departments, with a median population 

size of 600,000 inhabitants.  

 

Covariates 

To build covariates relative to NPIs, we collected data on the timeline of curfews, lockdowns, 

reopening periods following the lockdowns and during which restrictions were progressively 

lifted, as well as periods of more moderate restrictions (in between lockdowns), using a 

combination of governmental websites, press articles, and Wikipedia pages. We also 

included data on pandemic-related school closures (full or partial) and regular school 

holidays. Official dates were extracted from the Ministry of Education website 

(www.education.gouv.fr/calendrier-scolaire-100148). We measured an overall effect of 

school closures (whether pandemic-related or regular), with separate effects for summer and 

Christmas holidays.  
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The time-varying proportion of VOC was estimated using SIDEP (Système d’Information de 

Dépistage Populationnel - Information system for population-based testing) database, which 

is the national surveillance system describing RT-PCR and antigen test results arising from 

all private and public French laboratories. Test results are reported by date of 

nasopharyngeal swab and include patient information such as residential zip code. 

Aggregated data are publicly available (https://www.data.gouv.fr/fr/datasets /donnees-de-

laboratoires-pour-le-depistage-indicateurs-sur-les-variants/). The proportion of VOC was 

assessed among positive RT-PCR or antigen test results, using RT-PCR screening kits. The 

three main VOC circulating during the study period were Alpha, Beta, and Gamma. Data on 

variants were available from February 15, 2021 onwards. Before this date, the proportion of 

VOC was imputed by fitting a separate logistic regression model for each department. We 

assumed absence of VOC before December 15, 2020 (Additional file 1: Figure S1).  

 

Vaccination data were obtained from the VAC-SI database, the national information system 

developed by the French Health Insurance to monitor the implementation of vaccination 

campaigns. Data are publicly available (www.data.gouv.fr/fr/datasets/donnees-relatives-aux-

personnes-vaccinees-contre-la-covid-19-1/) and include both daily first-dose and full vaccine 

coverage time series, stratified by age group, and department, since the start of vaccine 

distribution in December 2020.  

 

To account for increasing immunity at the population level, we included estimates of the 

proportion of adults previously infected with SARS-CoV-2, by day and department, using the 

method of Hozé et al (21). Specifically, estimates of age-stratified infection–hospitalisation 

ratios (IHR) were derived from joint analysis of hospitalisation and serological data (22). 

Daily infection counts were then reconstructed from deconvolution of daily hospitalisation 

counts and the infection-to-hospitalisation delay distribution, divided by the IHR (21). 

https://paperpile.com/c/YmfsoO/A3nq
https://paperpile.com/c/YmfsoO/tZPp
https://paperpile.com/c/YmfsoO/A3nq
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Meteorological data –including temperature, absolute humidity, and relative humidity– were 

obtained from Météo France/PREDICT Services for 112 weather stations nationally. We also 

included the IPTCC index (Index PREDICT de transmissivité climatique de la COVID-19) 

which characterizes weather conditions favoring SARS-CoV-2 transmission (23). Data were 

averaged by department. 

 

Mobility data were obtained from Google mobility reports 

(www.google.com/covid19/mobility/). They describe the change in time spent at points of 

interest compared to a five-week baseline period (Jan 3 – Feb 6, 2020). The six points of 

interest are: residential (time spent at home), workplaces, grocery and pharmacy, retail and 

recreation, parks, and transit stations. Data were available by department. 

 

Finally, we included demographic data by department (population count and density), as 

obtained from the National Institute of Statistics and Economic Studies 

(https://www.insee.fr/fr/statistiques/4989753?sommaire=4989761). 

 

Statistical analyses 

We analysed data collected from week 11-2020 (March 9-15, 2020) to week 20-2021 (May 

17-23, 2021), in 92 of the 96 departments of metropolitan France (Figure 1A). Four 

departments (Maine-et-Loire, Manche, Corse-du-Sud, and Haute-Corse) were excluded due 

to missing covariates. To remove random noise, daily hospital admission time series were 

smoothed using local polynomial regression (Figure 1B). Using the package EpiEstim of the 

R software, we computed the reproduction number R on the smoothed series of each 

department, over seven-day rolling windows. The reproduction number is the average 

number of secondary cases caused by an infected individual. We used a gamma distribution 

with a mean of 7 days and a standard deviation of 5.2 days for the generation time (24). 

https://paperpile.com/c/YmfsoO/R71t
https://paperpile.com/c/YmfsoO/K6pM
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We developed a log-linear mixed-effects model for the reproduction number  in 

department i in week j:  

 

where  is an intercept,  are k covariates,  are the associated regression coefficients 

(fixed effects),  are department-level random effects following a Gaussian distribution, and 

    is a Gaussian error term. We performed the analysis on a weekly scale to reduce 

temporal autocorrelation. Covariates with daily granularity were averaged by week. 

Meteorological covariates were introduced into the model either linearly or as cubic B-

splines. The model was fitted by maximum likelihood using the R package nlme. Confidence 

intervals (CI) for the parameters were obtained using a normal approximation to the 

distribution of the maximum likelihood estimators.  

 

To account for the delayed effects of covariates on hospital admission dynamics, we applied 

an 11-day lag (5 days for the incubation period and 6 days for the delay between symptom 

onset and hospital admission (24)) for NPIs, proportion of the population infected, weather 

conditions, and mobility. For first-dose vaccination, we applied a 20-day lag (14 days for the 

build-up of immunity (25) and 6 days for the delay between symptom onset and hospital 

admission). For full vaccination, we reduced this delay to 13 days (25). For VOC proportion 

(based on testing data), we applied a three-day lag (mean delay between test and hospital 

admission observed in French data). In a sensitivity analysis, we tested for additional lags 

(+/- two days) and selected the value leading to the lowest Akaike Information Criteria (AIC).  

 

We first built a baseline model that only included lockdowns, reopenings and moderate 

restrictions. Then, we incorporated additional covariates using a forward selection 

procedure. At each step, the covariate leading to the lowest AIC was introduced in the 

model, until no additional covariate improved the AIC. 

 

https://paperpile.com/c/YmfsoO/K6pM
https://paperpile.com/c/YmfsoO/j2Jq
https://paperpile.com/c/YmfsoO/j2Jq
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To further characterize the individual effects of key covariates on transmission and hospital 

admissions, we determined the expected R for an average department under two distinct 

counterfactual scenarios: (i) without the effect of vaccination, and (ii) without the effect of 

VOC. We then projected the expected number of new hospital admissions at the national 

level under such scenarios, from January 11, 2021 onwards. 

 

Results 

 

COVID-19 dynamics, NPIs and holidays in France 

The median reproduction number R was above 2.5 during the first two weeks and oscillated 

between 0.6 and 1.9 during the rest of the period (Figure 1C). Three national lockdowns 

were implemented. The first started on March 17, 2020 and lasted approximately two 

months. The second and third lockdowns were initiated on October 30, 2020 and April 3, 

2021, respectively, and lasted one month each (Figure 1C). The third lockdown started one 

or two weeks earlier in 19 departments than in the rest of the country (Figure 1D). During the 

first lockdown, local movements were restricted to a maximum of 1 km around the place of 

residence for no more than one hour, gatherings in public space were forbidden, and non-

essential shops, parks, bars, and restaurants were closed (Additional file 1: Table S1). 

During the second and third lockdowns, similar measures were imposed, but gatherings of 

up to 6 people were allowed in public space and parks remained open. During the third 

lockdown, local movements around the place of residence were allowed up to 10 km. Each 

lockdown was followed by a reopening phase, during which some (but not all) of the 

restrictions were lifted. For instance, during the reopening period that followed the first 

lockdown, local movements were allowed and non-essential shops were open, but inter-

regional movements were limited to 100 km around the place of residence and bars and 

restaurants remained closed. Between lockdowns, several restrictions were applied, 

including public events limited to 5000 persons and partial closing of cultural places 
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(Additional file 1: Table S1). An overnight curfew starting at 9pm was first implemented in 16 

departments (9 metropolises) on October 17, 2020, followed by 38 other departments on 

October 24, 2020. At the end of the reopening period that followed the second lockdown, on 

December 15, 2020, a curfew starting at 8pm was implemented in all departments. This 

curfew was then moved to an earlier start at 6pm. The measure was first applied in 15 

departments on January 2, 2021 and in 10 more departments on January 12, 2021, before 

extension to the whole country on January 16, 2021 (Figure 1E). On March 20, 2021, the 

national curfew was pushed to 7pm. There were five regular holiday periods: 2 weeks in 

February/March, 2 weeks in April, 2 months in July-August, 2 weeks in November and 2 

weeks in December/January (“Christmas holidays”). The timing of holiday periods may vary 

by department (Figure 1F). In addition to regular school holidays, schools remained fully or 

partially closed during the first lockdown through June 22, 2020, and during the third 

lockdown (Figure 1C). However, they remained open during the second lockdown.  

 

Multivariable model 

In addition to lockdowns, reopenings, and moderate restrictions, the final multivariable model 

included curfews, school closures, first-dose vaccine coverage, proportion of VOC, 

temperature, and absolute humidity (Additional file 1: Figure S2). The lowest AIC was 

obtained for the following lags: 11 days for NPIs and meteorological variables, 22 days for 

vaccine coverage, and 5 days for the proportion of VOC. The correlation between the 

observed and fitted values of R was relatively high, although the fitted values presented 

lower variability than the observed values: the proportion of the variance explained by the full 

model, including fixed and random effects, reached 63.6%, as estimated based on the 

conditional R² (26) (Additional file 1: Figure S3). Except for the small peak observed in 

September 2020, the average trajectory of R was well captured by the model (Figure 2A).  

School closures, excluding summer and Christmas holidays, reduced R by 4.6% (95% CI 

1.6-7.4) (Figure 2B). Covariates characterizing summer and Christmas holidays were not 

statistically significant and therefore not included in the final model. The earlier overnight 

https://paperpile.com/c/YmfsoO/Gldy
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curfews started, the stronger their effect on transmission: R was reduced by 18.4% (11.4-

24.8) for the 8/9pm curfews and by 34.5% (28.1-40.4) for the 6/7pm curfews. The first 

lockdown reduced R by 72.9% (71.4-74.2). Combined with school closures, it yielded a 

reduction in R of 74.0% during the corresponding time period (non-linear effect). The second 

lockdown reduced R by 70.4% (69.2-71.6), with schools remaining open. The third lockdown 

reduced R by 60.4% (56.1-64.3). Combined with school closures and the nightly curfew 

starting at 7pm, it yielded a reduction in R of 75.2%. Reductions in R observed during 

reopening periods following lockdowns were similar to those measured during lockdowns. 

The reduction in transmission associated with moderate restrictions ranged from 45.9% to 

65.0%, depending on the time period. Furthermore, we estimate that 100% first-dose 

vaccine coverage would have reduced R by 74.0% (59.4-83.3). In practice, this effect 

induced a 18.0% and 34.8% reduction in transmission in the departments with the lowest 

and highest first-dose vaccine coverage at the end of the observation period, respectively. In 

contrast, a 100% proportion of VOC (mainly Alpha) increased transmission by 46.9% (38.2-

56.0) compared with the period during which the historical strain was predominant. Finally, 

among the weather conditions that we considered, temperature was the factor that improved 

the model the most, followed by absolute humidity. The AIC was lower when these 

covariates were included as splines rather than linear effects. We found that R was the 

lowest at 23.6°C and the highest at 4.7°C. Between the minimum and the maximum values, 

it increased by up to 31.9% (24.5-39.7) (Figure 2C). For absolute humidity, R was the lowest 

at 12.0 g/m3 and increased by up to 9.3% (3.2-15.6) to reach a maximum at 4.3 g/m3 (Figure 

2D). Considering a national average of weather conditions, we predicted that the 

transmission rate was the highest in December-February and the lowest in July-August, with 

an overall amplitude of 41.7% (37.0-46.7) (Figure 2E). Estimated department-level random 

effects were small, ranging between -1.10-8 and 1.10-8 (Additional file 1: Figure S4). A model 

without random effects only had a slightly higher AIC (difference of 2 points). 

 

Counterfactual scenarios 
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In a first counterfactual scenario, we showed that, for the set of NPIs that were implemented 

at the time, R would have remained above 1 for three additional weeks (until week 18 vs 

week 15 in reality) in the absence of vaccination (Figure 3A). Such a scenario would have 

resulted in a peak of 25,000 new weekly hospital admissions in May 2021 (Figure 3B), 

higher than observed during the first wave in March 2020.  

In a second counterfactual scenario, we showed that, in the absence of VOC, the epidemic 

could have been contained earlier, with R remaining below 1 in February-April 2021 (Figure 

3A) and the observed increase in hospital admissions (third wave for France) would not have 

occured (Figure 3B).  

  

 

Discussion 

 

The methodology used in this study allowed us to disentangle the effects of multiple factors 

on the reproduction number across French departments, over an extensive observation 

period spanning three distinct pandemic waves. In particular, our multivariable model 

demonstrated the strong beneficial effect of NPIs and vaccination on COVID-19 

transmission. It also highlighted the detrimental role of emerging variants. Importantly, it 

enabled quantifying the impact of weather conditions on local transmission while adjusting 

for other covariates. 

 

The final mixed-effects model presented in this study was able to replicate the temporal 

dynamics of the reproduction number observed in metropolitan France during the first 14 

months of the COVID-19 pandemic. The model closely matched the data but for a short 

period in September 2020, where the temporary increase in the reproduction number was 

not captured. This sporadic increase coincided with the end of the summer holidays and a 

period when the avoidance of social gatherings fell to a low level (27). Yet information on 

https://paperpile.com/c/YmfsoO/uiVE
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such individual behaviours at the department level was not available for inclusion in the 

regression model. However, both the return-to-school and the resurgence of social 

gatherings presumably contributed to shape the change in transmission, in addition to 

weather conditions and decisions made by health authorities.  

 

The multivariable model yielded a gradient in the effectiveness of lockdown measures. The 

first lockdown had the largest impact, followed by the second and the third, which is 

consistent with international data (11). This could be explained by the more restrictive 

measures implemented during the first lockdown, but also potentially by increasing 

pandemic fatigue, which may have resulted in mobility rebounds, more frequent social 

interactions, and decreasing compliance with preventive measures (28). We found that 

transmission during the reopening phases following the lifting of lockdowns remained similar 

to that observed during lockdowns. One possible interpretation is that population behavior 

did not change immediately with policies: the population may have continued to adhere to 

public health measures, such as physical distancing during the reopening phase, e.g., due to 

fear of a COVID-19 rebound and preventive habits taken during lockdowns. Early-pandemic 

association studies spanning over 131 countries also reported that more time was needed to 

observe the effects of relaxing NPIs than to detect those resulting from the introduction of 

new restrictions (7). Moreover, during reopening phases, restrictions were only partially lifted 

and remained quite intense (Additional file 1: Table S1). Even during intermediate periods of 

moderate restrictions, the reduction in R was substantial, ranging from 45.9% to 65.0%. This 

likely reflects the additional contributions of other NPIs such as mask-wearing, hygiene 

measures, contact tracing and case isolation. Our framework did not allow evaluation of 

individual effects of such NPIs, which were applied throughout the study period. Moreover, 

due to collinearity, the effects of specific policies described in Additional file 1-Table S1 (e.g. 

shop closures, restaurant closures etc.) could not be evaluated separately and were 

therefore collapsed into broader categories (lockdowns, reopenings and moderate 

restrictions). Interestingly, overnight curfews considerably reduced SARS-CoV-2 

https://paperpile.com/c/YmfsoO/7xyv
https://paperpile.com/c/YmfsoO/0KFF
https://paperpile.com/c/YmfsoO/Kstj
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transmission, corroborating results obtained in French Guiana (up to 35% reduction in 

transmission rates) (29) and in Quebec, Canada (similar reductions in human mobility) (30). 

Moreover, we found that curfews starting earlier in the evening (6/7pm) had a larger impact 

on transmission than curfews starting later (8/9pm). 

 

Perhaps more surprisingly, school closures were found to have only a limited effect on 

transmission. Importantly, school closures did not uniformly affect all households and instead 

led to disparities in childcare across families that may potentially hinder their effect. As 

highlighted in other studies, policy decisions about school closures or hybrid school 

schedules often need to be weighted against the risks of disease transmission to elderly 

populations associated with increased intergenerational contact rates that exacerbate their 

vulnerability due to weaker immune systems (31). Our result differs from that of Nader et al 

(1), who found that school closures were one of the most important NPIs in the 60 days 

following their implementation. In the French context, we believe that the enforcement of 

mask-wearing and barrier gestures at school was also an impactful NPI that might explain 

such a difference in magnitude: because these restrictions were applied concurrently, the 

effect of school closures may have been partially occulted. This observation is consistent 

with simulation-based scenarios tested in Saudi Arabia (32), where mask-wearing and 

physical distancing applied in schools were able to drastically reduce the effect of in-person 

education on SARS-CoV-2 transmission.  

 

The role of weather conditions in COVID-19 transmission has been debated in the literature 

(15). Here, after controlling for other confounding factors such as NPIs, we found a 

substantial effect of temperature (up to 31.9% variation in R), followed by absolute humidity 

(up to 9.3% variation), which led to a 41.7% variation in R between summer and winter 

months in France. Although both temperature and humidity were associated with SARS-

CoV-2 transmission, the overall goodness-of-fit was found to be lower when using the 

compound IPTCC index. In the future, a different parametrization of this index may yield 

https://paperpile.com/c/YmfsoO/XKWF
https://paperpile.com/c/YmfsoO/qaZ0
https://paperpile.com/c/YmfsoO/jR4R
https://paperpile.com/c/YmfsoO/Y6Mb
https://paperpile.com/c/YmfsoO/WRDL
https://paperpile.com/c/YmfsoO/rEi0
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better performance. The estimate of the joint effect of temperature and absolute humidity 

was similar in magnitude and range to individual contributions reported by prior 

observational (17,33,34), in-vitro (35), and physio-mechanical studies (36). Similar to Sera et 

al (16), we found a non-linear relationship between weather variables and R. However, in 

our study, the peak of transmission was identified at both lower temperature and lower 

absolute humidity values. Pursuing such research in larger countries with more spatial 

heterogeneities in climatic conditions would be particularly valuable. Interestingly, we found 

that the temporal seasonality of SARS-CoV-2 transmission was similar to the known 

seasonality of influenza epidemics in temperate climates (37).  

 

We found that variants of concern (mainly Alpha) increased the reproduction number by 

46.9% (38.2-56.0). This is consistent with the effect of Alpha variant on transmission 

reported in the literature, ranging from about 25% to more than 90% (3,38,39). Notably, the 

strength of our study is that it estimates the effect of VOC while simultaneously adjusting for 

weather conditions. Considering that VOC appeared in winter 2021 period and that their 

proportion substantially increased in February-March 2021, when temperatures were still low 

and favoured SARS-CoV-2 transmission, such an adjustment was deemed necessary. Our 

counterfactual scenario analysis showed that, in the absence of VOC, vaccination 

associated with moderate restrictions and curfew would have been sufficient to contain the 

historical virus. In the other counterfactual scenario, we showed that, without vaccination, the 

spread of VOC would have resulted in a peak of hospital admissions higher than observed 

during the first wave. However, it should be noted that these scenarios were not based on a 

dynamical transmission model. For instance, we did not account for the fact that if herd 

immunity was reached in the scenario without vaccination, the number of hospital 

admissions at the peak would have been lower than predicted by our model. In addition, in 

practice, it is likely additional measures would have been implemented that would have 

limited the impact on healthcare. 

  

https://paperpile.com/c/YmfsoO/fwp7+u0D9+IwO8
https://paperpile.com/c/YmfsoO/vOJa
https://paperpile.com/c/YmfsoO/eCR4
https://paperpile.com/c/YmfsoO/Pchz
https://paperpile.com/c/YmfsoO/mUYe
https://paperpile.com/c/YmfsoO/pIua+6DP1+0f8i/?locator_label=page,issue,page
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Although the multivariable model successfully captured the overall temporal dynamics of R, 

unexplained variability across departments remained. Spatial variation in the reproduction 

number may arise from underlying socio-demographic determinants such as age distribution, 

degree of urbanicity, or job market structure (40), which differ between departments. 

Therefore, we accounted for geographical variation through a department-level random 

effect on the reproduction number. However, the estimated magnitude of this effect was 

extremely small. Further, we did not find any statistically significant effect when additionally 

testing for a potential contribution of population density or population count, suggesting 

limited impact of population structure. Apart from spatial variation in the reproduction 

number, small deviations from the average effect of a given intervention may exist among 

geographical units, due to spatial variations in determinants of population adherence to 

preventative health measures. Yet introducing the possibility of such variation brings 

challenges in parameter identifiability. As a result, model sparsity was preferred and 

department-specific effects on explanatory variables were not considered. 

 

Importantly, our results regarding the effects of NPIs, first-dose vaccination, the proportion of 

VOC, and weather conditions on the reproduction number are based on a retrospective 

observational study in which interactions, collinearity and mediation effects may occur. 

Therefore, the effects estimated here only reflect statistical associations and do not 

necessarily imply causal mechanisms. In addition, given the differential timeline of 

interventions, interpretation of their absolute effect should only be made within a specific 

context of implementation and cannot be directly extrapolated to other settings.  

 

Conclusions 

 

In summary, through a multivariable analysis across 92 French departments, this study 

allowed disentangling the individual contribution of NPIs, weather, first-dose vaccination, and 

https://paperpile.com/c/YmfsoO/iKw1
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VOC proportion on local SARS-CoV-2 transmission during three successive pandemic 

waves. Our findings highlight the importance of retrospective evaluation of past interventions 

to inform future decision-making for better epidemic control. 
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Figures 

 

 

 

Figure 1: Dynamics of the COVID-19 epidemic and timing of non-pharmaceutical 

interventions across departments in metropolitan France, week 11-2020 to week 20-

2021. (A) Map of departments, colored by region. The two departments marked by an 

asterisk were excluded, as well as Corsica (not shown), due to missing covariates. (B) Time 
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series of new daily hospital admissions by department (logarithmic scale). (C) Temporal 

evolution of the reproduction number R by department and by week, overlaid with the 

timeline of non-pharmaceutical interventions. Boxplots feature the 2.5th, 25th, 50th, 75th, 

and 97.5th percentiles. Non-pharmaceutical interventions are shown taking the Rhône 

department as an example. (D) Timing of the third lockdown by department. (E) Timing of 

the 6pm curfew by department. (F) Start dates of 2021 winter holidays by department.  
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Figure 2: Goodness-of-fit and estimated effects of covariates included in the 

multivariable model on the reproduction number R (in percentage of variation). (A) 

Trajectory of R estimated by the full model for an average department (red) compared to 

mean R (black). (B) Effects of linear and categorical covariates. Of note, the effect shown for 

first-dose vaccine coverage and the proportion of VOC corresponds to a covariate value of 

100% (i.e., reflecting a fully vaccinated population and maximum prevalence of variants). (C) 

Non-linear effect of temperature. (D) Non-linear effect of absolute humidity. (E) Estimated 

seasonality of COVID-19 based on average temperature and absolute humidity observed 

over 1981-2010 in metropolitan France. For C, D and E, fitted lines and their 95% 

confidence intervals show the estimated percentage of variation in R with respect to a 

baseline set to the value at the trough of the corresponding curve for meteorological 

variables. For C and D, the range of the x-axis is determined by the 2.5–97.5th percentile of 

the meteorological variable distribution.  
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Figure 3: Projected trajectory of R and hospital admissions from January 11, 2021, 

under different scenarios: the full model, a model without vaccination and a model 

without VOC. (A) Mean trajectory of R. (B) Number of national-level weekly hospital 

admissions (summed across all departments). 
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Table S1: Description of the main non-pharmaceutical interventions (NPIs) applied 

during each lockdown, reopening, and period of moderate restrictions. The darker the 

color, the more restrictive the measure. 
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Figure S1: Imputation of the proportion of VOC using a logistic regression. The points 

represent available data and the line represents the logistic fit, taking the Rhône department 

as an example from December 2020 to May 2021. 
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Figure S2: Time series of continuous covariates included in the final multivariable 

model. Each line represents a department and is colored by region. Regions: Auvergne-

Rhône-Alpes (ARA), Bourgogne-Franche-Comte (BFC), Bretagne (BRE), Centre-Val de 

Loire (CVL), Grand Est (GES), Hauts-de-France (HDF), Île-de-France (IDF), Nouvelle-

Aquitaine (NAQ), Normandie (NOR), Occitanie (OCC), Provence-Alpes-Côte d’Azur (PAC), 

and Pays de la Loire (PDL). 
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Figure S3: Calibration performance: correlation of observed R vs fitted R. Each point 

represents a department-week pair and is colored by region. 

 

  



32 
 

     A           B 

 

Figure S4: Map (A) and histogram (B) of department-level random effects. 

 

 

 


