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Abstract

For the past decade, it has become commonplace to provide rapid answers and early patient
access to innovative treatments in the absence of randomized clinical trials (RCT), with benefits
estimated from single-arm trials. This trend is important in oncology, notably when assessing
new targeted therapies. Some of those uncontrolled trials further include an external/synthetic
control group as an innovative way to provide an indirect comparison to a pertinent control
group. We aimed to provide some guidelines as a comprehensive tool for critical appraisal of
those comparisons or for performing one. We used the example of ciltacabtagene autoleucel for
the treatment of adult patients with relapsed or refractory multiple myeloma after three or more
treatment lines as an illustrative example. A 3-step guidance is proposed. The first step includes
the definition of an estimand, which encompasses the treatment effect and targeted population
(whole population or restricted to single-arm trial or external controls), reflecting a clinical
question. The second step relies on the adequate selection of external controls from previous
RCTs or real-world data from patient cohorts, registries, or electronic patient files. The third
step consists of choosing the statistical approach targeting the treatment effect defined above,
and depends on the available data (individual-level data or aggregated external data). The
validity of the treatment effect derived from indirect comparisons heavily depends on careful
methodological considerations included in the proposed 3-step procedure. Because the level of
evidence of a well-conducted RCT cannot be guaranteed, the evaluation is more important than

in standard settings.
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Introduction

In oncology, new classes of anti-cancer agents have become an increasingly available
and promising treatment option in several cancer indications, looking for precision cancer
treatment.! The development of those innovative therapies, such as molecularly targeted agents,
has led to an important modification of the evaluation process of cancer drugs, with an apparent
need to improve the speed and efficiency of drug development. This has clearly changed the
way tolerance’ and antitumor activity® are assessed in clinical trials, especially for early-stage
trials. By contrast to the standard and separated phase I-II-III trials, accelerating clinical
research with fewer patients involved and reduced costs may appear justified from the
perspectives of both patients and public health.* To this aim, single-arm trials are growingly
reported as the sole basis for efficacy of cancer drugs, mostly based on surrogate endpoint,® and
this impacts the whole approval pathway.® This observation is in line with the implementation
of accelerated approval mechanisms by regulatory agencies such as the Food and Drug
Administration (FDA) breakthrough therapy designation and European Medicines Agency
(EMA)-accelerated assessment. However, the approval of those therapies has been found to be
based on weak or limited evidence.”® This is one of the reasons why, HTA bodies struggle
when they need to approve reimbursement of these treatments associated with weak evidence
compared to gold standard. This was notably exemplified with immune checkpoint inhibitors,
where nine of the ten accelerated approvals involved single-arm trials with the response rate as

the main endpoint.®’

However, the effect size of new molecules is mostly small, based on
poorly relevant outcomes such as tumor response,'® while, in most settings, it has not been
demonstrated that improving response yields an improvement in survival. The open nature of

the design may introduce additional classification biases.!' This may explain why no benefit in

overall survival has been demonstrated so far for many oncology drugs.’



Beside the study of drugs for registrational purposes, it is often reported that randomized
clinical trials may not be feasible or practical for rare diseases, biomarker-specific selected
populations of more common diseases, or due to ethical considerations, requiring large sample
sizes and extended durations of time.!!' However, contrarily to situations of quasi-
deterministic disease evolution, where nearly 0 or 100% of patients respond, relying on the
observed “before-after” patient status to define a treatment effect is well known to be biased.'*

To handle the variability in disease course, as well as the unobserved effects of being
enrolled in a trial, the measure of treatment effect requires to be relative to a control group.
Thus, to increase the level of evidence in these uncontrolled settings, the use of external controls
has been promoted.'®> Such indirect comparison are actually growingly reported.'®!° However,
as recently reported,? they require a careful implementation of innovative statistical methods
accounting for between-group variation and selection biases, depending on the availability and
nature of external data.?! While many authors warned against the misuse of each approach and

2225 none have detailed the whole

methodological issues from the use of external controls,
process, including the underlying assumptions for leveraging those data.

In this paper, we aim to provide some guidance for clinicians, investigators,
manufacturers and all stakeholders, highlighting the main issues of such external incorporations
into single-arm trial data, and distinguishing a 3-step process (Figure 1). First, the specifications
of key attributes or “estimands”, in line with the objectives, should be defined according to the
principles of such “emulated” target trials. Second, selection of the controls should consider the
various sources of external controls to adequately mimic the lacking randomized experiment,
but avoiding substandard control arms. Specific statistical considerations arise, according to the
data type and characteristics. The last step consists of the indirect comparison itself, based on

different methods according to the available data and the targeted treatment effect. A motivating

example is used to illustrate this 3-step process.



Ilustrating example

As an illustrative example, we used ciltacabtagene autoleucel (CARVYKTI, Janssen Biotech,
Inc.) approved by the FDA on the February, 2022 for the treatment of adult patients with
relapsed or refractory multiple myeloma (RRMM) after three or more prior lines of therapy,
including a proteasome inhibitor (PI), an immunomodulatory agent (IMiD), and an anti-CD38
monoclonal antibody. The pivotal trial was CARTITUDE-1 (NCT03548207), a multicenter,
phase 1b/2 open-label, single arm, clinical trial conducted in the USA between July, 2018, and
October, 2019.2° A total of 113 patients with RRMM, at least three prior lines of therapy
including a PI, an IMiD, and an anti-CD38 monoclonal antibody, and disease progression on
or after the last regimen, were enrolled. Among the 113 enrolled patients, analysis used the 97
(85.8%) patients who received ciltacabtagene autoleucel (cilta-cel). Efficacy was established
on the overall response rate (ORR) as the main end point, estimated at 97% (95% CI 91-2—
99-4). However, RRMM, especially the triple-class-refractory disease, is an extremely active
area of research, where many drugs have been proposed that may act as pertinent comparators.
Indeed, in that population, many drugs from distinct classes have been approved by the FDA,
including monoclonal antibodies such as belantamab mafodotin,?’ isatuximab or teclistamab,?®

’ or melphalan flufenamide,*® or

small molecule inhibitors/modulators such as selinexor,?
another CAR-T cells, idecabtagene vicleucel (ide-cel)*® (Figure 2). We will show how indirect

comparisons can be performed and achieved findings on the relative efficacy of cilta-cel.

Step 1- Definition of Estimands
An estimand is a precise description of the treatment effect reflecting a clinical question
that should inform study design and analysis under five attributes: target population, treatment,

endpoint, intercurrent events and population level summary of the treatment effect measured



against some valid comparator. First described for RCTs,’! its principles can be easily extended
to observational studies.?*33
Rarely, the treated and control populations can be assumed similar, due to similar

34

eligibility criteria, time period and sites of enrolment™*. To overcome this issue, down weighting

the external control data allows to decrease the level of evidence from the external source to be

3537 or meta analytic approaches?’.

addressed using either power prior models

However, most of the time, populations differ in characteristics that may also affect the
outcome; these are termed “confounders” (Box 1). Ignoring those differences will conduct to
misleading inferences because of confounding bias.*® Indeed, any differences in outcomes
could no longer be attributed to differences in treatments but rather in confounders.

Thus, reaching a balance in confounders is at the core of causal inference in
observational studies. Regression models providing estimates of treatment effect adjusted on
prognostic factors have been long used to that purpose. However, they do not ensure balance
of prognostic variables across groups, notably, where their values widely differ across groups;
in these areas of nonoverlap, estimates are extremely sensitive to model choices. Thus, rather
than focusing on the outcome model (by introducing both treatment and confounders to predict
the outcome), one may focus on the treatment model through the propensity score (PS), i.e., the
probability of being in the treatment group, conditional on the set of observed confounders.*
Then, individuals are given individual “balancing” weights,*? derived from their PS, to under-
or overrepresent the characteristics of their treatment group compared to the other group (Figure
3). Under different assumptions of conditional independence, consistency, and common support
(Box 2), valid estimators of the treatment effect can be directly derived from weighted data.
The main advantages of the propensity score is to separate the treatment model and the outcome

model; modelling the treatment probability further forces one to think about the imbalances on

covariates before estimating treatment effect.



When comparing single-arm vs. external control groups, these methods could be used.
However, the target population should first be defined, as this definition impacts the definitions
of weights and the targeted treatment effect (Table 1). Indeed, one may focus on the average
treatment effect (ATE) in the population represented by the combined single-arm and external
control groups that would be observed by switching every unit in the whole population from
one treatment to the other, the average treatment effect in the treated (ATT), obtained by only
switching the treated to the control group, or the average treatment effect in the control (ATC).

For instance, when evaluating the benefit of cilta-cel over some pertinent comparator in
the RRMM patients, the ATE, corresponding to switching every unit in the study population
from the comparator to cilta-cel and reciprocally, may result in the effect of an infeasible
intervention. In contrast, choosing the ATT targets the treated population, that is, those included
in the single-arm trial, and attempts to answer to ‘what would have been the ORR of the patients
treated with cilta-cel, had they all received the comparator instead?’. This may be the estimand
of interest in this setting, and it was mostly used in the published indirect comparisons of cilta-
cel against standard treatment.***> The ATC provides the alternate answer to ‘what should have
been the ORR in the patients from the comparator group had they received cilta-cel instead?’.
Such an estimand was actually used to assess the benefit of cilta-cel against active comparators,

though not reported as such.*>#

Step 2- Selection of the External control data
Then, one may look for external, sometimes called “synthetic”,* controls. In line with
the objective, the closeness of the external population to the targeted population should be first

required to avoid the risk of substantial biases. This could be evaluated using the acceptability

criteria proposed by Pocock.** The selection of external controls should use predefined



eligibility criteria for including studies to ensure patient similarity, relevant endpoints, and
pertinent comparators.

External controls could be directly selected from pertinent and efficacious active arms
from previously completed RCTs?! or reconstituted from real-world data (RWD).*¢

When external controls are selected from RCTs, it is likely that the potential comparator
has been sponsored by another firm, so that only aggregated data are available. Pooled data
from previous RCTs could also be used as external controls, as exemplified by the FDA that
approved a synthetic control generated from more than 22,000 previous studies to be used in a
phase III glioblastoma cancer trial.*’

When no available controls from previous trials are available, controls can be selected
from RWD, including observational cohorts, registries or electronic health records (HER),*® as
well as claims and prescription data.** While primary endpoints may be difficult to match in
RWD and clinical trials, this is not the case in cancer where the date of death is usually reported
in HER or any administrative registry. To control for the potential effects of time and center,
an adequate selection of both should first be considered.’® The closeness of populations is of
particular concern in the observational setting where the choice of treatment based on a patient’s
disease status achieves a “confounding-by-indication” bias. In many chronic diseases, there is
also no obvious single timepoint for treatment decisions.’® Thus, when the population differs in
terms of the time of treatment decision-making, “immortal time bias” or “time-lag bias” could
be additionally introduced.’® Once sources of control data are found, their validity should be
measured by assessing risk of bias. As reported recently, based on publicly available FDA
reviews of medical products, most reasons why RWD did not contribute to regulatory decision-
making relied on a lack of a prespecified study design and analysis as well as data reliability

and relevancy concerns.”!

In the cilta-cel example, several indirect comparisons in patients with RRMM were
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secondarily published, as summarized in Table 2. They first used conventional treatment as the
comparator of interest, with data obtained from long-term follow-up of previous clinical trials,*’
or multicenter retrospective studies*” and RWD.*! However, the clinical relevance of such a
“standard treatment” group may be questioned, targeting a very heterogenous and frail
population that may not be candidate to CAR-T cell therapy. Moreover, the use of retrospective
studies and RWD raises the issue of data quality (data do not undergo the same level of quality-
checks as in the trial), resulting in selection, measurement, and attrition biases. Last, CAR-T
cells are administered after a variable period of time, on potentially selected patients; this raises
concerns about the comparison to those cohorts, with different start dates of follow-up.>?

More recently, two indirect comparisons focused on more pertinent active comparators,
recently approved by the FDA at the time cilta-cel was proposed (Figure 2), namely belantamab
mafodotin and melphalan flufenamide, each assessed from a single-arm trial, or selinexor,
using RCT data,* and ide-cel, another CAR-T cell therapy.* Given data of those control groups
were prospectively recorded in clinical trials, this likely improved the control of other sources

of bias compared to RWD.

Step 3- Methods for indirect comparisons of single-arm and external control arms

Last, an indirect comparison of the single-arm trial and the external control should be
performed using appropriate statistical methods, and underlying assumptions should be
checked. Such methods mostly depend on whether the control data have been measured at the

individual level or aggregated level.

Individual-level external control data

The availability of individual-level data for both groups allows the PS to be estimated

to balance the confounders of the treated (trial) group and the (external) control group using
9



weighting or matching (Table 1). When external individual-level data are obtained from
observational data, additional weights may be used to incorporate the decreased level of
evidence of the controls.>

The most common approach to estimating the inverse probability of treatment weights
(IPWs) is to estimate the PS through logistic regression, ideally including all the true
confounders, then directly define weights for both treated and controls. Such weights target the
ATE of the underlying population defined by the combination of the treated and untreated
groups (Figure 3). Unfortunately, the “convenience” sample defined by the pool of the trial
sample and the external controls, does not always represent any population of scientific interest,
in contrast to surveys from which such methods have been derived. To focus on the treated
population and estimate the ATT where only control patients are given a weight depending on
the odds of being treated while treated patients are not.

For both types of weights, the challenge associated with extreme propensities has been
identified as a primary downside of weighting, with no clear definition of the resulting
ambiguous target population.®* Methods that address nonoverlap, such as trimming or
downweighting data in regions of poor data support, excluding or censoring weights at some
extreme percentiles, change the estimand so that inference cannot target the population of
interest. Thus, balancing weights has been proposed as a simple way to define, based on specific
tilting functions, individual weights and the resulting target population,> as it integrates most
approaches, including PS matching.** Recently, “overlap weights” were proposed as a way to
focus on the population for which observed confounders have been adequately balanced (Table
1). Finally, note that all of those weighted samples differ in terms of the target population, as
illustrated in the observed patient characteristics, either close to those of the pooled groups, of

the treated, the controls, or the overlap sample (Figure 2). In all cases, the exchangeability of
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the restructured groups should be clearly measured, using simple measures such as standardized
mean difference (SMD) that should be below 10% (as a rule-of-thumb) or any other distances.>¢

In the indirect comparisons performed of cilta-cel versus observational cohorts or
RWD,**? IPD were available to estimate PS from multivariable logistic models, then using
either matching*? or weighting®**!, to estimate the ATT. However, none of these comparisons
fulfilled all those “quality” requirements (Table 2). Notably, confounders included in the
propensity score were not fully reported or did not include all expert knowledge of true
confounders. All analyses failed to reach a clearcut exchangeability of groups, with reported
persistent imbalances (either not detailed, or with SMDs above 15% for several confounders).

This resulted in a risk of bias for the estimated cilta-cel effect.

Aggregated external control data

When control data are derived from clinical trials not sponsored by the manufacturer’s
own product of the single-arm trial, it is not uncommon for only published aggregate data to be
available. In this setting, only summary measures of both the confounders and outcomes are at
most available. Of note, for time-to-event data, some types of individual-level data can be
extracted from published Kaplan—Meier curves using digitization,”’ but individual-level data
on confounders would still not be obtained. To address such aggregated control data,
population-adjusted indirect comparisons have been proposed, the two most popular methods
being matching-adjusted indirect comparison (MAIC)*® and simulated treatment comparison
(STC).”?

MAIC is a reweighting method similar to [IPW that targets the control population. Its
principle is to reweight the individual-level data such that the mean characteristics of the treated

are balanced with those of the controls, with weights estimated from the PS of being treated.

The resulting target population is that of the external dataset; thus, the ATC can be estimated
11



(Table 1). Of note, the PS cannot be estimated as usual given the lack of individual patient data
for the controls, but alternate methods are to be used.® It is then important to evaluate the
distribution of weights, that should be centered around 1. If there are too many participants
being allocated near-zero or very high weights, the comparability of groups is questioned, with
increased uncertainty of the results. The effective sample size (ESS) can be also computed as a
measure of information provided by the weighted dataset. A small ESS, relative to the original
sample size, is an indication that the weights are highly variable and that the estimate may be
unstable. In STC, individual-level data are used to model the relationship between predictors
and outcome of the single-arm trial, and then the model is used to estimate outcomes in external
controls.

Both MAIC and STC rely on the strong assumption of a constant absolute treatment
effect at any level of the effect modifiers and prognostic variables, and that all effect modifiers
and prognostic variables have been observed; otherwise, the estimates are biased.®! Thus,
providing information on the likely bias resulting from unobserved prognostic factors and effect
modifiers distributed differently across the trials is mandatory. Such indirect comparisons
require additional recommendations. First, evidence that absolute outcomes can be predicted
with sufficient accuracy in relation to the relative treatment effect should be provided.
Moreover, the choice of the outcome scale is critical and should be justified, since the effect
modifier status is scale specific. An important limitation is that MAIC or STC is only able to
provide estimates in the target population represented by the external comparator population
and not that of the single-arm trial of interest. For any other target population, a supplementary
assumption, the shared effect modifier, is needed.®!

Two unanchored MAICs were published to compare the effect of cilta-cel to active
pertinent comparators from single-arm clinical trials.**** All only selected the 97 patients

actually infused by cilta-cel. Except when compared to another CAR-T cells, a potential
12



selection bias of the treatment group can be suspected, given the 16 patients who could not be
reinfused due to disease progression (n=2), death (n=9) or patient withdrawal (n=5), were
excluded.?® None of the MAICs included the five “true” confounders selected by experts, so
that the underlying assumption of no unmeasured confounders is possibly violated. Moreover,
the distribution of the weights and of the weighted baseline characteristics were not fully
reported, while the reduction in effective sample size of the cilta-cel treated population was
relatively high, from 46 up to 60%, resulting in ESS down to 39 (Table 2). It indicates that there
may be poor overlap between the study populations, violating the underlying assumption of
common support (illustrating the potential selection bias described above), again resulting in a

high risk of bias.

Discussion and Perspectives

The provision of rapid answers when evaluating a new treatment outside the standard
Phase I-III strategy is becoming increasingly important.®> Currently, the use of single-arm
clinical trials as the sole source of evidence provided by pharmaceutical firms to obtain, at least
temporary, drug approvals is accepted by regulatory agencies in individuals with certain
indications or populations. This is also widely used by academics when evaluating interventions
in rare cancer subgroups or combination therapies.®> This may appear contradictory to the
statistical literature reporting its many sources of bias since the early 1980s.%*

There could be some ways of improving the value of data and thus increasing the utility
of single-arm trials.® Thus, to decrease the uncertainty of such uncontrolled trials, comparisons
using external controls have been growingly reported in onco-haematology, for instance, in

¢ anaplastic lymphoma,'® follicular

acute lymphoblastic leukemia,'® large B-cell lymphoma,®
lymphoma,'® metastatic non-small-cell lung cancer,®” endometrial cancer,'” and glioblastoma.®®

Such indirect comparisons require a complex implementation to be valid, as recently reported.®
13



In the specific setting of single-arm trials, we aimed to report how to enhance the evidence from
such trials by incorporating and leveraging external data as a “synthetic” control arm to mimic
the lacking ‘head-to-head’ comparison. We thus provided some guidance for incorporating such
external controls by defining a 3-step process with the aim of stopping the sequence whenever
a target or underlying assumption could not be satisfied. First, the target population, pertinent
comparator and measure of the treatment effect should be clearly delineated. Second, selection
of the target controls should be carefully and adequately performed with respect to the
population, endpoint and treatment decision. Indeed, using controls from previous RCT or other
trials is likely different than defining controls from RWD, from which selection of pertinent
patients raise issues, notably with regards to the immortal time bias and reverse causation issues.
This raises the issue of sharing individual patient data, so that the secondary use of available
health data should be promoted, which begins by encouraging secure and facilitated access to
those data by researchers worldwide, as proposed by the ASH Research Collaborative.*® Last,
the method of analysis should be justified based on the type of available data and on the
underlying target population and the therapeutic question of interest (e.g., to treat all patients
or not?). The use of external controls finally entails merging different sources of data, which
may complicate the verification of causal assumptions and not adequately control for
confounding factors, which is a necessary but not sufficient framework for a valid estimation
of treatment effect. Indeed, while treatment groups achieved by random allocation are
exchangeable in terms of all (observed or not) prognostic covariates and treatment-effect
modifiers, PS methods could only rely on the observed confounders, and this is their main
limitation, even if the analysis well conducted. Nevertheless, well-conducted indirect
comparisons may generate hypotheses for new trials regarding pertinent comparators, and thus

may appear an option while or before a RCT is conducted.
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In all cases, and given the risk that analyses would be data driven and adapted ad hoc,
the statistical analysis plan for such an incorporation should be publicly issued before the
analysis, and only external controls recruited after that publication should be used in the
comparisons in a similar approach as in registered reports.”” The principled framework of
emulating a target trial combining the principles of clinical trials and causal methods to control
for confounding appears particularly adequate in this situation.”"’?

We mostly considered methods derived from propensity scores, although other
approaches could also be considered, such g-computation,’® or “double-robust” or “augmented
IPW” estimators.”* To our knowledge, these approaches have not been used for regulatory
approval with external controls but remain promising alternatives. Other issues, such as time-

t.SO

dependent biases, may exist.”” How to adequately control for time-dependent biases with

external controls is still an open issue.

In summary, when reporting results from a single-arm trial, the provision of some external
comparison to controls is often reported, with the aim of marketing authorization or not. In all
cases, it should be adequately done and reported to provide evidence. It should be kept in mind
that such indirect comparisons aim to mimic randomized clinical trials that are lacking. Only
respect for all the 3-steps may provide a correct level of evidence, although it cannot be

guaranteed that it will reach the level of a well-conducted RCT.
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Figure Legends

Figure 1: Schematic 3-step process to be applied when incorporating external control data

into single-arm trial data to maximize the validity of indirect comparisons

RCT: randomized clinical trial; RWD: real-world data; MAIC: matched adjusted indirect

comparison; STC: simulated treatment comparison

Figure 2: Timeline of the drugs approved by the FDA for the treatment of patients with

refractory or relapsing multiple myeloma

Figure 3: Schematic representation of how data are weighted according to an estimand.

Suppose the original sample from the single-arm trial differs from the external controls in
terms of patient severity, with 1 severe case over 4 in the trial compared to 3 over 4 in the
external data. The objective is to modify the pooled data to obtain two groups where the

proportion of severe cases is similar.

Most methods are based on the propensity score (PS), which is the probability of each patient
being in the trial, conditional on his(her) severity. In this setting, each severe case is given a

PS of 1/4, while each nonsevere case is given a PS of 3/4.

Inverse probability of treatment weight (IPW) consists of inversely weighting each individual
in the original sample according to their probability of being in the original group, that is, for
the treated, the individual contribution of each patient is divided by their PS (thus resulting in

adding 1/3 of a fictive patient for each nonsevere patient and 3 fictive individuals for severe
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cases, while in the external group, this value is divided by 1 minus their PS, thus adding 1/3
of a fictive patient for each severe patient and 3 fictive individuals for nonsevere cases). This
yields a weighted sample where the proportion of severe cases is similar in both groups (1/2)

and differs from that in both original groups.

ATT weights consist of using all individuals from the single-arm trial (weight of 1) and
weighting each individual in the external sample by the odds of being in the trial. This results
in odds of (1/4)/(3/4)=1/3 in nonsevere cases and of (3/4)/(1/4)=3 in severe cases, reaching a
Y4 prevalence of severe cases in the pooled weighted dataset, that is, that observed in the

original treated patients from the trial.

ATC weights are conversely computed, with a weight of 1 for each patient from the external
sample, while patients from the single-arm trial are given a weight of (3/4)/(1/4) (severe
cases) or (1/4)/(3/4) (nonsevere cases). The resulting prevalence of severe cases is now that of

the original external control group, that is, 3/4.
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Table 1: Targeted population, weights, and estimands

Method for Weights for Target population Estimand
controlling treated, untreated
confounders
Inverse 2 1 Combined from the treated ATE
e(x)” (1-e(x))
weighting and untreated
e(x) Treated population ATT
" (1-e(x))
1me@) | Control population ATC
e(x)
1-e(x), e(x) Overlap population ATO
1 @<e(x)<l-a) 1 (a<e(x)<1-a) Trimming population Not specified
e(x) 7 (1-e()
Matching Min (e(x), 1-e(x)) Min (e(x), I-e(x)) Matching population ATT
e(x) T (1-e()
Matching 1—e(®) 4 Control population ATC
e(x) ’
adjusted indirect
comparison

e(x) = PS = Pr(T = 1|V) is the propensity score, where T=1 for the single-arm treatment
group, T=0 for the external control group, and V is the set of observed confounders in both
groups.

IPW: inverse probability of treatment weight; ATE: average treatment effect; ATT: average
treatment effect in the treated; ATC: average treatment effect in the control; ATO: average

treatment effect in the overlap population
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Table 2: Illustration of the 3-steps assessment on the main indirect comparisons of celta-cel against comparators; bolded cells indicate the main
issues of the performed comparisons

Five main confounders were considered, ranked as a major confounder by experts: Refractory status, cytogenetic profile, R-ISS stage,
plasmocytomas, and time to progression on last prior line

Indirect
compariso Step 1- Estimand Step 2- External source of data Step 3- Methods of comparison
n
Balance
Main . diagnostics, L
objective Comparator Type Source Propensity score Method Cormmon Estimation of effect
support
Standard Retrospective 9Ccct>nfou?dercsl* Undetailed
ytogenetic an « ‘s : :
Merz 2021 ATT treatment IPD German RWD plasmacytomas IPW . remamlng" Weighted analyses with
S ——— database missing imbalances robust variance
S Risk of bias (SMD>0.20)
.. Follow-up of trial
; Physician Mean SMD . .
Weisel ATT choice IPD data (POLLUX, 8 confounders+* IPW reduced from Weighted analyses with
2022 . CASTOR, robust variance
Heterogeneity EQUULEUS) 0.33t0 0.16
SMD between
i 16 Matching 0.10 and 0.20 . .
CogEorl Retrospective study | confounders+++ 1:1, no (ASCT, refractory Stratified/Weighted
Costa 2022 ATT treatment IPD ! . 4
IS Risk of bias Plasmacytomas repl‘acement, to carfilzomib, analyses
£ missing caliper 0.05 penta-drug
refractory)
One-arm (2.5mg/kg | 4 confounders
ESS=39 (60%
Weisel AI\;EtC Belantamab dose) (.)f the 2-arm o Unanchored reductif,n) ’ Weighted analyses
2022 explicitly mafodotin Aggregate trial data Uhiie D) 518 2 o MAIC No report of weight
reported (DREAMM-2) on las.t regumen distribution
ECOG 0-2 missing
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4 confounders

ATC . RCT data (mITT of sk ESS=73 (25%
Not Selinexor- Agoreate STORM-2) . . Unanchored reduction)
explicitly DXM gereg Penta-exposed B MAIC No report of weight
reported ECOG 0-2 on 1?;;;;5;“’6“ distribution
Subset of Single- _ o

ANEtC Melphalgn— arm trial data 3 confounders | {jpanchored E?Sd—fciiglf)ﬁ)
explicitly flufenamide- Aggregate (HORIZON) Refractory status MAIC No report of weight
reported DXM Received >2 prior LOTs missing distribution

ECOG 0-2
Skewed
ATC 4 confounders distribution of )
Martin Not Ide-cel Aggregate Single-arm trial data T e Unanchored weights Weighted analyses
2022 explicitly (KarMMa) ime to progression MAIC Failure tlmeshmea'sured from

reported on last regimen ESS: 46-57% cells infusion

missing

reduction

* age, sex, refractory status, R-ISS stage, time to progression on last prior line, number of prior LOTs, average duration of prior lines, years since diagnosis, ECOG status
**age, refractory status, ISS stage, cytogenetic profile, time to progression on last regimen, plasmacytoma, number of prior LOTs, years since MM diagnosis
***age, sex, race/ethnicity (white vs. other), ISS stage 3 (vs. 1, 2, or unknown), time from diagnosis to index date, number of prior LOT, prior autologous stem cell transplant, presence of high-
risk cytogenetic abnormalities in any prior sample [t(4;14), t(14;16), del(17p)], refractoriness to bortezomib or ixazomib, refractoriness to carfilzomib, refractoriness to lenalidomide,

refractoriness to pomalidomide, refractoriness to anti-CD38 monoclonal antibody, triple-class refractoriness, penta-drug exposure (to bortezomib or ixazomib plus carfilzomib plus lenalidomide
plus pomalidomide plus anti-CD38 monoclonal antibody), and penta-drug refractoriness.

*#%* Refractory status, cytogenetic profile, R-ISS stage, plasmocytomas

MM: multiple myeloma; DXM: dexamethasone; RCT: randomized clinical trial; ISS: International Staging System; LOT: line of treatment;
ATT: average treatment effect in the treated; ATC: average treatment effect in the controls; ATO: average treatment effect in the overlap
population; IPW: inverse probability weighting; MAIC: matched adjusted indirect comparison; ESS: effective sample size
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Box 1: Glossary

Confounder: Variable that affects both the treatment choice and the outcome. Ignoring
those variables in the comparison of treatment groups achieves “confounding-by-

indication” bias.

External control is defined as a group of patients external to the study that differs from
an internal control group consisting of patients from the same population assigned to a

different treatment.

Immortal time bias refers to the difference in estimation achieved by differences in the
selection time of the treatment groups that favor the treated who “survived” up to the
actual administration of the treatment. This can be controlled for by carefully defining the

time to selection in both groups and should be as similar as possible.

Propensity Score (PS): The propensity score is the probability that a patient would
receive the treatment of interest based on the pretherapeutic characteristics of the patient,
the treating clinician, and the clinical environment. PS methods are used to reduce bias in
estimating treatment effects and allow investigators to reduce the likelihood of
confounding when analyzing nonrandomized, observational data. Under several

assumptions, such methods allow causal treatment effects to be provided.

Real World Evidence (RWE) is clinical evidence of the usage and potential benefits or

risks of a medical product derived from an analysis of RWD.

Real World Data (RWD) are data relating to a patient’s health status and/or the delivery

of health care routinely collected from a variety of sources.
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Box 2: Causal assumptions

Consistency relates the observed outcome to potential outcomes that would be observed
under each treatment compared and forms the underlying statistical framework for the
approach. Consistency is generally assumed to be part of the causal model itself but also
implies that the treatments to be compared are well defined and that there are no “hidden”
versions of those, which may be arguable for external controls who may receive different
treatments. In this case, consistency should be considered more at a distributional level, i.e.,

the distribution of different versions of the “treatment” in the population.

No interference is defined as the effect of a treatment on the outcome of an individual and
is not affected by the other individuals being treated. It can be generally accepted for external
controls, in particular because they are often selected from existing cohorts, registries or
electronic health records, and would be unaffected by a limited-sample size trial being

conducted, possibly in different locations or time periods.

No unmeasured confounding indicates that the covariates measured for the trial participants
and external controls comprise all those that are likely to affect the outcome and differ
between groups. This assumption is more challenging, since it requires in practice that all
relevant prognostic factors are recorded for both participants in the trial and external controls.
Additionally, factors that may affect outcomes such as center-specific characteristics,
socioeconomic variables, environmental factors, standard of care, or health systems may not

be available for either the trial participants or the external controls.

Positivity or common support indicates that all individuals have a nonnull probability of
receiving either treatment. External controls have virtually no chance of receiving the
experimental treatment, but one should determine whether controls could have received the
experimental treatment given their individual characteristics had they been followed-up in an
institution participating in the trial. This is not limited to a trial’s eligibility criteria, but one
should also examine other potential confounders. For instance, if the aforementioned factors
are recorded but the standard of care or center expertise differed between the controls and
treated patients, this may violate positivity. Moreover, if the standard of care or center

expertise differed between the controls and treated patients, this may also violate positivity.
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