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Abstract 

Background: While there seems to be a consensus that a decrease in gut microbiome diversity is related to a decline 
in health status, the associations between respiratory microbiome diversity and chronic lung disease remain a matter 
of debate. We provide a systematic review and meta‑analysis of studies examining lung microbiota alpha‑diversity in 
patients with asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) or bronchiectasis (NCFB), in 
which a control group based on disease status or healthy subjects is provided for comparison.

Results: We reviewed 351 articles on title and abstract, of which 27 met our inclusion criteria for systematic review. 
Data from 24 of these studies were used in the meta‑analysis. We observed a trend that CF patients have a less diverse 
respiratory microbiota than healthy individuals. However, substantial heterogeneity was present and detailed using 
random‑effects models, which limits the comparison between studies.

Conclusions: Knowledge on respiratory microbiota is under construction, and for the moment, it seems that alpha‑
diversity measurements are not enough documented to fully understand the link between microbiota and health, 
excepted in CF context which represents the most studied chronic respiratory disease with consistent published data 
to link alpha‑diversity and lung function. Whether differences in respiratory microbiota profiles have an impact on 
chronic respiratory disease symptoms and/or evolution deserves further exploration.

Keywords: Human lung microbiome, Human lung bacteriome, Alpha‑diversity, Chronic respiratory diseases, Asthma, 
Chronic obstructive respiratory disease, Cystic fibrosis, Non‑cystic fibrosis bronchiectasis, Meta‑analysis, Random‑
effects models, Factor Analysis of Mixed Data
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Background
In the last decades, thanks to advancements in Next 
Generation Sequencing (NGS) technologies and bio-
informatics, we have assisted to an explosion of studies 
on microbial communities in human bodies (i.e. human 

microbiome). The gut microbiome has been the most 
studied body site of the human microbiome. In particu-
lar, imbalance in its microbial composition (i.e. dysbiosis) 
is now considered an indicator of deteriorating health 
and has been associated with a variety of chronic health 
conditions such as obesity, type 2 diabetes, non-alcoholic 
liver disease, Crohn disease, and cardio-metabolic dis-
eases [1–3].

One common indicator of dysbiosis is a modified 
(mainly a lower) overall microbial alpha-diversity, which 
denotes the relative abundance of microbial species in 
space and time within a given community (in practice, 
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in the biological sample). In contrast, beta-diversity and 
gamma-diversity measure, respectively, the changes in 
species diversity between different communities and the 
overall diversity for the different communities within a 
region or over time. When quantifying alpha-diversity, 
richness and evenness are the main dimensions [4]. The 
former refers to the number of different species present 
in a given community. The later compares the uniform-
ity of the population size of each of the species. Chao1, 
Shannon and Simpson’s diversity indexes are popular 
mathematical measures of species alpha-diversity in a 
community. Chao1 focuses on species richness. Shannon 
and Simpson’s indexes measure both species richness 
and evenness. Whilst Simpson’s strengthens evenness, 
Shannon strengthens richness. They are usually used to 
describe dysbiosis.

While there appears to be a consensus that a decreased 
alpha-diversity of the gut microbiome is linked to a 
declined health status [1–4], there is no clear evidence 
how this generalizes to the other microbiomes of the 
different human body sites. Especially, relationships 
between respiratory microbiota diversity and chronic 
lung diseases have been recently explored although 
microbial colonization of the airways tract has long char-
acterized chronic lung diseases such as asthma, chronic 
obstructive pulmonary disease (COPD), cystic fibro-
sis (CF), or non-cystic fibrosis bronchiectasis (NCFB). 
In fact, the healthy lungs were long believed to be ster-
ile (i.e. null diversity) after the forth bronchial division, 
which has clearly limited the interest of studying the lung 
microbial diversity until recently. In addition, compared 
to the gut microbiota, the lung microbiota is character-
ized by invasive access and uneasy collecting of samples 
(excepted collecting sputum samples), and low bacterial 
density in the samples connected to the upper respiratory 
samples [5, 6].

Chronic respiratory diseases, especially asthma and 
COPD, are a major cause of death and disability world-
wide [7]. Throughout their respiratory illness course, 
patients experience stable phases, during which the ill-
ness course and symptoms are under control, punctu-
ated by exacerbation phases, during which the illness 
suddenly becomes uncontrolled and symptoms increase 
resulting in an intensification of the provision of medical 
services to patients. By relying on NGS technologies, sev-
eral studies were able to show that respiratory microbiota 
drastically changes during the occurrence of pulmonary 
pathologies [6, 8]. Identifying a range of values in alpha-
diversity indexes when comparing exacerbated and stable 
patients with chronic respiratory diseases and healthy 
subjects may lead physicians to identify new biomarkers 
in chronic respiratory diseases.

In the present work, we propose a systematic review of 
studies investigating the lung microbiota alpha-diversity in 
patients with chronic respiratory diseases in which a control 
group based on disease status or healthy subjects is provided 
for comparison. We focused on the most common measures 
of alpha-diversity (Chao1, Shannon, and Simpson indexes) 
of the most frequently measured microbiome compo-
nent (bacteriome), and the most common chronic diseases 
(asthma, COPD, CF, NCFB, and pulmonary hypertension 
[9]). Subsequently, we conducted a meta-analysis based on 
random-effects models to characterize (whenever possible) 
the difference in alpha-diversity indexes when comparing 
cases to controls. We explored sources of heterogeneity and 
assessed quality and bias risk. Finally, we discussed potential 
clinical relevance of lung microbiota alpha-diversity metrics. 
To the best of our knowledge, this is the first meta-analysis 
focused on alpha-diversity of lung microbiota associated 
with the most common chronic diseases.

Methods
Protocol and registration
We conducted a systematic review according to the 
recommended ”Preferred Reporting Items for System-
atic Reviews and Meta-analyses” (PRISMA) guide-
lines that incorporate network meta-analysis [10, 11] 
and “Meta-analysis of Observational Studies in Epi-
demiology” (MOOSE) consensus statement [12]. This 
systematic review has been registered in PROSPERO 
International Prospective Register of Systematic Review 
(CRD42020140990).

Data source and search strategies
We limited the search to the five most common chronic 
respiratory diseases known to be associated to micro-
bial colonization/infections [6, 8, 9]: asthma, COPD, CF, 
NCFB, and pulmonary hypertension. The search was 
conducted using PubMed, Medline and Scopus data-
bases, and was last updated on September 2021 using the 
equations summarized in Table 1.

Finally, to ensure the comprehensiveness of the litera-
ture search, a second search strategy was then performed. 
The “backward snowballing” method was applied to iden-
tify relevant articles not identified by the search equa-
tions from the reference lists of the included studies.

Study selection and assessment of study quality
Articles had to meet the following criteria to be included 
in the review:

– Dealing with at least one of the chronic respiratory 
diseases studied;
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– Exhibiting alpha-diversity indexes in the article or 
in the additional files that can be properly collected 
(from a table, boxplot or bar chart);

– Being an article where there is at least one control 
group (healthy or patients with a stable disease) 
and at least one case group (stable patients or exac-
erbated patients or all diseased patients);

– Including human adults (people ≥ 18 years-old from 
all origin, sex and age were included in this meta-
analysis); since the diversity of children microbi-
ome, under development, is more unstable and not 
comparable to those of adults, studies focused on 
children population were excluded.

The literature was collectively selected (TA, MAF, CM, 
RE, and LD) based on the above eligibility criteria. For 
comparability purposes, we focused on the most com-
mon measures of alpha-diversity: Chao1, Shannon, 
and Simpson indexes of the most frequently measured 
microbiome component: bacteriome. First, articles 
were selected on title and abstract, and then on full 
reading. All the authors agreed the final selection.

Data collection process
After selection and transferring databases search results 
to the Zotero software, data were extracted from each 
article using a self-designed data extraction form. We 
collected the following data from eligible studies: i) study 
characteristics (title, first author’s name, year of publi-
cation, country and continent where the study was con-
ducted, journal in which the study was published), ii) 
population characteristics (chronic respiratory disease 
involved at different degrees of severity, measured out-
come, type and objectives of the study, sample sizes and 
patient age), iii) NGS method characteristics (type of res-
piratory samples, DNA extraction method, sequencing 
strategy used: metataxonomy or whole genome shotgun 
sequencing, alpha-diversity metrics, taxonomic levels 
selected, and normalization or rarefaction method used), 
iv) microbiota characteristics (main results, covari-
ates, comorbidities and confusion factors associated, 
conclusive remarks especially regarding alpha-diversity 
indexes).

Statistical analyses
Estimating the differences between cases and controls
When the mean and the standard deviation (SD) of the 
alpha-diversity indexes for cases and controls were not 
available, we instead collected the median and first and 
third quartiles and/or minimum and maximum val-
ues and estimated the mean and SD using the Box-Cox 
method, which does not rely on the assumption of nor-
mality [13]. We used the website graphic user interface 
[13]. When a study reported results separately by sub-
groups (other than cases-controls and respiratory dis-
eases), we combined them into a single group [14]. The 
standardized mean and confidence interval ( 95% IC) for 
the difference in alpha-diversity index values between 
each group were calculated with the R package metafor 
[15], assuming heteroscedastic population variances.

Random‑effects meta‑analysis models
To summarize the information from the different studies, 
we assumed that differences in alpha-diversity indexes 
between cases and controls vary from one study to other. 
Random effects models (through the R package metafor) 
allow us to estimate pooled mean differences and 95% 
IC and present them in a forest plot. We separately ana-
lyzed Chao1, Shannon and Simpson indexes, for each of 
the chronic respiratory diseases and for each of the type 
of samples. The random effects models were first applied 
to studies on the same type of samples and disease, sec-
ondly applied to studies on the same disease and finally 
to all the studies. Each model consisted of a fixed inter-
cept, a fixed effect of type of case/control comparison 

Table 1 Equations used to search for articles within databases

Databases Equations used

Pubmed/Medline (microbiome*[Title/Abstract] OR microbiota[Title/
Abstract] OR mycobiome*[Title/Abstract] OR 
mycobiota[Title/Abstract] OR virome[Title/
Abstract] OR flore*[Title/Abstract] OR flora[Title/
Abstract] OR microflor*[Title/Abstract] OR 
microbiota[MeSH Terms]) AND (diversity[Title/
Abstract]) AND (asthma*[Title/Abstract] 
OR Asthma[MeSH Terms] OR COPD[Title/
Abstract] OR ”chronic obstructive pulmonary 
disease”[Title/Abstract] OR ”Hypertension, 
Pulmonary”[MeSH Terms] OR ”cystic fibrosis”[Title/
Abstract] OR ”Cystic Fibrosis”[MeSH Terms] OR 
bronchiecta*[Title/Abstract] OR ”pulmonary arte‑
rial hypertension”[Title/Abstract] OR ”Pulmonary 
Disease, Chronic Obstructive”[MeSH] OR lung 
disease*[Title/Abstract] OR bronchopulmo‑
nary disease*[Title/Abstract] OR pulmonary 
disease*[Title/Abstract] OR airways disease*[Title/
Abstract])

Scopus ((TITLE‑ABS(microbiome*) OR TITLE‑
ABS(microbiota) OR TITLE‑ABS(mycobiome*) 
OR TITLE(mycobiota) OR TITLE‑ABS(virome) 
OR TITLE‑ABS(flore*) OR TITLE‑ABS(flora) OR 
TITLE‑ABS(microflor*)) AND (TITLE‑ABS(diversity)) 
AND (TITLE‑ABS(asthma*) OR TITLE‑ABS(COPD) 
OR TITLE‑ABS(”chronic obstructive pulmonary 
disease”) OR TITLE‑ABS(”cystic fibrosis”) OR TITLE‑
ABS(bronchiecta*) OR TITLE‑ABS(”pulmonary arte‑
rial hypertension”) OR TITLE‑ABS(”lung disease*”) 
OR TITLE‑ABS(”bronchopulmonary disease*”) 
OR TITLE‑ABS(”pulmonary disease*”) OR TITLE‑
ABS(”airways disease*”)))

https://smcgrath.shinyapps.io/estmeansd
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and a random intercept term to describe variation among 
studies. In the present meta-analysis, the possible types 
of case/control comparisons were: patients with a stable 
chronic pulmonary disease vs. healthy people, patients 
with an exacerbation of the chronic pulmonary disease 
vs. healthy people, diseased patients vs. healthy group, 
and patients with an exacerbation of the chronic pulmo-
nary disease vs. patients with a stable chronic pulmonary 
disease. The ANOVA test was used to evaluate the com-
parison group effect. Heterogeneity analysis was assessed 
through the Cochran’s Q test and the Higgins’ I2 statistic 
analysis [16, 17].

Heterogeneity sources’ exploration
Differences in study populations, samples, microbiome 
sampling techniques and protocols, and other study char-
acteristics are potential sources of heterogeneity. We con-
ducted a Factor Analysis of Mixed Data (FAMD) using 
the FactoMineR R package [18] to investigate whether 
the discrepancies between the results of the studies in 
term of alpha-diversity metrics were due to heterogenous 
experimental conditions or to inherent variability in the 
lung microbiota.

FAMD is a multivariate technique that analyzes data in 
which observations are described by several inter-corre-
lated quantitative and qualitative variables. Thus, FAMD 
combines Principal Component Analysis for continu-
ous variables and Multiple Correspondence Analysis for 
categorical variables. The goal is to extract the important 
information from the multivariate characteristic and rep-
resent it graphically. The sample size of cases and controls 
constitute the two continuous variables, and the type of 
samples (bronchoalveolar lavage (BAL), sputum, induced 
sputum, lower airways (LA), upper airways (UA)), the 
samples origin continent (Asia, America, or Europe), the 
NGS sequencing method (Pyrosequencing such as 454 
FLX (Roche© ) or bridge amplification such as MiSeq or 
HiSeq (Illumina© ) or long read sequencing such as PacBio 
(Pacific Biosciences© ), the use of rarefaction analysis (yes 
or no/not stated clearly), the taxonomic level used (OTU 
or genus level), and clustering method (OTU or ASV) con-
stitute the categorical variables. The output of the analy-
sis was a biplot projection in which similar studies (with 
respect to the listed variables) were close. Then, we visually 
evaluated whether the differences or similarities in alpha-
diversity indexes between studies could be explained by 
distance or closeness in the FAMD biplot projection.

FAMD is an explanatory analysis where no statistical infer-
ence can be made. The ANOVA test was applied to assess the 
effect of study characteristics on alpha-diversity. As before, 
we analyzed Shannon, Chao1, and Simpson indexes sepa-
rately and assumed random-effects meta-analysis models.

Quality and risk of bias assessment
In parallel, quality assessment was performed indepen-
dently by two authors (LD and RE). Studies were rated 
1/3 (poor quality), 2/3 (average quality) or 3/3 (good 
quality) based on clinical characterization of the chronic 
lung diseases, case and control sample sizes, case and 
control comparability, microbiome sampling techniques, 
NGS procedures, and the sequencing methods and taxo-
nomic levels. The final score was obtained as the sum of 
the two authors’ rate. The spacial distribution of the stud-
ies on the FAMD biplot was interpreted in the light of the 
quality score. Then, to assess risk of bias, we restricted 
the evaluation of differences in alpha-diversity indexes in 
the biplot to high quality studies. A similar bias assess-
ment approach in meta-analysis has been previously pro-
posed [19]. The ANOVA test was also applied to assess 
the effect of quality score on alpha-diversity assuming 
random effects models.

Results
Study selection
Our search identified 628 articles in all, and after remov-
ing duplicate records ( n = 277 ), we screened 351 arti-
cles on titles and abstracts. Among them, 160 articles 
were excluded at this stage mainly because they were not 
focused on disease or outcome studied here ( n = 80 ), not 
reported alpha-diversity of microbiota ( n = 32 ), or not 
on human microbiota ( n = 10 ) (Fig.  1). Of the 192 full 
text articles reviewed for eligibility, 25 studies met our 
inclusion criteria for the systematic review. In addition, 
two studies were included using the backward snowball-
ing method, as these point two studies did not included 
our inclusion criteria in the title or abstract; the met-
ataxonomy analysis or the alpha-diversity indexes being 
found in the full text or the additional files [20, 21]. In the 
end 27 studies were included in the literature review. The 
reasons for exclusion at every step are summarized in 
Fig. 1. Finally, data from 24 studies were used in the final 
meta-analysis, as three studies were excluded: one study 
was the only one measuring alpha-diversity with the Fish-
er’s index [22], one study analyzed the phages associated 
with the bacteria [23], and the other study used a differ-
ent, non-comparable molecular method since the authors 
analyzed the metagenomics profiles by using terminal 
restriction fragment length polymorphism (T-RFLP) 
which is not a NGS approach [24].

Studies characteristics
Characteristics of studies included in the meta-analysis 
are presented in Table 2. Six studies deal with CF, 8 with 
COPD, and 10 with asthma, as primary disease (several 
studies targeting more than one chronic pulmonary dis-
ease, Table 2). Only one selected study focused on NCFB, 
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while none on pulmonary hyper-tension. All of the stud-
ies dedicated to the respiratory tract microbiota, mainly 
based on sputum samples analysis (spontaneously expec-
torated sputum n = 8 , and induced sputum n = 5 ) but 
also 6 studies focused on BAL, 2 on upper airway and 3 
on lower airway samples analysis.

On the molecular side, the majority of the studies used 
metataxonomy approaches. However, these metataxon-
omy methods exhibited numerous heterogeneities. First, 
NGS analyses were conducted on 454 Roche© pyrose-
quencing platform ( n = 12 ), or Illumina© System (mainly 
MiSeq platform, n = 8 ), PGM Ion torrent© ( n = 2 ), 454 
Roche© pyrosequencing plus Illumina© ( n = 1 ), or on 
Illumina© plus PacBio Pacific Biosciences© ( n = 1 ) plat-
forms. Two studies [20, 25] used shotgun whole genome 
sequencing, while the others utilized 16S sequencing. 
Two studies [21, 25] used the ASV approach for cluster-
ing the data. We also noted heterogeneity regarding the 
amplified region of the 16S rDNA, with the most widely 
used being the variable regions: V4 ( n = 5 studies), 

V1-V3 ( n = 4 ), V3-V5 ( n = 2 ), V3-V4 ( n = 2 ), and V1-V2 
( n = 2 ). In addition, normalization procedure (especially 
the construction of the so-called rarefaction curves used 
to study diversity) was clearly mentioned and used in 
only 14 studies. In the remaining studies, construction of 
rarefaction curves was not mentioned.

On the clinical side, clinical status of patients, popu-
lation sizes, and alpha-diversity indexes are detailed in 
Table  3. Shannon index was the most widely reported 
alpha-diversity index, reported across all the stud-
ies except [26], followed by Chao1 richness and Simp-
son indexes (reported in about one third of the studies). 
Whatever the NGS method and the index used, we 
noticed that the mean values were highly variable from 
one study to another (Table  3). Study designs also vary 
from study to study. Most studies use a case-control 
design, some studies use a cross-sectional design, and 
one study [27] uses a case-crossover design (i.e., cases 
and controls are the same subjects measured at two dif-
ferent time points).

Fig. 1 PRISMA flow diagram summarizing our search results and study selection for the systematic review and meta‑analysis
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Differences in alpha-diversity indexes between healthy 
and diseased people were more marked in CF.
For each alpha-diversity index, each chronic respiratory 
disease, and each type of sample, we summarized the dif-
ference between cases and controls alpha-diversity values 
in a forest plot representation. Fig. 2 shows standardized 
differences between mean values for controls and mean 
values for cases and their confidence intervals.

Half of the studies provided no significant difference in 
alpha-diversity indexes between controls and cases. Some 
studies exhibited a significant increase of alpha-diversity 
in cases: for asthma via the Shannon and Chao1 indexes, 
when comparing healthy and stable patients [28, 31, 33] 
and healthy and diseased patients [30, 35]; for COPD via 
the Shannon’s and Simpson’s indexes when comparing 
healthy and stable or exacerbated patients [38].

On the other side, few studies provided a significant 
increase of alpha-diversity indexes in controls: for asthma 
via Shannon index when comparing healthy and stable 
patients [36], and via Shannon and Chao1 indexes when 
comparing healthy and diseased patients [34]; for COPD 
via the Shannon index, when comparing healthy and sta-
ble patients [39] and healthy and diseased patients [25]; 
for CF, when comparing healthy with diseased patients 
[42, 44] and stable with exacerbated patients [45] (via 

Shannon for all these three studies, besides Chao1 index 
for [44]).

Some studies presented opposite findings when using 
different alpha-diversity measures. For example, alpha-
diversity in healthy people has a tendency to be higher 
than in stable or exacerbated asthmatic patients, using 
Shannon or Simpson indexes and lower when using 
Chao1 index [32]. In COPD, higher alpha-diversity 
among healthy people compared to diseased patients was 
observed using Shannon index and lower when using 
Simpson index [40]. On the other hand, lower Shan-
non index values and higher Chao1 index values were 
observed in stable compared with exacerbated patients 
[41].

In CF, the Shannon and Chao1 diversities of healthy 
individuals appeared to be consistently higher than those 
of CF patients (yet this result is based on only two studies 
[42, 44], only one for the Chao1 index [44]).

The effect of the comparison group (ANOVA tests, 
Table 4) was not significant except for CF with the Shan-
non index (considering only sputum samples, p = 0.04 , 
as well as considering all samples together, p = 0.0007 ). 
The analysis of the Cochran’s Q test and the Higgins I2 
statistics confirmed that substantial heterogeneity was 
present, except for CF with the Shannon index and for 

Fig. 2 Forest plot summarizing results from the random‑effects meta‑analysis model. A summary by type of sample, by disease and for all the 
studies is estimated by assuming the random effects model when data are available for at least two comparable studies. Values to the right of the 
vertical axis (positive values) indicate that the diversity of the control group (the healthiest group in each comparison) is greater than that of the 
case group. Conversely, values to the left of the vertical axis (negative values) indicate that the diversity of the control group is lower than that of the 
case group. When a confidence interval crosses the vertical axis, the standardized difference between the mean value of control diversity and the 
mean value of case diversity is not significant for the given study
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asthma with the Simpson index (Table  4). We docu-
mented further this heterogeneity using quality and risks 
of bias assessment.

Quality and risk of bias assessment of the meta-analysis
As Shannon index was the most reported metric 
throughout the 24 selected studies (Fig.  2 and Table  3), 
we focused on this metric and explored the correspond-
ing heterogenity using FAMD approach.

The percentage of variance explained by the first two 
factors is about 32% . Each study position depends on 
its population and sampling characteristics (Additional 
file  1: Fig. S4). In addition, the distance between stud-
ies depends on the closeness of their characteristics 
(Additional file 1: Figs. S5−S12). The quality assessment 
performed by two experts (Table  2) did not allow to 
characterize the spacial distribution of the studies in the 
biplot (Fig. 13, Supplementary material).

Then, we explored the biplot of FAMD as a function 
of the mean Shannon diversity differences between 
cases and controls (Fig.  3). Whatever the respiratory 
disease (asthma, COPD, CF, or NCFB), the distribution 
according to the color degrees (between 1 in red to -1 
in blue) appeared to have a random distribution. For 

example, when comparing the difference in Shannon 
diversity between healthy individuals and stable COPD 
patients, Pragman et al.  [38] and Einarsson et al.  [39], 
close in the FAMD biplot (which indicates close study 
conditions) show opposite results (higher diversity in 
cases in the first study while lower in the second study) 
(Fig 3). Inversely, when comparing healthy individuals 
and diseased CF patients, Narayanamurthy et  al.  [44] 
and Pletcher et  al.  [42], distant in the FAMD biplot 
(which indicates quite different study conditions) show 
similar results (higher Shannon diversity in controls). 
The same trends were observed with Chao1 and Simp-
son indexes (results not shown). We come to the same 
conclusion when restricting to top quality studies. 
Finally, we assessed the effect of characteristics on the 
difference in Shannon values between cases and con-
trols (Additional file 1: Table S5). The quality of studies 
(measured by the sum of expert assessments) did not 
appear to be related to the difference observed between 
cases and controls. Differences observed in asthma 
studies appeared to be associated to the samples ori-
gin continent (3 American, 2 European and 5 Asian 
studies), while the NGS sequencing method appeared 
to be associated in CF studies (half of the studies used 

Table 4 Random‑effects model statistics: p‑values for ANOVA tests (used to assess the effect of comparison group), p‑values for 
Cochran’s Q tests and Higgins’ I2 statistics (both used to assess heterogeneity)

A line indicates that the test could not be performed (since only one comparison group, in the case of ANOVA, or insufficient number of studies, in the case of 
heterogeneity statistics)

Alpha-diversity index Disease Sample type ANOVA p-value Cochran’s Q p-value I
2 statistic

Shannon Asthma BAL 0.81 0.01 85%

Sputum (induced) 0.98 < 0.01 92%

UA – < 0.01 92%

All 0.94 < 0.01 87%

COPD BAL – 0.02 80%

All 0.59 < 0.01 87%

CF Sputum 0.04 0.07 70%

All < 0.01 0.16 48%

NCFB – – –

All 0.82 < 0.01 86%

Chao1 Asthma UA – 0.03 78%

All 0.24 0.03 65%

COPD – – –

CF – – –

NCFB – – –

All 0.09 < 0.01 68%

Simpson Asthma All 0.99 0.06 71%

COPD – – –

CF – – –

NCFB – – –

All 0.45 0.02 59%
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Illumina and the other half, 454 pyrosequencing). Dif-
ferences in Shannon diversity appeared to be linked to 
the taxonomic level when considering all the diseases 
altogether. The type of samples did not show any asso-
ciation. These results from ANOVA tests should be 
taken with caution because no adjustments are made 
for the type of comparison between cases and controls 

or other variables and, in addition, the number of stud-
ies is small.

Discussion
In this systematic review and meta-analysis, we high-
lighted that when looking at the big picture (all dis-
eases combined, asthma, COPD, CF and NCFB; for all 

Fig. 3 FAMD biplot Vs. mean Shannon diversity differences between cases and controls. Dot sizes of studies (Byu17 [46] Car13 [27], Cob15 [45], 
Den16 [29], Ein16 [39], Erb11 [37], Fei17 [25], Gol13 [28], Hua20 [34], Kim17 [4], Lee18 [20], Li17 [32], Liu20 [31], Mar13 [33], Mil15 [41], Mun16 [35], 
Nar17 [44], Par14 [36], Ple19 [42], Pra12 [38], Sor20 [43], Sve17 [30], Wan20 [21]) are different depending on the disease. Color degree represents the 
sign (positive or negative) and the amount of the difference between mean diversity of cases and mean diversity of controls



Page 12 of 15Avalos‑Fernandez et al. Respiratory Research          (2022) 23:214 

alpha-diversity measures, Shannon, Chao1 and Simpson 
indexes), there is no clear trend in the respiratory micro-
biota diversity of people with some chronic respiratory 
diseases (healthy vs. stable/ill/exacerbated) compared 
with that of healthy people neither in individuals with 
chronic lung disease during a stable period compared 
with individuals with chronic lung disease during an 
acute exacerbation (Fig.  2). However, we found a slight 
trend toward greater respiratory microbiota Shannon 
diversity in stable patients compared with exacerbated 
patients and a more marked trend toward greater respira-
tory microbiota Chao1 diversity in healthy vs. diseased 
individuals. Yet, these results should be interpreted with 
caution given the limited number of studies available.

Looking closely at each chronic respiratory disease, 
we have shown that in CF there is a greater respiratory 
microbiota diversity in healthier individuals (healthy vs. 
ill) (Fig. 2) and a slight trend toward greater respiratory 
microbiota diversity in stable vs. exacerbated patients. 
Results from the analysis of alpha-diversity for healthy 
people vs. asthmatic or COPD people appeared to be 
more mitigated, in line with published data exhibit-
ing divergent conclusive remarks [38, 41, 47]. Further-
more, the absence of significant difference in respiratory 
microbiota profiles between mild and moderate COPD 
patients and healthy people has been noticed recently 
[48]. In addition, the lung microbiota is known to display 
greater spatial variation between individuals than within 
individuals and chronic respiratory diseases, especially 
COPD and asthma, are recognized as highly heteroge-
neous diseases. As COPD is classically considered to be 
a bronchial inflammation in which neutrophils play a 
central role while asthma is more particularly associated 
with eosinophilic airway inflammation [49], it is difficult 
to compare these different populations and their lung 
microbiota, especially regarding alpha-diversity metrics 
[50, 51]. We compared alpha-diversity metrics by type 
of indexes for the different chronic respiratory diseases: 
asthma, COPD, CF and NCFB, but most of the studies 
included in this meta-analysis are cross-sectional studies. 
Even if a continuum has been proposed between several 
chronic respiratory diseases (especially from asthma to 
COPD [52]), these diseases remains clinical entities with 
an adapted therapeutic management and numerous het-
erogeneities between them [50, 51]. In addition, recent 
published data demonstrated that the microbiome com-
position and its alpha-diversity indexes at a unique single 
time-point could not classify CF patients in ”stable” and 
”decliner”, for example [53]. To overcome these biases, 
longitudinal studies are warranted, as recently proposed 
[53].

While understanding the drivers of diversity remains 
a key point in ecology, there are different methods and 

parameters for describing diversity and documenting its 
effects on ecosystem health and function. Among them, 
alpha-diversity indexes, especially Shannon, Chao1 and 
Simpson’s indexes, are widely used to described the 
diversity at the local (the biological sample) scale. Whilst 
Simpson’s strengthens evenness, Shannon strengthens 
richness. Moreover, Shannon index is a type I index that 
is sensitive to important variations of the rarest spe-
cies, but Simpson index belongs to type II indexes, sen-
sitive to major variations of the most abundant species. 
Albeit Shannon index remains the most common alpha-
diversity index, several other indexes can be used. For 
example, Fisher’s alpha index, which refers to Fisher’s 
logarithmic series model, represents the first attempt to 
describe mathematically the relationship between the 
number of species and the number of individuals in those 
species, and has been successfully used to demonstrate 
that microbiota diversity, dominance, and the identity of 
the dominant bacterial species are informative indicators 
of CF disease state in combination with measures of lung 
function in a multicentric study [22]. In addition, the 
concept of microbial translocation in the CF airways has 
been proposed and documented [42], which highlights 
the specificity of alpha-diversity measures to a given site 
and disease. The Berger-Parker dominance index, which 
measures the proportion of the microbiome dominated 
by the most abundant taxa, has also been applied in res-
piratory research [54]. This index focuses on dominant 
species rather than rare species and can provide impor-
tant additional information when the study focuses spe-
cifically on the most abundant trait. More generally, the 
concept of dysbiosis is vast and cannot be reduced to a 
single quantitative measure valid for all chronic respira-
tory diseases and all populations [55, 56].

On the other hand, using random effects models, we 
highlighted a strong heterogeneity between the studies, 
which makes comparisons challenging and limits our 
conclusions with the available data (Fig. 2). Intra-individ-
ual variability [57], inter-individual variability, differences 
in study populations, samples, clustering approaches 
[58], microbiome sampling techniques and protocols, 
and other study characteristics are potential sources 
of heterogeneity. Using FAMD [18], we conducted an 
exploratory data analysis allowing us to analyze the simi-
larity/dissimilarity of the studies according to certain 
factors at the origin of the heterogeneity reported in the 
papers (the sample size of cases and controls, the type of 
samples, the samples origin continent, the NGS sequenc-
ing method, the use of rarefaction analysis, the taxo-
nomic level used). Our use of FAMD in exploring bias 
in meta-analyses is innovative and was completed with 
ANOVA tests. However, these analyses are limited by the 
small number of studies included (n=24, Fig. 1), which, 
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in particular, did not allow us to group studies according 
to the type of samples.

We did not identify any evident links between alpha-
diversity results and the studies’ characteristics or quality 
(Fig. 3), even if the sample size, the use of normalization 
method such as rarefaction, and the suitableness of col-
lecting sputa as sampling method appeared to be notable 
study characteristics. As there was an important imbal-
ance between studies in term of participants, studies with 
larger numbers of participants (and therefore smaller 
SD and wider 95%CI) have a greater weight in the meta-
analysis results. This may have impacted the result in sit-
uations were few studies were available. These results 
reinforce the need to standardize the protocol to analyze 
the respiratory microbiota, additionally respiratory flora 
appears to be not limited to bacterial flora but also com-
posed of viral and fungal floras [43].

In order to limit the great heterogeneity present in this 
field, we focused on the most widespread measures in 
the literature (the Shannon, Chao1, and Simpson alpha-
diversity indices of the bacterial component); on stud-
ies presenting at least one case group and at least one 
control group (defined on the basis of the disease); on 
adults; and on studies using techniques that are not too 
far apart. As a consequence of this choice, some relatively 
large observational studies and trials providing interest-
ing data and results were not included since they did not 
reach the study inclusion criteria. This was the case for 
the BLESS and CAMEB cohorts on non-cystic fibrosis 
bronchiectasis and the U-BIOPRED cohort on asthma 
[59–62]. Analyses of the CAMEB cohort focused either 
on analysis of the mycobiome exclusively [60] or on anal-
ysis of the entire microbiome (including bacteria, viruses 
and fungi) [61]. Shannon diversity was calculated but 
on the basis of renormalized and concatenated data, in 
agreement with the objective of the study (to assess the 
whole microbiome) but not with the objective of our 
meta-analysis (to assess the alpha-diversity of the bacte-
rial microbiome). The study on BLESS [59] performed an 
analysis of the Bray Curtis index and relative abundances 
of specific species (Pseudomonas aeruginosa and Hae-
mophilus influenza), but no analysis of alpha-diversity 
indices is provided. Finally, a recent publication on the 
U-BIOPRED cohort [62] measured alpha-diversity indi-
ces. However, the objective of this study was to identify 
phenotypes or clusters of severe asthma based on sputum 
microbiome profiles and to assess their stability after one 
year of follow-up. Given the longitudinal aspect and the 
absence of a control group in this study, it seemed inap-
propriate to include it in our meta-analysis. The lack of 
important studies (either by large sample size or by other 

quality criteria) is therefore a limitation of our study. Our 
study does not provide an overview of knowledge in the 
field, but rather a review of knowledge provided by stud-
ies based on the most commonly used criteria.

A second limitation of our meta-analysis is that it relies 
on the estimation of means and SD for studies reporting 
only quartiles. We used a method that does not rely on 
normality [13], but these estimates may be sensitive to 
small sample sizes, which are common in studies of res-
piratory microbiota. We argue for more data available in 
articles, additional files, or researchers’ web pages that 
would allow for better comparison of studies, with more 
reliable data.

Conclusions
To conclude, while it is well admitted that high gut 
microbiota diversity is associated to health, the pre-
sent meta-analysis showed that the current available 
knowledge and data do not allow us to extrapolate this 
result to the respiratory microbiota. Even though we 
noted some trends toward the same conclusion for 
some diseases (e.g. healthy vs CF), we also showed that 
it is not the case for all diseases (eg. healthy vs asthma 
or COPD). It is moreover difficult to perform compari-
sons across studies, because of the high heterogeneity 
detailed using random effects models. Knowledge on 
respiratory microbiota and health is under construction, 
and for the moment, it seems that the measurement of 
alpha-diversity isn’t enough to fully understand the link 
between microbiota and health, excepted in CF context 
which represents the most studied chronic respiratory 
disease with consistent data to link alpha-diversity and 
lung function [22] and ours. Whether differences in res-
piratory microbiota profiles have an impact on chronic 
respiratory disease symptoms and/or evolution deserves 
further exploration. Finally, as methods and practices 
tend to homogenize in gut microbiota analysis, we may 
expect the same evolution will happen soon to respira-
tory microbiota analysis and will help us to establish 
comparison between studies.
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