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Abstract

We present a method for parameter estimation for nonlinear mixed-
effects models based on ordinary differential equations (NLME-ODEs).
It aims to regularize the estimation problem in the presence of model
misspecification and practical identifiability issues, while avoiding the
need to know or estimate initial conditions as nuisance parameters. To
this end, we define our estimator as a minimizer of a cost function
that incorporates a possible gap between the assumed population-level
model and the specific individual dynamics. The computation of the
cost function leads to formulate and solve optimal control problems at
the subject level. Compared to the maximum likelihood method, we
show through simulation examples that our method improves the esti-
mation accuracy in possibly partially observed systems with unknown
initial conditions or poorly identifiable parameters with or without model
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error. We conclude this work with a real-world application in which
we model the antibody concentration after Ebola virus vaccination.

Keywords: Dynamic population models, Ordinary differential equations,
Optimal control theory, Mechanistic models, Nonlinear mixed effects models,
Clinical trial analysis

1 Introduction

Ordinary differential equation (ODE) models are standard in population
dynamics, epidemiology, virology, pharmacokinetics, or genetic regulatory net-
work analysis since they can describe the main mechanisms of interaction
between different biological components of complex systems and their evolu-
tion over time and because they also provide reasonable approximations to
stochastic dynamics (Perelson et al (1996); Engl et al (2009); Villain et al
(2019)).

For experimental designs with a large number of subjects and a limited
number of individual measurements, nonlinear mixed-effects models may be
more relevant than single-subject models, since they allow to collect infor-
mations from the entire population while accounting for variability among
individuals. For instance, clinical trials and pharmacokinetics/pharmacody-
namics studies often fall into this category (M. Lavielle and Mentre (2011);
Guedj et al (2007)). Formally, we are interested in a population where the
dynamic of each subject i ∈ J1, nK is modeled by the d-dimensional ODE:{

ẋi(t) = fθ,bi(t, xi(t))
xi(0) = xi,0

(1)

where f is a d−dimensional vector field, θ is a p−dimensional parameter,
bi ∼ N(0, Ψ) is a q−dimensional random effect where Ψ is a variance-
covariance matrix, xi,0 is the initial condition for subject i. We denoteXθ,bi,xi,0

the solution of (1) for a given set (θ, bi, xi,0). In (1), we can also incorporate
covariate functions zi which are omitted here for the purpose of clarity.

Our goal is to estimate the true population parameters (θ∗, Ψ∗) as well as
the true subject specific realizations {b∗i }i∈J1, nK from partial and noisy obser-
vations coming from n subjects and described by the following observational
model:

yij = CXθ∗,b∗i ,x
∗
i,0
(tij) + ϵij .

For the i−th subject, we denote tij its j-th measurement time-point on the
observation interval [0, T ] and ni its total number of available measurements.
Here C is a do×d sized observation matrix emphasizing the potentially partially
observed nature of the process and ϵij ∼ σ∗ × N(0, Ido) is the measurement
error. The vector yi = {yij}j∈J1, niK corresponds to the set of observations avail-

able for the i-th subject and y = {yi}i∈J1, nK is the set of all observations in the
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population. We also assume that only a subset xk∗i,0 of x∗i,0 is perfectly known,
the other ones, denoted xu∗i,0, being unknown and they are ordered as follows

xi,0 =
((
xui,0
)T
,
(
xki,0
)T)T

for the sake of clarity. Nonetheless, pre-existing

information can be available for xu∗i,0 under the form of a priori distribution

with a possibly parameter dependent density P
(
xui,0 | θ,Ψ, bi

)
. The same holds

for (θ,Ψ) for which a priori distribution P (θ,Ψ) can be available.
Our problem belongs to the class of parameter estimation problem in non-

linear mixed effect models based on ODEs (NLME-ODEs). In this context,
frequentist methods based on likelihood maximization (via different numeri-
cal procedures: Laplace approximation Pinheiro and Bates (1994), Gaussian
quadrature Guedj et al (2007) or SAEM Comets et al (2017); Lavielle and
Mentré (2007)) and Bayesian ones aiming to reconstruct the a posteriori distri-
bution or to derive the maximum a posteriori estimator (via MCMC algorithms
Lunn et al (2000); Huang and Dagne (2011), importance sampling Raftery and
Bao (2010), approximation of the asymptotic posterior distribution Prague
et al (2013)) have been proposed. In particular, dedicated methods/softwares
using the structure of ODE models have been implemented to increase numer-
ical stability and speed up convergence rate (Tornoe et al (2004)), to reduce
the computational time (Donnet and Samson (2006)) or to avoid the repeated
model integration and estimation of initial conditions (Wang et al (2014)).
However, all the preceding methods face similar pitfalls due to specific fea-
tures of population models based on ODEs (with the exception of Wang et al
(2014)):
1. They do not take into account the presence of model misspecification,

a common feature of ODE models used in biology. Indeed, the ODE
modeling process suffers from model inadequacy, understood as the dis-
crepancy between the mean model response and the real process, as
well as residual variability subject to specific stochastic perturbations
or missing elements that disappear by averaging over the entire popula-
tion (Kennedy and O’Hagan (2001)). As examples of the causes of model
inadequacies, one can think of the ODE models used in epidemiology
and virology, which are derived by approximations in which, for exam-
ple, interactions are modeled by pairwise products, while higher order
terms and/or the influence of unknown/unmeasured external factors are
neglected. As for residual variability, recall that biological processes are
often stochastic and the justification for deterministic modeling lies in the
approximation of stochastic processes (Kurtz (1978); Kampen (1992)).
Moreover, in the context of NLME-ODEs, new sources of model uncer-
tainties emerge. Firstly, error measurement in covariates zi can lead to
use a proxy function ẑi instead of zi (Huang and Dagne (2011)). Sec-
ondly, the sequential nature of most inference methods leads to estimate
{b∗i }i∈J1, nK based on an approximation θ̂ instead of θ∗. Thus, the struc-
ture of mixed-effect models spreads measurement uncertainty into the
mechanistic model structure during the estimation. It turns classical sta-
tistical uncertainties into model error causes. Estimation of θ∗, Ψ∗ and
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{b∗i }i∈J1, nK must be performed in the presence of the model error, although
it is known to dramatically affect the accuracy of methods that do not
take it into account (Brynjarsdottir and O’Hagan (2014)).

2. They have to estimate or make assumptions on the true unknown ini-
tial conditions xu∗i,0. In ODE models, the initial conditions are generally
nuisance parameters in the sense that inferring their values does not
bring answers to the scientific questions which motivate the model con-
struction but is necessary for the estimation of the relevant parameters.
For example, partially observed compartmental models used in pharma-
cokinetics/pharmacodynamics often involve unknown initial conditions
which needs to be inferred to estimate the transmission rates between
compartments, which are the true parameters of interest. Unknown ini-
tial conditions imply either assumptions on xu∗i,0 values (M. Lavielle and
Mentre (2011)), another potential cause of model misspecifications, or
their estimation (Huang and Lu (2008)). This latter case requires a
priori knowledge to derive P

(
xui,0 | θ,Ψ, bi

)
expression and simultane-

ous inference of (b∗i , x
u∗
i,0) as subject specific parameters. This increases

the complexity of the related optimization problem and can degrade
estimation accuracy.

3. They can face accuracy degradation when the inverse problem of param-
eter estimation is ill-posed (Engl et al (2009)) due to practical identifia-
bility issues. Ill-posedness in ODE models is often due to the geometry
induced by the mapping (θ, bi, xi,0) 7−→ CXθ,bi,xi,0 , where there can be a
small number of relevant directions of variation skewed from the original
parameter axes (Gutenkunst et al (2007)). This problem, called sloppi-
ness, often appears in ODE models used in biology (Gutenkunst et al
(2007); Leary et al (2015)) and leads to an ill-conditioned Fisher Infor-
mation Matrix. For maximum likelihood estimators this is a cause of high
variance due to the Cramér-Rao bound. For Bayesian inference, it leads to
a nearly singular asymptotic posterior distribution because of Bernstein–
von Mises theorem (see Campbell (2007) for the computational induced
problems). Although this problem is in part mitigated in NLME-ODEs
which merge different subjects for estimating (θ∗,Ψ∗) and use distribu-
tion of bi | Ψ as prior at the subject level (Lavielle and Aarons (2015)),
estimation accuracy can benefit from the use of regularization techniques.

These specific features of ODE-based population models limit the amount
of information classic approaches can extract for estimation purposes from
observations no matter their qualities or abundances. This advocates for the
development of new estimation procedures. Approximate methods (Varah
(1982); Ramsay et al (2007)) have already proven to be useful for ODE models
to face such issues. They rely on an approximation of the solution of the orig-
inal ODE (1) which is expected to have a smoother dependence with respect
to the parameters and to relax the constraint imposed by the model during
the estimation process. The interest of such approximations is twofold. Firstly,
they produce estimators with a better conditioned variance matrix comparing
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to classic likelihood based approaches. Secondly, they reduce the effect of model
error on estimator accuracy. Also, some of these approximations bypass the
need to estimate initial conditions (Ramsay et al (2007); Clairon (2020)). Still,
these methods are currently limited to cases where observations are coming
from one subject.

In this work, we develop a new estimation method adapted to NLME-ODEs
integrating such approximations to mitigate the effect of model misspecifica-
tion and poorly identifiable parameters on estimation accuracy, while avoiding
the need to estimate xu∗i,0 as additional subject specific parameters. We propose
here a hierarchical profiling approach taking the form of a nested estimation
procedure. The unknowns initial conditions

{
xu∗i,0
}
i∈J1,nK

are seen as nuisance

parameters for {b∗i }i∈J1,nK estimation, which are in turn considered as nui-

sance parameters for population parameter (θ∗,Ψ∗, σ∗) estimation. This lead
to the construction of outer, middle and inner criteria for the estimation of
(θ∗,Ψ∗, σ∗), {b∗i }i∈J1,nK and

{
xu∗i,0
}
i∈J1,nK

respectively. The inner criteria is

designed to incorporate P
(
xui,0 | θ,Ψ, bi

)
if an expression is proposed for it but

can also be defined without if no prior information exists for
{
xu∗i,0
}
i∈J1,nK

.

Also, this criterion accounts for model error presence by assuming that the
actual dynamic of each subject is better described by a perturbed version of
the ODE (1). This added perturbation aims to capture different sources of
errors at the subject level (Brynjarsdottir and O’Hagan (2014); Tuo and Wu
(2015)). We control the magnitude of the acceptable perturbations by defining
the inner criteria through a cost function balancing the two contrary objec-
tives of fidelity to the observations and to the original model: to this end, we
introduce a model discrepancy penalization term. The practical computation
of the chosen perturbations requires to solve optimal control problems (Clarke
(2013)) known as tracking problems. This is done using a method inspired by
Cimen and Banks (2004) which has the advantage to automatically provide
an estimator for xu∗i,0 with no additional computational costs. This is the key
element to efficiently profile on initial conditions during b∗i estimation.

In section 2, we present the inner, middle and outer criteria used to define
our estimator. In section 3, we compare our approach with classic maximum
likelihood in simulations. Then, we proceed to the real data analysis coming
from clinical studies and a model of the antibody concentration dynamics
following immunization with an Ebola vaccine in East African participants
(Pasin et al (2019)). Section 5 concludes and discuss future extensions of the
method.

2 Estimator construction: definition of the
inner/middle/outer criteria

From now on, we use the Choleski decomposition σ2Ψ−1 = △T△ and the
parametrization ϕ := (θ,∆, σ) instead of (θ,Ψ, σ) to enforce positiveness
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and symmetry of Ψ and denote in a summarized way the set of all popula-
tion parameters. The norm ∥.∥2 denotes the classic Euclidean one defined by

∥b∥2 =
√
bT b. Similarly as in the Expectation-Maximization (EM) algorithm,

we estimate the population and individual parameters via a nested procedure:

� Estimator ϕ̂ obtained by minimization of an outer criterion F based on an
approximation of minbminxu

0
(− lnP [ϕ, b, xu0 | y]), the log joint-distribution

of (ϕ, b, xu0 ) sequentially profiled on b := {bi}i∈J1,nK and xu0 :=
{
xu0,i
}
i∈J1,nK

,

which are respectively the set of all random effects and unknown initial
conditions among all subjects.

� Estimator b̂i := b̂i(ϕ) obtained for each subject i by minimiza-
tion of a middle criterion Gi based on an approximation of
minxu

0,i

(
− lnP(yi, bi, x

u
0,i | ϕ)

)
, the log joint-distribution of the data, the

random effects and unknown initial conditions profiled on the latter.
� Estimator x̂u0,i := x̂u0,i(ϕ, bi) obtained for each subject i by minimization of
an inner criterion Hi based on an approximation of − lnP(yi, x

u
0,i | ϕ, bi),

the log joint-distribution of the data and unknown initial conditions.

Our estimation procedure can be expressed in a pseudo-algorithmic way.

1/ Outer criteria minimization:

ϕ̂ = argminϕ F (ϕ)

:= argminϕ−2 ln P̃(ϕ, b̂, x̂u0 | y),

for a given subject i and ϕ value:

2/ middle criteria minimization:

b̂i(ϕ) = argminbi Gi(bi | ϕ)
:= argminbi −2 ln P̃(yi, bi, x̂u0,i | ϕ),

for a given bi value:

3/ inner criteria minimization:

x̂u0,i(ϕ, bi) = argminxu
0,i
Hi(x0,i | ϕ, bi)

:= argminxu
0,i

−2 ln P̃(yi, x
u
0,i | ϕ, bi).

In the following sections, we derive the expressions of F,Gi and Hi starting
with Hi since each criterion construction rely on lower level ones. Finally,
despite that the following formal presentation of criteria are made for any
P
(
xui,0 | ϕ, bi

)
expressions, we have to restrict ourselves to uniform, normal and

log-normal densities in practice to use our numerical procedures.
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2.1 Inner criterion

In this section, we construct the criteria Hi used to estimate xu∗0,i for a given

(ϕ, bi) value. A classic procedure would lead to jointly estimate
(
b∗i , x

u∗
0,i

)
by

maximization of the log joint-likelihood function of the data and (bi, x
u
0,i).

However for each subject, we want to:
1. profile on xu∗0,i during random effects estimation to limit b∗i estimation

degradation due to presence of nuisance parameters,
2. use prior knowledge given by P

(
xui,0 | ϕ, bi

)
if available,

3. allow an acceptable deviation from the assumed model at the population
level to take into account possible model misspecifications.

To solve the first and second point, we define our estimator:
1. as the maximizer of the joint conditional likelihood P(yi, x

u
0,i | ϕ, bi) if

P
(
xui,0 | ϕ, bi

)
is available,

2. otherwise as the maximizer of P(yi | ϕ, bi, xu0,i).
Since P(yi, x

u
0,i | ϕ, bi) = P(yi | ϕ, bi, x

u
0,i)P

(
xui,0 | ϕ, bi

)
, we have

argmaxxu
0,i

P(yi | ϕ, bi, xu0,i) = argmaxxu
0,i

P(yi, x
u
0,i | ϕ, bi) if P

(
xui,0 | ϕ, bi

)
is

constant. So, the estimation criteria in absence of prior information is equiva-
lent to choosing a uniform prior over xu0,i space and constitute only a particular
case. We will thus focus on P(yi, x

u
0,i | ϕ, bi) from now one. We have:

P(yi, x
u
0,i | ϕ, bi) =

∏
j P(yij | ϕ, bi, xu0,i)P

(
xui,0 | ϕ, bi

)
=
∏
j (2π)

−do/2
σ−doe

−0.5∥CXθ,bi,x0,i
(tij)−yij∥2

2
/σ2

P
(
xui,0 | ϕ, bi

)
,

from which we derive the joint likelihood estimator:

x̂u0,i(ϕ, bi) = argminxu
0,i

−2 lnP(yi, x
u
0,i | ϕ, bi, xu0,i)

= argminxu
0,i

{
1
σ2

∑
j

∥∥CXθ,bi,x0,i
(tij)− yij

∥∥2
2
− 2 lnP

(
xui,0 | ϕ, bi

)}
.

We also want to allow the presence of perturbations at the subject scale com-
paring to the original model defined at the population level. For this, we
assume the regression function is no longer Xθ,bi,x0,i , but rather Xθ,bi,xi,0,ui ,
the solution of: {

ẋi(t) = fθ,bi(t, xi(t)) +Bui(t)
xi(0) = xi,0.

(2)

This perturbed ODE has been obtained by the addition of the forcing term t 7→
Bui(t) to ODE (1) with B a d×du matrix and ui a function in L2

(
[0, T ] ,Rdu

)
representing the perturbation. However, to ensure the possible perturbations

remain small, we replace the data fitting criterion
∑

j

∥∥CXθ,bi,x0,i
(tij)− yij

∥∥2
2

by minui
Ci(xui,0, ui | θ, bi, U), where

Ci(xui,0, ui | θ, bi, U) =
∑
j

∥∥CXθ,bi,x0,i,ui(tij)− yij
∥∥2
2
+ ∥ui∥2U,L2 ,
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and ∥ui∥2U,L2 =
∫ T
0
ui(t)

TUui(t)dt is the weighted Euclidean norm. Here, the
magnitude of the allowed perturbations is controlled by a positive definite and
symmetric weighting matrix U . Finally, we obtain:

x̂u0,i(ϕ, bi) := argminxu
0,i
Hi(x

u
0,i | ϕ, bi) (3)

where

Hi(x
u
0,i | ϕ, bi) = min

xu
0,i

{
1

σ2
min
ui

Ci(xui,0, ui | θ, bi, U)− 2 lnP
(
xui,0 | ϕ, bi

)}
.

Computing Hi(x
u
0,i | ϕ, bi) requires to solve the infinite dimensional opti-

mization problem minui Ci(xui,0, ui | θ, bi, U) in L2
(
[0, T ] ,Rdu

)
. This problem

belongs to the field of optimal control theory for which dedicated approaches
have been developed (Sontag (1998); Aliyu (2011); Clarke (2013)). Here we use
the same method as in Clairon (2020) which is detailed in Appendix A. All it
requires from the user is to specify a pseudo-linear representation of ODE (1),
i.e., a possibly state-dependent matrix Aθ,bi (t, xi(t)) and state-independent
vector rθ,bi(t) such that:

fθ,bi(t, xi(t)) = Aθ,bi (t, xi(t))xi(t) + rθ,bi(t). (4)

This formulation is crucial for solving the optimal control problem in a com-
putationally efficient way. Linear models already fit in this formalism with
Aθ,bi (t) := Aθ,bi (t, xi(t)). For nonlinear models, the pseudo-linear represen-
tation is not unique but always exists (in order to exploit this non-uniqueness
as an additional degree of freedom, see Cimen (2008) section 6). This method
presents the advantage of formulating minui

Ci(xui,0, ui | θ, bi, U) as a quadratic
form (or a sequence of quadratic forms) with respect to xu0,i. Thus, if we choose

a uniform, normal or log-normal law for P
(
xui,0 | ϕ, bi

)
, argminxu

0,i
Hi(x

u
0,i |

ϕ, bi) has a closed form expression (approximated for log-normal), and obtain-

ing x̂u0,i(ϕ, bi) does not add any computational complexity comparing to
minui Ci(xui,0, ui | θ, bi, U).

For a given xu0,i, the perturbation ui corresponding to the solution of
minui Ci(xui,0, ui | θ, bi, U) is named optimal control and denoted ui,ϕ,bi,xu

0,i
. In

particular, we denote ui,θ,bi := ui,θ,bi,x̂0,i
the optimal control corresponding

to the initial condition estimator x̂0,i =
(
x̂u0,i(ϕ, bi)

T ,
(
xki,0
)T)T

. The solution

of (2) corresponding to the optimal control ui := ui,θ,bi is denoted Xθ,bi and
named optimal trajectory: this will be considered as the regression function
for the i-th subject. Xθ,bi is thus defined as solution of ODE (2) which needs
the smallest perturbation in order to get close to the observations. In partic-
ular, Xθ,bi and ui,θ,bi are respectively the subject specific state variable and
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perturbation such that:

Hi(x̂u0,i(ϕ, bi) | ϕ, bi) = 1
σ2

{∑
j

∥∥CXθ,bi(tij)− yij
∥∥2
2
+ ∥ui,θ,bi∥

2
U,L2

}
− 2 lnP(x̂u0,i(ϕ, bi) | ϕ, bi).

(5)

Again, formal expressions can be derived for both ui,θ,bi and x̂u0,i(ϕ, bi), but
they present no interest for the sake of explanation and are left in Appendix A.

2.2 Middle criterion

To construct an estimator b̂i of the random effects, we rely on an approximation
of lnP(yi, bi, x

u
0,i | ϕ) profiled on the unknown initial conditions. Since

P(yi, bi, x
u
0,i | ϕ) = P(yi | ϕ, bi, xu0,i)P(bi, xu0,i | ϕ)

= P(yi | ϕ, bi, xu0,i)P(xu0,i | ϕ, bi)P(bi | ϕ),

with P(bi | ϕ) the density of bi ∼ N(0, σ2
(
△T△

)−1
), we can define as

estimator:

b̂i(ϕ) = argminbi minxu
0,i

−2 lnP(yi, bi, x
u
0,i | ϕ)

= argminbi

{
minxu

0,i

{
1
σ2

∑
j

∥∥CXθ,bi,x0,i
(tij)− yij

∥∥2
2
− 2 lnP

(
xui,0 | ϕ, bi

)}
+

∥∆bi∥2
2

σ2

}
.

Still, we use the same relaxation & penalization scheme as in the previous
section to account for model error presence for b∗i estimation. We replace

again the term
∑

j

∥∥CXθ,bi,x0,i
(tij)− yij

∥∥2
2
by minui

Ci(xui,0, ui | θ, bi, U) in the
previous criteria and we end up with the following estimator:

b̂i(ϕ) := argminbi Gi(bi | ϕ) (6)

where:

Gi(bi | ϕ) = Hi(x̂u0,i (ϕ, bi) | ϕ, bi) +
∥∆bi∥22
σ2

. (7)

2.3 Outer criterion

2.3.1 F general expression

We focus in this section on population parameter estimation. Classic max-
imum likelihood based approaches generally consider as estimator: ϕ̂ :=
Eb1 [P(ϕ, b1 | y)]. That is, they get rid of the unknown subject specific param-

eters by taking the mean value of P(ϕ, b1 | y) where b1 ∼ N(0, σ2
(
△T△

)−1
).

This generally requires the numerical approximation of integrals of possibly
high dimensions (the same as b1), a source of approximation and computational
issues (Pinheiro and Bates (1994)). To avoid this, we consider the random
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effects as nuisance parameters and rely on a classic profiling approach for ϕ∗

estimation (Murphy and der Vaart (2000)). Instead of taking the mean, we rely
on the profiled joint distribution sequentially with respect to b := {bi}i∈J1,nK

and xu0 =
{
xu0,i
}
i∈J1,nK

, or equivalently minbminxu
0
(−2 lnP(ϕ, b, xu0 | y)). Bayes

formula gives us P(ϕ, b, xu0 | y) ∝ P(y, b, xu0 | ϕ)P(ϕ) and we get P(ϕ, b, xu0 |
y) ∝

(∏
i P(yi, bi, x

u
0,i | ϕ)

)
P(ϕ) by conditional independence of subject by

subject observations and subject specific parameters. It follows that

min
b

min
xu
0

(−2 lnP [ϕ, b, xu0 | y]) ∝
∑
i

min
bi

min
xu
0,i

{
−2 lnP(yi, bi, x

u
0,i | ϕ)

}
−2 lnP(ϕ),

from which we derive the estimator

ϕ̂ = argminϕ

{∑
iminbi

{
minxu

0,i

{
1
σ2

∑
j

∥∥∥CXθ,bi,xi
0
(tij)− yij

∥∥∥2
2
− 2 lnP(xu0,i | ϕ, bi)

}
+

∥∆bi∥2
2

σ2

}
+ (do

∑
i ni + nq) lnσ2 − 2n ln|△| − 2 lnP(ϕ)

}
by using the exact expression of lnP(yi, bi, x

u
0,i | ϕ) (computational details are

recalled in Appendix B). In order to account for the presence of model error
and limit its effect on estimation, we replace in the last expression the classic
profiled likelihood estimator for b∗i and x

u∗
0,i by b̂i(ϕ) and x̂

u
0,i(ϕ, bi) respectively

and Xθ,bi,x0,i by Xθ,bi . This leads us to the following population parameter
estimator:

ϕ̂ := argminϕ F (ϕ) , (8)

where:

F (ϕ) = 1
σ2

∑
i

(∑
j

∥∥∥CXθ,b̂i(ϕ)
(tij)− yij

∥∥∥2
2
+
∥∥∥∆b̂i(ϕ)∥∥∥2

2

)
− 2 lnP(x̂u0,i(ϕ, b̂i(ϕ)) | ϕ, b̂i(ϕ))
+ (do

∑
i ni + nq) lnσ2 − 2n ln|△| − 2 lnP(ϕ)

. (9)

2.3.2 F profiling on σ for uniform xu
0,i distribution

If P(xu0,i | ϕ, bi) is constant then x̂u0,i(ϕ, bi) and b̂i(ϕ) do not depend on σ i.e.

x̂u0,i(ϕ, bi) = x̂u0,i(θ, bi) and b̂i(ϕ) = b̂i(θ,∆) and consequentially neither does

Xθ,b̂i(θ,∆). So, for each (θ,∆), the maximizer in σ2 of F has a closed form
expression:

σ2 (θ,∆) =
1

(do
∑

i ni + qn)

∑
i

(∑
j

∥∥∥CXθ,b̂i(θ,∆)(tij)− yij

∥∥∥2
2
+
∥∥∥∆b̂i(θ,∆)

∥∥∥2
2

)
.

(10)
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By using σ2 (θ,∆) expression, we get minσ2 F (θ,∆, σ | y) = F [θ,∆ | y] where:

F [θ,∆ | y] =

(
do
∑
i

ni + qn

)
ln
(
σ2 (θ,∆)

)
− 2n ln|△| − 2 lnP(ϕ).

Thus, we can profile F on σ2 and define our estimator as:(
θ̂, ∆̂

)
= argmin(θ,∆) F [θ,∆ | y] . (11)

An estimator of σ∗ is obtained from there by computing σ2
(
θ̂, ∆̂

)
, given by

equation (10). The details of F derivation are left in appendix B.

2.4 Asymptotic Variance-Covariance matrix estimator

for
(
θ̂, ∆̂

)
We derive an estimator of the asymptotic variance of

(
θ̂, ∆̂

)
. Here we restrict

to the case described in section 2.3.2 when a uniform distribution is chosen for
xui,0 and the outer criterion is profiled on σ. The general case can be considered
similarly, but we withdraw it for the sake of clarity since it is not used in
following simulation works. We highlight that in practice the matrix ∆ is
parametrized by a vector δ of dimension q′, i.e △ := △(δ) and we give here

a variance estimator of
(
θ̂, δ̂
)
. From this, the variance of ∆̂ can be obtained

using classic delta-methods (see van der Vaart (1998) chapter 3). Conditions
on model structural identifiability and regularity are required to derive the
existence of this asymptotic variance, we precise such sufficient conditions in
appendix D.

Theorem 1 There is a model dependent lower bound λ such that if ∥U∥2 > λ then

the estimator
(
θ̂, δ̂
)
converges almost surely to a constant value

(
θ, δ
)
such that:

√
n(θ̂ − θ, δ̂ − δ)⇝ N

(
0, A(θ, δ)−1B(θ, δ)

(
A(θ, δ)−1

)T)
,

where A(θ, δ) = limn
1
n

∑n
i=1

[
∂J̃(θ,δ,yi)
∂(θ,δ)

]
, B(θ, δ) =

limn
1
n

[∑
i J̃(θ, δ,yi)J̃(θ, δ,yi)

T
]

and the vector valued function J̃(θ, δ,yi) =(
J̃θ(θ, δ,yi)

J̃δ(θ, δ,yi)

)
is given by:

J̃θ(θ, δ, yi) = d
dθh(̂b(θ,∆(δ)), θ,∆(δ), yi)

J̃δ(θ, δ, yi) = d
dδh(̂bi(θ,∆(δ)), θ,∆(δ), yi)

− 2
doE[n1]+q

Tr
(
△(δ)−1 ∂△(δ)

∂δk

)
h(̂bi(θ,∆(δ)), θ,∆(δ), yi)

,

where h(bi, θ,∆, yi) = ∥∆bi∥22 +
∑
j

∥∥CXθ,bi(tij)− yij
∥∥2
2
.
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The proof is left in appendix D. The practical interest of
this theorem is to give an estimator of Variance-Covariance

V (θ̂, δ̂) ≃ Â(θ̂, δ̂)−1B̂(θ̂, δ̂)
(
Â(θ̂, δ̂)−1

)T
/n with the matrices Â(θ̂, δ̂) =

− 1
n

∑n
i=1

∂J(θ̂,δ̂,yi)
∂(θ,δ) and B̂ = 1

n

∑n
i=1 J(θ̂, δ̂,yi)J(θ̂, δ̂,yi)

T . The (p + q)

components of the vector valued function J for 1 ≤ k ≤ p are given by :

Jk(θ, δ,yi) =
d

dθk
h(̂b(θ,∆(δ)), θ,∆(δ),yi),

and for p+ 1 ≤ k ≤ p+ q by

Jk(θ, δ,yi) = d
dδk

h(̂bi(θ,∆(δ)), θ,∆(δ),yi)

− 2n
do

∑
i ni+qn

Tr
(
△(δ)−1 ∂△(δ)

∂δk

)
h(̂bi(θ,∆(δ)), θ,∆(δ),yi).

Now that we have proven the existence of the variance-covariance matrix
V (θ, δ) such that δ̂−δ ⇝ N

(
0, V (θ, δ)

)
, we can use the Delta method to derive

the asymptotic normality of the original matrix Ψ
(
δ̂
)
= σ2

(
∆(δ̂)T∆(δ̂)

)−1

as well as an estimator of its asymptotic variance. In the case of a diagonal
matrix Ψ, composed of the elements

(
Ψ2

1, . . .Ψ
2
q

)
and of the parametrization

△(δ) = Diag(
{
eδl
}
l∈J1,qK) used in section 3, we derive:

Ψ1(δ̂)
...

Ψq(δ̂)

−

Ψ1(δ
∗)

...
Ψq(δ

∗)

⇝ N

0, σ2

 e−δ
∗
1 0 0

0
. . . 0

0 0 e−δ
∗
q

V (θ∗, δ∗)

 e−δ
∗
1 0 0

0
. . . 0

0 0 e−δ
∗
q


 .

Remark 1 The previous theorem 1 states that we retrieve a parametric convergence
rate. Thus, we avoid the pitfall described in Sartori (2003) for profiled methods in
presence of a number of nuisance parameters increasing with the number of subjects
(or strata to resume Sartori (2003) terminology) potentially leading to bias accumu-
lation for score functions among subjects. The i.i.d structure of random effects allows
us to rely on central limit theorem to avoid this accumulation phenomenon.

3 Results on simulated data

We compare the accuracy of our approach with maximum likelihood (ML)
in different models and experimental designs reflecting the problems exposed
in the introduction, that is estimation in 1/presence of model error, 2/par-
tially observed framework with unknown initial conditions and 3/presence
of poorly identifiable parameters. We proceed to Monte-Carlo simulations
based on NMC = 100 runs. At each run, we generate ni observations coming
from n subjects on an observation interval [0, T ] with Gaussian measure-
ment noise of standard deviation σ∗. From these data, we estimate θ∗, Ψ∗



Springer Nature 2021 LATEX template

Parameter estimation in NLME-ODEs: an optimal control approach 13

and b∗i with both estimation methods. We quantify the accuracy of each

estimator ψ̂p of the population parameters estimate ψ̂ =
(
θ̂, Ψ̂

)
via Monte-

Carlo computation of the bias Bias(ψ̂p) = E
[
ψ̂p

]
− ψ∗

p, the empirical

variance V e(ψ̂p) = E
[(

E
[
ψ̂p

]
− ψ∗

p

)2]
, the mean squared error MSE(ψ̂p) =

Bias(ψ̂p)
2 + V e(ψ̂p), the estimated variance V̂

(
ψ̂p

)
, as well as the cover-

age rate of the 95%-confidence interval derived from it. This coverage rate,
denoted CR in the following results, corresponds to the frequency at which the

interval

[
ψ̂p ± z0.975

√
V̂
(
ψ̂p

)]
contains ψ∗

p with z0.975 the 0.975−quantile of

the centered Gaussian law. We compute the previous quantities for the nor-

malized values ψ̂normp :=
ψ̂p

ψ∗
p
to make relevant comparisons among parameters

with different order of magnitude. For b∗i , we estimate the mean squared error

MSE(̂bi) = E
[∥∥∥b∗i − b̂i

∥∥∥2
2

]
. For each subsequent examples, we give the results

for n = 50 and present in appendix C the case n = 20 to analyze the evolution
of each estimator accuracy with respect to data sparsity.

In the following, we use the superscript ML to denote the ML estimator.
For the fairness of comparison with ML, we choose a non-informative prior i.e.
lnP [θ,∆] = 0 for our method throughout this section. Also, we do not use a
distribution for xui,0 for our approach. For ML which requires it, we will use

the right parametric form for P
(
xui,0 | ϕ, bi

)
. If the ODE (1) has an analyti-

cal solution, the ML estimator is computed via SAEM algorithm (SAEMIX
package Comets et al (2017)). Otherwise, it is done via a restricted likelihood
method dedicated to ODE models implemented in the nlmeODE package (Tor-
noe et al (2004)). For our method, we need to select U balancing model and
data fidelity in the inner and middle criteria (5)-(7). We use the method pre-
sented in G. Hooker and Earn (2011) to compute EPi(U), the prediction error

for the subject i corresponding to the estimators θ̂U ,
{
b̂i,U

}
i∈J1, nK

obtained

for a given matrix U . From this, we compute EP(U) =
∑

i EPi(U) the global
prediction error for the whole population. We test a trial of weighing matrices

{Ul}l∈J1,LK and retain the one minimizing EP and denote θ̂, Ψ̂,
{
b̂i,

}
i∈J1, nK

the corresponding estimator. For solving the optimization problems required
for computing our criteria, we use the Nelder-Mead algorithm implemented
in the optimr package (Nash (2016)). All optimization algorithms used here
require a starting guess value. We start from the true parameter value for each
of them. By doing so, we aim to keep distinct two problems: 1)the numerical
stability of the estimation procedures, 2)the intrinsic accuracy of the different
estimators. These two problems are correlated, but we aim to adress only the
latter which corresponds to the issues raised in introduction. Still, we check
on preliminary analysis that local minima presence was not an issue in the
neighborhood of (θ∗,△∗) by testing different starting points for all methods.
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Fig. 1 Left: Examples of solutions of (12) and corresponding observations. Right: Solution
of (12) and a realization of (13) for the same parameter values.

No problem appears for our method and SAEMIX. A negligible number of non
convergence cases appear for nlmeODE which have been discarded thanks to
the convergence criteria embedded in the package.

3.1 Application 1 - Partially observed linear model

We consider the population model where each subject i follows the ODE: Ẋ1,i = ϕ2,iX2,i − ϕ1,iX1,i

Ẋ2,i = −ϕ2,iX2,i

(X1,i(0), X2,i(0)) = (x1,0, x2,0,i)

(12)

with the following parametrization: log(ϕ1,i) = θ1 + bi and log(ϕ2,i) = θ2
where bi ∼ N(0,Ψ). The true population parameter values are θ∗ = (θ∗1 , θ

∗
2) =

(log (0.5) , log (2)) and Ψ∗ = 0.52 and we are in a partially observed frame-
work where only X1,i is accessible. The true initial conditions are distributed
with x∗1,0,i ∼ N(2, 0.5) and x∗2,0,i ∼ N(3, 1). An analytic solution exists
for ODE (12). In particular the first component is given by X1,i(t) =

e−ϕ1,it(x1,0+
x2,0ϕ2,i

ϕ1,i−ϕ2,i
(e(ϕ1,i−ϕ2,i)t−1)) and will be used for estimation with the

SAEMIX package. We generate ni = 11 longitudinal observations per subject
on [0, T ] = [0, 10] with measurement noise of standard deviation σ = 0.05. An
example of sampled observations and corresponding solutions are plotted in
figure 1. We want to investigate the impact of initial condition, especially the
unobserved one x∗2,0,i, on the ML estimator accuracy. Indeed, our method does
not need to estimate x∗2,0,i and thus no additional difficulties appear in this
partially observed framework. For the ML, however, it is a nuisance subject-
specific parameter that should be estimated and for which no observations are
available. For this, we compute θ̂ML

x0
, θ̂ML

x0,2
and θ̂ML the ML estimator respec-

tively when: 1) both initial conditions are perfectly known, 2) x∗1,0,i is replaced
by the measured value, 3) in addition, x∗2,0,i has to be estimated.
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Well-specified Misspecified

MSE Bias V e V̂ CR MSE bi MSE Bias V e V̂ CR MSE bi

θ1

θ̂ML
x0

0.01 0.01 0.01 0.01 0.95 0.01 4e-4 0.01 0.01 0.91

θ̂ML
x0,2

0.01 0.01 0.01 0.01 0.94 0.01 -3e-4 0.01 1e-4 0.89

θ̂ML 0.04 -0.04 0.04 0.01 0.86 0.05 0.02 0.05 0.01 0.81
θ̂ 5e-3 8e-3 8e-3 1e-2 0.97 0.01 -8e-3 7e-3 0.05 0.97

θ2

θ̂ML
x0

4e-5 1e-3 4e-5 4e-5 0.95 1e-4 -1e-3 1e-4 1e-4 0.83

θ̂ML
x0,2

6e-5 1e-3 6e-5 8e-5 0.94 1e-4 -1e-3 2e-4 0.01 0.82

θ̂ML 4e-3 -0.01 3e-3 1e-4 0.80 4e-3 -2e-3 4e-3 2e-4 0.63
θ̂ 5e-5 2e-3 4e-5 4e-5 0.93 1e-4 2e-5 1e-4 1e-4 0.92

Ψ

θ̂ML
x0

0.01 -0.03 0.01 7e-3 1 0.01 0.01 -0.003 0.01 0.01 1 0.01

θ̂ML
x0,2

0.02 -0.03 0.01 7e-3 1 0.01 0.01 -0.005 0.01 0.01 1 0.01

θ̂ML 0.05 0.17 0.02 0.02 1 0.10 0.09 0.21 0.04 0.03 1 0.12
θ̂ 0.01 -0.01 0.01 0.01 0.92 0.01 0.02 -0.02 0.02 0.01 0.90 0.01

Table 1 Results of estimation for model (12). The different subscripts stand for the

following estimation scenarios: 1) x0 when both initial conditions are set to
(
x∗
0,1, x

∗
0,2

)
, 2)

x0,2 when x0,i is set to yi,0 and x0,2 to x∗
0,2, 3) absence of subscript when x0,i is set to

yi,0 and x0,2 is estimated. Results from our method are in bold.

3.1.1 Well-specified case

We used the exact model described in Section 3.1 for the estimation proce-
dure. Thus we are in a completely well-specified setting, with all mechanisms
modeled. We present the estimation results in table 1 - left side. For ML, the
results are goods in terms of accuracy and consistent in terms of asymptotic
confidence interval coverage rate when both initial conditions are known: 95%
for θ1 and θ2, which is consistent with theoretical results. However, there is a
significant drop in accuracy when x∗2,0,i has to be estimated. In particular, the
coverage rate drops to 86% and 80% for θ1 and θ2 respectively. Interestingly,
ML inaccuracy is driven by bias and under-estimated variance when initial
conditions are not known (as shown by a greater V e than V̂ ). In this case our
method provides a relevant alternative: it gives accurate estimations with a
good coverage rate for all parameters while avoiding the estimation of x∗2,0,i.
Variances are properly estimated compared to empirical variances. Estimation
of individual random effects is also more accurate with our method, with a
MSE for bi 10 times smaller compared to ML with unknown initial conditions.

3.1.2 Misspecified case in presence of model error at the
subject level

To mimic the presence of misspecification, we now generate the observations
from the hypoelliptic stochastic model: dX1,i = ϕ2,iX2,idt− ϕ1,iX1,idt

dX2,i = −ϕ2,iX2,idt+ αdBt
(X1,i(0), X2,i(0)) = (x1,0, x2,0,i)

(13)

with Bt a Wiener process and α = 0.1 the diffusion coefficient. For the sake of
comparison, a solution of (12) and a realization of its perturbed counterpart
given by (13) are plotted in figure 1. This framework where stochasticity only
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affects the unmeasured compartment is known to be problematic for parameter
estimation and inference procedures are yet to be developed for sparse sampling
case. From figure 1 it is easy to see that the diffusion α will be hard to estimate
when we only have observations forX1,i. Thus, we still estimate the parameters
from the model (12) which is now seen as a deterministic approximation of the
true stochastic process. Still, it is expected that our method will mitigate the
effect of stochasticity on the estimation accuracy by taking into account model
misspecification. Results are presented in table 1 - right side. The differences
between the two methods are similar to the previous well-specified case with
an additional loss of accuracy coming from model error for both estimators.
However, the misspecification effect for ML is more pronounced comparing to
our method which manages to limit the damages done. This illustrates the
benefits of taking into account model uncertainty for estimation, in particular
here when model error occurs in the unobserved compartment, a situation in
which classic statistical criteria for model assessment based on a data fitting
criterion are difficult to use.

3.2 Application 2 - Partially observed nonlinear model

We consider the model presented in De Gaetano and Arino (2000) for the
analysis of glucose and insulin regulation:

Ġi = SG(GB −Gi)−XiGi
İi = γt(Gi − h)−mi(Ii − IB)

Ẋi = −p2(Xi + SI(Ii − IB)).

(14)

The ODE system (14) rules the behavior of circulating glucose Gi and insulin
Ii in blood as well as insulinXi present in interstitial fluid. We are in a partially
observed case where only Gi and Ii are measured. The values of parameters
(p2, γ, h,GB , IB) are set to (−4.93,−6.85, 4.14, 100, 100) and we aim to esti-
mate θ = (θSG

, θSI
, θm), linked to the original model via the parametrization:

log(SG) = θSG
, log(SI) = θSI

and log(mi) = θm + bi where bi ∼ N(0,Ψ).
The true population parameter values are θ∗ = (−3.89, −7.09, −1.81) and
Ψ∗ = 0.262. The true subject-specific initial conditions x∗i,0 =

(
G∗

0,i, I
∗
0,i, X

∗
0,i

)
are distributed according to ln(x∗i,0) ∼ N(lx∗

0
,Ψlx∗

0
) with lx∗

0
= (5.52, 4.88,−7)

and Ψlx∗
0
=
(
0.172, 0.12, 10−4

)
. We generate mi = 5 observations on [0, T ] =

[0, 180] with Gaussian measurement noise of standard deviation σ∗ = 3. As
in the previous example, we investigate the impact of unknown initial condi-
tions on the estimators accuracy. We are particularly interested in the joint
estimation of θSI

, which appears only in the equation ruling the unobserved
state variable Xi, and x

∗
0,i required for each subject by ML. For this, we dis-

tinguish two cases, 1) when θSI
is known, 2) when θSI

has to be estimated and

we denote respectively θ̂Si and θ̂ the corresponding estimators. Finally, since
the model is nonlinear we have to specify a pseudo-linear representation of the
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Well-specified Misspecified

MSE Bias V e V̂ CR MSE bi MSE Bias V e V̂ CR MSE bi

θSG

θ̂ML
Si

5e-5 2e-3 4e-5 9e-6 0.95 6e-5 3e-3 6e-5 2e-5 0.85

θ̂ML 2e-3 0.03 1e-3 8e-5 0.85 2e-3 3e-3 1e-3 2e-4 0.54
θ̂Si

1e-5 4e-4 1e-5 8e-6 0.95 2e-5 -2e-5 2e-5 2e-5 0.93
θ̂ 2e-4 -6e-4 2e-4 2e-4 0.96 3e-4 -1e-3 3e-4 4e-4 0.93

θSI

θ̂ML
Si

known known

θ̂ML 2e-3 0.03 1e-3 6e-5 0.90 0.01 0.04 0.01 1e-3 0.55
θ̂Si

known known
θ̂ 1e-4 -7e-4 1e-4 1e-4 0.96 3e-4 -1e-3 3e-4 3e-4 0.92

θm

θ̂ML
Si

7e-4 3e-3 6e-4 5e-4 0.94 8e-4 -3e-3 8e-4 5e-4 0.89

θ̂ML 9e-4 8e-3 8e-4 5e-4 0.86 5e-3 -5e-3 5e-3 5e-4 0.88
θ̂Si

5e-4 6e-3 5e-4 5e-4 0.95 4-4 7e-4 4e-4 5e-4 0.95
θ̂ 6e-4 6e-3 5e-4 5e-4 0.95 4e-4 6e-4 4e-4 5e-4 0.96

Ψ

θ̂ML
Si

0.02 7e-4 0.02 0.02 0.95 0.02 0.03 -3e-3 0.03 0.02 0.93 0.03

θ̂ML 0.04 -0.09 0.03 0.02 0.88 0.02 0.03 -8e-3 0.02 0.02 0.87 0.03
θ̂Si

0.01 -2e-3 0.01 0.01 0.95 0.01 0.01 -4e-3 0.01 0.02 0.94 0.01
θ̂ 0.01 3e-3 0.01 0.01 0.94 0.01 0.02 -7e-3 0.02 0.02 0.94 0.02

Table 2 Results of estimation for model (14). The different subscripts stand for the
following estimation scenarios: 1) Si when Si is set to S∗

i , 2) absence of subscript when Si

is estimated. Results from our method are in bold.

vector field as in (4):

Aθ,bi (t, Gi, Ii, Xi) =

−SG 0 −Gi
γt −mi 0
0 −p2SI −p2

 , rθ,bi (t) =

 SGGB
−γth+miIB

p2SIIB

 .

3.2.1 Well-specified case

We present the estimation results in table 2 - left side. Our method has small
bias and achieve good coverages in all cases. We obtain smaller MSE than
ML and avoid the drop in coverage rate of the confidence interval in the case
of θ∗SI

estimation, which is often needed in practice. The difference between
the two estimators behaviors is explained by the fact that they are defined
through the construction of two different optimization problems. At the pop-
ulation level, our approach leads to minimize a cost function depending on a
4-dimensional parameter whereas ML, due to its need to estimate x∗i,0, consid-
ers a 10-dimensional one. Thus, the parameter spaces explored by each method
to look for the minimum are very different.

3.2.2 Misspecified case in presence of model error at the
subject level

To mimic misspecification presence, we generate the observations from the
stochastic model: dGi = (SG(GB −Gi)−XiGi) dt+ α1dB1,t

dIi = (γt(Gi − h)−mi(Ii − IB))dt+ α2dB2,t

dXi = (−p2(Xi + SI(Ii − IB))) dt+ α3dB3,t

, (15)

where the Bi,t are Wiener processes and (α1, α2, α3) =
(
2, 2, 2× 10−4

)
their

diffusion coefficients. We present the estimation results in table 2 - right side.
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Parameters Biological interpretation Values

δL long-lived B-cells declining rate log(2)/(364× 6)

θ∗
θ∗δS

Mean log-value for δS , the short-lived cells declining rate log(log(2)/1.2) ≃ −0.54

θ∗ϕS
Mean log-value for ϕS , the antibodies influx from short-lived cells log(2755) ≃ 7.92

θ∗ϕL
Mean log-value for ϕL, the antibodies influx from long-lived cells log(16) ≃ 2.78

θ∗δAb
Mean log-value for δAb, the antibodies declining rate log(log(2)/24) ≃ −3.54

Ψ∗
Ψ∗

ϕS
Inter individual variance for log(ϕS,i) 0.922

Ψ∗
ϕL

Inter individual variance for log(ϕL,i) 0.852

Ψ∗
δAb

Inter individual variance for log(δAb,i) 0.32

Table 3 Biological interpretation and parameter values

For ML, the drop in coverage rate for θ∗SG
and θ∗SI

is even more striking when
θ∗SI

needs to be estimated. This is explained by the effect of model misspeci-
fication which increases bias and the fact that ML does not take into account
this new source of uncertainty which leads to under-estimation of variance and
too narrow confidence intervals. Our method achieved small biais, nominal
coverages and small MSE for random effects.

3.3 Application 3 - Antibody concentration evolution
model

We consider the model presented in Pasin et al (2019) to analyze the antibody
concentration, denoted Ai, generated by two populations of antibody secreting
cells: the short lived, denoted Si, and the long-lived, denoted Li:

Ṡi = −δSSi
L̇i = −δLLi
Ȧi = ϑS,iSi + ϑL,iLi − δAb,iAi
(Si(0), Li(0), Ai(0)) = (S0,i, L0,i, A0,i) .

(16)

This model is used to quantify the humoral response on different populations
after an Ebola vaccine injection with a 2 doses regimen seven days after the
second injection when the antibody secreting cells enter in a decreasing phase.
These cells being unobserved, the preceding equation can be simplified to focus
on antibody concentration evolution:

Ȧi = ϕS,ie
−δSt + ϕL,ie

−δLt − δAb,iAi (17)

with ϕS,i := ϑS,iS0,i and ϕL,i := ϑL,iL0,i. This equation has an analytic solu-
tion provided in 17 which will be used for ML. We consider the following
parametrization: log(δS) = θδS , log(ϕS,i) = θϕS

+ bϕS ,i, log(ϕL,i) = θϕL
+ bϕL,i

and log(δAb,i) = θδAb
+bδAb,i. The true parameter values are presented in table

3. According to Pasin et al (2019), δL was non-identifiable based on the avail-
able data and only a lower bound has been derived for it via profiled likelihood.
So, to make fair comparisons between our approach and maximum likelihood,
we do not estimate it. Regarding population parameters, we are particularly
interested in the behavior of estimation methods for θδS and θϕS

. Indeed, a
parameter sensitivity analysis shows the symmetric role of θδS and θϕS

on the
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Well-specified Misspecified

MSE Bias V e V̂ CR MSE bi MSE Bias V e V̂ CR MSE bi

θδS

θ̂ML
δS

known known

θ̂ML 2.13 0.78 1.51 70.64 0.92 3.88 1.48 1.68 4.10 0.80
θ̂δS known known
θ̂ 0.62 -0.34 0.50 0.66 0.92 0.93 -0.40 0.77 0.62 0.90

θϕS

θ̂ML
δS

4e-4 0.01 3e-4 3e-4 0.94 1e-3 0.02 1e-3 5e-4 0.91

θ̂ML 0.01 -0.05 7e-3 0.40 0.92 0.02 -0.10 0.01 0.02 0.88
θ̂δS 2e-3 -0.05 2e-4 1e-3 0.94 7e-4 -0.02 3e-4 1e-3 0.92
θ̂ 2e-3 1e-3 2e-3 2e-3 0.93 4e-3 -6e-3 3e-3 0.01 0.90

θϕL

θ̂ML
δS

3e-3 0.02 3e-3 2e-3 0.95 5e-3 0.03 4e-3 3e-3 0.93

θ̂ML 4e-3 0.03 4e-3 3e-3 0.90 9e-3 0.05 7e-3 4e-3 0.90
θ̂δS 7e-4 -0.01 5e-4 3e-3 0.95 2e-3 -0.02 3e-3 2e-3 0.97
θ̂ 3e-3 -3e-3 3e-3 2e-3 0.91 6e-3 -8e-3 6e-3 7e-3 0.90

θδAb

θ̂ML
δS

7e-4 -0.02 5e-4 3e-4 0.93 2e-3 -0.03 1e-3 1e-3 0.92

θ̂ML 2e-3 -0.02 1e-3 4e-4 0.88 4e-3 -0.04 3e-3 7e-4 0.88
θ̂δS 2e-4 0.01 1e-4 3e-4 0.95 3e-4 2e-3 3e-4 3e-4 0.96
θ̂ 4e-4 0.01 3e-4 2e-4 0.90 3e-4 8e-3 3e-4 2e-3 0.89

ΨϕS

θ̂ML
δS

0.04 -1e-3 0.04 0.07 1 0.15 0.05 0.03 0.05 0.08 1 0.17

θ̂ML 0.11 0.01 0.11 0.05 1 0.17 0.13 0.01 0.13 0.25 1 0.21
θ̂δS 0.02 8e-3 0.02 0.01 0.94 0.06 0.02 2e-3 0.02 0.02 0.94 0.11
θ̂ 0.02 -0.03 0.02 0.02 0.94 0.07 0.02 -0.05 0.02 0.03 0.92 0.08

ΨϕL

θ̂ML
δS

0.03 0.04 0.02 0.04 1 0.30 0.05 0.03 0.05 0.06 1 0.73

θ̂ML 0.03 0.05 0.02 0.04 1 0.60 0.03 0.05 0.02 0.07 1 0.74
θ̂δS 0.02 -0.1 5e-3 8e-3 0.93 0.07 0.02 -0.10 0.01 0.02 0.91 0.10
θ̂ 0.03 -0.06 0.02 0.01 0.92 0.08 0.03 -0.06 0.02 0.03 0.87 0.12

ΨδAb

θ̂ML
δS

0.11 0.18 0.08 0.02 1 0.10 0.33 0.41 0.17 0.05 1 0.56

θ̂ML 0.20 0.29 0.11 0.02 1 0.50 0.30 0.34 0.19 0.05 1 0.69
θ̂δS 0.10 -0.30 0.01 0.01 0.95 0.03 0.10 -0.16 0.08 0.06 0.91 0.04
θ̂ 0.11 -0.27 0.04 0.04 0.95 0.04 0.15 -0.29 0.06 0.10 0.88 0.06

Table 4 Results of estimation for model (17). The different subscripts stand for the
following estimation scenarios: 1) δS when θδS is set to θ∗δS

, 2) absence of subscript when

θδS is estimated. Results from our method are in bold.

ODE solution (see Balelli et al (2020)). Thus, they are likely to face practical
identifiability problems. To investigate this effect, we estimate the parameters
when θ∗δS 1) is known (the corresponding estimators will be denoted with the
subscript δS), or 2) has to be estimated as well.

3.3.1 Well-specified case

We generate ni = 11 longitudinal observations on the interval [0, T ] = [0, 364]
with measurement noise of standard deviation σ∗ = 100. For each subject i,
the initial condition has been generated according to A∗

0,i ∼ N(A0, σ
2
A0

) with

A0 = 500 and σA0
= 260 to reflect the dispersion observed in data presented

in Pasin et al (2019). We present the estimation results in table 4 - left side.
Our method gives an improved estimation with a dramatically reduced

variance for θ∗δS comparing to ML, as well as an improved estimate for the
{b∗i }i∈J1, nK in all cases. We assume that is due to the committed estima-

tion error for θ∗ which causes model error during {b∗i }i∈J1, nK estimation, not
accounted for by ML. This in turn explains why variance Ψ∗ is better estimated
with our approach. In this mixed-effect context, this cause of model error is
systematically present and claims for the use of estimation methods taking it
into account when subject specific parameters are critical for the practitioner.
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3.3.2 Misspecified case in presence of model error at the
subject level

The data are generated with a stochastic perturbed version of ODE (17):

dAi =
(
ϕS,ie

−δSt + ϕL,ie
−δLt − δAb,iAi

)
dt+ αdBt (18)

where Bt is a Wiener process and α = 10 its diffusion coefficient. The value for
α has been chosen big enough to produce significantly perturbed trajectories
but small enough to ensure that ODE (17) is still a relevant approximation
for estimation purpose. The results are presented in table 4 - right side. Our
method outperforms the ML for θ∗δS as well as for {b∗i }i∈[1, n] estimation and
their variances. However, we acknowledge that this last simulation setting is
challenging even for our approach with confidence coverage around 90% for
most of parameters, below the theoretical rate of 95%.

4 Real data analysis

We use the presented estimation approach to address the same problem as
Pasin et al (2019). This real data example is similar to the synthetic scenario
performed in Section 3.3. In brief, we use data from a phase I trial in East Africa
evaluating the effect of an heterologous anti-Ebola vaccine strategy in which
Ad26.ZEBOV was injected first and then MVA-BN-Filo with a delay of 28 days
between the two doses. We consider a population of n=28 individuals, with in
average 5 measurements per subject. In order to ensure a fair comparison, we
adopt a Bayesian framework for θ = (θδS , θϕS

, θϕL
, θδAb

) and used the same
prior distribution as in the original paper:

π(θ) ∼ N




−1
0
0

−4.1

 ,


25 0 0 0
0 100 0 0
0 0 100 0
0 0 0 1


 .

We set our mesh-size to get 200 discretization points for each subject and we
use U = 10 i.e., a value lower than in the simulated data case because of the
presence of model error. We also proceed to the log-transformation of the data
to stabilize the measurement noise variance. Using the transformation Ãi(t) :=
log10Ai(t) in Equation (17), this drives us to use the following nonlinear model:

˙̃
Ai(t) =

1

ln(10)

(
ϕS,ie

−δSt + ϕL,ie
−δLt

)
10−Ãi(t) − δAb,i

ln(10)
. (19)

We choose Aθ,bi(t, x, zi(t)) = 1
ln(10)

(
ϕS,ie

−δSt + ϕL,ie
−δLt

)
10−x

x and

rθ,bi(t, zi(t)) = − δAb,i

ln(10) for the pseudo-linear formulation of the model. In Table

5, we compare our estimations with those presented in Pasin et al (2019)
obtained using the NIMROD software (Prague et al (2013)). Both methods
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Estimations from Pasin et al (2019) Optimal Control appraoch
Parameter Mean IC95% Mean IC95%
θδS -0.57 [-1.02, -0.02] -0.18 [-0.58, 0.22]
θϕS

7.92 [7.52, 8.30] 7.45 [6.85, 7.96]
θϕL

2.78 [2.62, 3.01] 2.58 [2.15, 3.01]
θδAb

-3.54 [-3.62, -3.45] -3.48 [-3.95, -3.01]
ΨϕS

0.92 [0.83, 1.01] 0.64 [0.60, 0.70]
ΨϕL

0.85 [0.78, 0.92] 0.70 [0.55, 0.90]
ΨδAb

0.30 [0.24, 0.36] 0.25 [0.19, 0.31]

Table 5 Estimation presented in Pasin et al (2019) and via our approach.

produce estimations with overlapping confidence intervals for θ supporting
the previous published results in term of antibodies concentrations dynamics
over time. Still, significant differences appear for (ΨϕS

,ΨϕL
,ΨδAb

) estimation
with lower dispersion of random effects in the optimal control approach. This
is explained by the fact that a part of the variability is now carried out by

subject-specific perturbations
{
ui,θ̂,bi(θ̂)

}
i∈J1, nK

. Figure 2 allows to visually

check that the individual fits are comparable between the two approaches.
Finally, our method can be used to assess the model adequacy via the tem-

poral evolution analysis of
{
ui,θ̂,bi(θ̂)

}
i∈J1, nK

estimated as byproducts of our

method. In Section 2.1, we have also indicated that perturbations ui,θ,bi,x0,i

can be computed for an arbitrary set (θ, bi, x0,i). In particular, we estimate{
u
i,θ̂P ,b̂i

P
,y0,i

}
i∈J1, nK

, the committed error corresponding to (θ̂P , b̂i
P
), the

population and subject specific estimators obtained in Pasin et al (2019). In
Figure 3, we plot both perturbation sets. Our method leads to residual pertur-
bations of smaller magnitudes and narrower confidence intervals. This means
that our approach produces an estimation which minimizes the committed
model error for each subject comparing to a method based only on a data fit-
ting criterion as in Pasin et al (2019). Moreover, by reducing the size of the
confidence interval for estimated perturbations, we conclude to a mean per-
turbation among the population which is statistically different from zero at
the beginning of observation interval. This may indicates presence of model
misspecification.

5 Conclusion

In this paper, we propose an estimation method that addresses problems
encountered by classical approaches in NLME-ODE models. We identify the
following shortcomings for exact methods such as likelihood-based inference:
their difficulty in the presence of model misspecification, their need to estimate
initial conditions as regular random effects, and their dramatic performance
degradation in the presence of poorly identifiable parameters. We propose here
a method based on control theory that accounts for the presence of potential
model uncertainty at the subject level and that can be easily profiled on initial
conditions. Simulations with and without model error illustrate the advantages
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Fig. 2 Examples of fitted trajectories for both methods for four different random subjects.
Dashed lines: fitted ODE solutions from Pasin et al (2019). Solid line: optimal trajectories
X

θ̂,b̂i
obtained with optimal control approach. Shaded area are the 95% confidence intervals.

of regularization techniques for estimating poorly identifiable parameters,
subject-specific parameters, and their variances in NLME-ODEs. In addition,
bypassing the estimation of initial conditions represents a clear advantage
for partially observed systems comparing to likelihood based approaches, as
emphasized in the simulations.

Still, this benefit in term of estimation accuracy comes with a computa-
tional price. On a server (see https://plafrim-users.gitlabpages.inria.fr/doc/
for more server details) with the parallelization package Snow in R language,
it takes approximately 10-15 minutes to obtain an estimation for the two-
dimensional linear model, 30 minutes for the insulin model and 3-4 hour for the
antibody concentration evolution one, whereas it was a matter of minutes for
the other approaches. Nevertheless, the use of compiled languages and proper
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Fig. 3 1) Up: Estimated residual controls for each subject, 2) bottom: mean optimal control
and 95% confidence interval for the optimal controls a) left: u

i,θ̂P ,b̂i
P
,y0,i

obtained from

parameter estimation in Pasin et al (2019), b) right: u
i,θ̂,bi(θ̂)

obtained from our estimation.
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parallelization could reduce the computation time. Moreover, we have will-
ingly separated the formal definition of the optimal control problem required
by our method and the numerical procedure used to solve it, in case it may
exists better suited approaches for this specific control problem. Right now,
our current strategy allows us to profile on initial conditions, therefore looking
for another numerical procedure is beyond the scope of this paper.

Finally, the qualitative assessment of model misspecification exposed in
section 4 can be made more rigorous. In a one subject setting, the estimation
of a perturbation term at the derivative level via non-parametric procedures
to test model error presence has been already explored (Hooker et al (2015);
Engelhardt et al (2017)). Comparing to statistical methods solely based on
data fitting criteria, they generally produce more sensitive statistical tests and
can explore misspecification presence even for unobserved state-variables. Our
control based approach can extend such tests to a population framework, while
avoiding issues due to hyperparameter selection required for non-parametric
statistical methods which can appear for a growing number of subjects. For
example, to stay in a Bayesian setting, we can specify a prior distribution for
the controls and then compare it with the obtained posterior once the inference
is made. This would lead to a semi-parametric inference problem for which an
optimal control based approach has already been proven useful (see Clairon
(2020)). This is a subject for further work.

Supplementary information. A supplementary file containing the
appendixes and proof of theorem 1 is available alongside this article.
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