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Abstract: As the need for efficient, sustainable, customizable, handy and affordable substitute
materials for bone repair is critical, this systematic review aimed to assess the use and outcomes of
silica-derived inks to promote in vivo bone regeneration. An algorithmic selection of articles was
performed following the PRISMA guidelines and PICO method. After the initial selection, 51 articles
were included. Silicon in ink formulations was mostly found to be in either the native material,
but associated with a secondary role, or to be a crucial additive element used to dope an existing
material. The inks and materials presented here were essentially extrusion-based 3D-printed (80%),
and, overall, the most investigated animal model was the rabbit (65%) with a femoral defect (51%).
Quality (ARRIVE 2.0) and risk of bias (SYRCLE) assessments outlined that although a large majority
of ARRIVE items were “reported”, most risks of bias were left “unclear” due to a lack of precise
information. Almost all studies, despite a broad range of strategies and formulations, reported their
silica-derived material to improve bone regeneration. The rising number of publications over the
past few years highlights Si as a leverage element for bone tissue engineering to closely consider in
the future.

Keywords: biofabrication; bioprinting; ink; tissue engineering; bone regeneration; 3D printing;
silicon; silica; silicium; in vivo

1. Introduction

Bone defects, whether due to infection, tumor, trauma, surgery, aging or genetic
disorders, are a major health issue, affecting hundreds of millions of people every year [1].
Although a human bone graft remains the gold standard therapy, the demand outmatches
the supply. A wide range of synthetic biomaterials has been developed to overcome
limitations associated with the use of autografts and allografts such as morbidity on the
donor site for autografts, and the lack of availability and risks of disease transmission,
infection and immunogenicity for allografts [2]. Xenografts and xenogenic products are
an uprising therapeutic field but also tend to suffer from graft drawbacks. Synthetic
materials offer a more affordable alternative; however, they can be criticized because of their
limited osteoconductivity, inadequate mechanical properties, unpredictable dissolution
kinetics and poor reproduction of bone architecture [3]. Hence, the optimum formulation to
overcome these hurdles is still to be found. Moreover, the development of tissue engineering
has led to the design of new materials and strategies aiming at bone tissue regeneration
instead of bone tissue replacement [4].
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During the last decades, silica-based materials have gained a rising potential in hard
tissue engineering since their first application in 1971 [5,6] and have been widely used for
medical applications [7].

Silicon (Si) is the eighth-most common element in the universe by mass. More than
90% of the Earth’s crust is composed of silicate minerals, making silicon the second most
abundant element in the crust (about 28%) after oxygen [8]. Many studies have shown the
important biological role of Si in humans [9] and revealed its presence at various rates in
many tissues within the body, such as the liver, kidney, lungs, muscle, bone, cartilage and
other connective tissues [10].

At the bone level, silicon is an essential nutrient for tissue formation. In the early 1970s,
a deficiency of Si was demonstrated to be involved in bone formation disorders [11,12].
Many authors reported enhanced bioactivity of biomaterials due to the presence of Si, which
promotes collagen type I synthesis, osteoblastic differentiation and bone repair [13]. Indeed,
Si plays a key role in connective tissue metabolism, particularly in bone and cartilage [14].
In osteoporosis and osteopenia, the reduced proliferation and activity of osteoblasts were
found to be correlated to the loss of the biological availability of Si [15]. Other experimental
studies have shown the role of Si in the remodeling process of bone and suggested its effect
on the inhibition of the physiological resorption mechanisms [16,17].

These findings highlight the obvious interest and high potential of silicon inclusion in
biomaterials used for bone regeneration.

Easily available, and suitable for malleable preparations, silicon-derived materials
crossed the path of additive manufacturing [18]. Developed in the second part of the
20th century [19], the application of this field to biology covers various technologies, used
for fabricating 3D objects in mineral and/or organic elements [20,21]. In bone tissue
engineering, sustaining the required mechanical functions of bone is one of the historical
and critical challenges [22]. As such, material composition must be compatible with
strategies of construct modeling, such as extrusion-based bioprinting, the most common
approach [23]. Another crucial point is to induce a favorable biological response to restore
or supply the lost bone function. Often, the desired outcome is to locally obtain the
mineralization of the tissue replacing the bone defect, which will eventually be remodeled
as a bone tissue as mature and physiologically competent as native bone. Therefore,
research is heavily focused on developing suitable materials that bring a satisfying answer
on these two levels, exhibiting robust mechanical properties with a high biocompatibility
and strong regenerative potential. Thus, in the scope of identifying the most efficient
materials for bone tissue engineering, investigations of silicon-derived materials were
extensively conducted, as it has been widely demonstrated to be an essential component of
different types of biomaterials such as bioactive ceramics in bone repair/regeneration [24].

In bone regeneration and repair applications, silicon has often been used as a substi-
tute or a dopant in calcium phosphate-based ceramics since it has a positive impact on
the performance of conventional biomaterials, related to the surface chemical structure,
mechanical strength, bioactivity and biocompatibility [25]. Moreover, the current trend
has shifted from traditional biocompatible materials to bioactive materials, to promote a
specific biological response between the material and the tissue, leading to the development
of a bond between them [26].

Indeed, several research studies have been conducted in the past [27,28], notably,
regarding physiologically relevant compounds such as hydroxyapatite [29] or collagen [30],
but none specifically concerned with the use of silicon.

Of the numerous materials and strategies assayed, some printable silicon-containing
formulations went through the in vitro characterization to evaluate their in vivo bone repair
potential. Thus, this systematic review proposes to report on the last decade of in vivo
applications based on (bio)printed silicon strategies for bone tissue engineering.
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2. Materials and Methods
2.1. Protocol

The systematic review was conducted according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) guidelines [31], using the Population,
Intervention, Comparison and Outcome (PICO) methods [32] to define the search strategy.
The protocol was registered in PROSPERO database (CRD42022311293).

2.2. Focused Question

The following focused question was defined: “Which silica-based ink formulations
have been shown effective for bone tissue regeneration?”

2.3. Selection Criteria

In vivo preclinical studies involving the use of silica-based ink for bone regenera-
tion were included. Only studies published in English with their abstracts available on
the database were considered. In vitro and ex vivo studies, case reports and reviews
were excluded.

2.4. Search Strategy

The search strategy was developed based on the PICO reporting system (Table 1). A
structured electronic search for articles published in English was conducted up to and
including 10 April 2022 using the electronic databases MEDLINE (PubMed), Scopus and
Web of Science.

Table 1. Systematic search strategy (PICO model).

Category

Population Animals with created bone defect
Intervention Printed silica-based ink
Comparison Untreated or controls

Outcome Results of bone regeneration

Search combination

PubMed: ((silic*[Title/Abstract]) AND
(print*[Title/Abstract]) AND
(bone[Title/Abstract])) NOT

(silicone[Title/Abstract]) AND
((in vivo[Title/Abstract])

Scopus: (TITLE-ABS-KEY (silic* AND print*
AND bone AND NOT silicone) AND

TITLE-ABS-KEY (in AND vivo))
Web of Science: silic* (Topic) AND print*
(Topic) AND bone (Topic) NOT silicone

(Topic) AND in vivo (Topic)
Language English

Electronic databases MEDLINE/PubMed, Scopus, Web Of Science

The following search combination was used:
PubMed: ((silic*[Title/Abstract]) AND (print*[Title/Abstract]) AND (bone[Title/Abstract]))

NOT (silicone[Title/Abstract]) AND ((in vivo[Title/Abstract])
Scopus: (TITLE-ABS-KEY (silic* AND print* AND bone AND NOT silicone) AND

TITLE-ABS-KEY (in AND vivo))
Web of Science: silic* (Topic) AND print* (Topic) AND bone (Topic) NOT silicone

(Topic) AND in vivo (Topic)
The keyword “silicone” was intentionally removed from the research outcome, being

already described as a poor, detrimental material for bone repair [33]. Thus, all silicone-
based approaches were excluded from the research scope.
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Additional articles complemented the electronic search after manually screening the
list of references of all publications selected. The searches were re-run just before the final
analyses to retrieve the most recent studies eligible for inclusion.

2.5. Screening Methods and Data Extraction

All references were imported into a Zotero database. After eliminating the duplicated
ones, references were exported to an Excel sheet to perform the screening phases. The arti-
cles were selected by two reviewers (NT and OK) working independently. The selection was
performed in two phases, based on inclusion and exclusion criteria: (1) title/abstract screen-
ing, (2) full-text screening. The two lists of selected references were then compared and all
disagreements were resolved by discussion, or, if persistent, by a third reviewer (RD).

Prioritized exclusion criteria were as follows: (1) during title/abstract screening, no
application in bone regeneration, reviews, in vitro or ex vivo studies, clinical trials, cases
reports, no silica-based material ink, (2) during full-text screening, no relevant outcome
measure reported, no control group.

For eligible studies that matched with inclusion criteria, full text was screened to
extract data by two reviewers using the data extraction form and was summarized in the
form of Excel-based extraction tables. Data were extracted from text, tables and graphs.
Extraction information included but was not limited to: data for evidence synthesis (study
design, animal model, intervention of interest, primary and secondary outcomes), as well as
information required for assessment of study quality and assessment of risk of bias. In case
of missing data, the corresponding authors were contacted via email. Any disagreement
between reviewers was resolved by discussion with the third reviewer (RD).

2.6. Science Mapping Analysis

Science mapping analysis of scientific domains was performed from the list of in-
cluded articles by using keyword co-occurrence networking on VOSviewer (free software,
version 1.6.18, Centre for Science and Technology Studies, Leiden University, Leiden, The
Netherlands, 2022). Network analysis of the keywords was generated from the matrix
of retrieved papers [34] (threshold value at 4). The terms–document matrix allowed to
measure document similarities between clusters of topics.

2.7. Quality Assessment and Risk of Bias

The methodological quality and risk of bias of the studies included were assessed by
two independent reviewers.

The ARRIVE 2.0 guidelines for reporting animal research were used to evaluate the
quality of the studies. The items evaluated according to ARRIVE 2.0 [35] (“reported”, “not
reported”, “unclear”) were: (1) study design, (2) sample size, (3) inclusion and exclusion
criteria, (4) randomization, (5) blinding, (6) outcome measures, (7) statistical methods, (8) ex-
perimental animal, (9) experimental procedures, (10) results, (11) abstract, (12) background,
(13) objectives, (14) ethical statement, (15) housing and husbandry, (16) animal care and
monitoring, (17) interpretation/scientific implications, (18) generalizability/translation,
(19) protocol registration, (20) data access, (21) declaration of interests.

The risk of bias was evaluated using the SYRCLE (Systematic review Center for Labo-
ratory Animal Experimentation) tool for animal studies [36], using the following criteria:
(1) random sequence generation, (2) baseline characteristics, (3) allocation concealment,
(4) random housing, (5) blinding of participants and personnel, (6) random outcome as-
sessment, (7) blinding of outcome assessment, (8) incomplete outcome data, (9) selective
outcome reporting, (10) other risk of bias. Three categories of potential bias judgments
were used: “low risk of bias”, “high risk of bias”, “unclear risk of bias”.

Two reviewers (NT and OK) were involved in assessment of risk of bias and study qual-
ity. When no consensus was reached, discrepancies were resolved by a third reviewer (RD).
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2.8. Data Analysis

Data analysis was performed in a descriptive way due to heterogeneity of the included
studies in terms of animal model, bone defect model, interventions and outcomes. No
meta-analysis was considered for this systematic review. Summary tables were intended to
provide the most relevant information on study characteristics and findings. In particular,
the descriptive analysis explored the relationships between studies and described the
impact of various silica-based ink formulations on bone regeneration process.

3. Results
3.1. Systematic Review following PRISMA Guidelines

After application of the inclusion and exclusion criteria, 175 articles were selected initially.
The search using the PICO model, yielded 43 articles from MEDLINE/PubMed,

62 articles from Scopus and 70 articles from Web Of Science within the past 10 years. After
the removal of duplicates/triplicates and preliminary analysis of the abstracts, 95 articles
were selected for full-text analysis and evaluation, after which 44 articles were excluded
and 51 articles were included in the review (Figure 1).
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Figure 1. Flow diagram of study identification following PRISMA guidelines.

The spatial representation of the relationships between the keywords was displayed
through a science map (Figure 2). The core, most recurrent keywords were (by decreasing
rank): “tissue scaffold”, “animals”, “osteogenesis”, “printing, three-dimensional” and
“bone regeneration”.

This occurrence representation map highlighted three silicon forms used within the
scoped articles: silicon, silicon dioxide and silicates. With one form excluding the others,
those keywords had no link strength between each other, and were located in opposite
areas. Of the material formulation-related keywords drawn by the occurrence map, silicon
was observed to be closest to ceramics, while silicon dioxide was associated to calcium
phosphate and silicates was near polyesters and calcium compounds.

The most occurring physical characteristics were porosity, compressive strength
and X-ray diffraction. “Mesenchymal stem cells” was among the top 30 most recurring
words/phrases and the only cellular population mentioned, and the most represented
biological analyses were neovascularization, cell proliferation and differentiation.
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3.2. Study Characteristics

In the scoped articles, three animal models were assessed (Figure 3): rabbit (65%), rat
(29%) and mouse (6%). Interestingly, no large animals (sheep, goat) were involved. It is
worthy to note that the number of articles was here correlated to the size of the model. Two
preferential bone models were used: femur (51%) and calvaria (25%). In this review, only
bone regeneration was considered as a crucial criterion, and no specific consideration was
given to mechanical assessment. However, except calvaria and maxillary, all bone models
in this review are associated with motion and superior load-bearing capacity.
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Seven assembling strategies were performed in the articles gathered for this review.
An overwhelming number of studies employed extrusion-related techniques (80%), and the
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six other strategies shared the other 20%. Within this minority, inkjet-associated strategies
were the most representative [37–39] (6% of total), while digital light processing [40,41]
and manual deposit or injection [42,43] were both 4%. Electrospinning [44], laser-assisted
bioprinting [45] and selective laser melting [46] shared equally the 6% remaining (2% each).
The trend of the studies assessing silicon-based inks was here to obtain an extrudable paste,
mostly mixed with polyvinyl alcohol (PVA), that went through a sintering process after the
printing step.

To summarize, the most recurrent combination of models and approaches assessed
in the present review were: rabbit–femur–extrusion. The probability of retrieving a study
(among the scoped articles) investigating the extrusion of a scaffold implanted in a femoral
defect of rabbit was calculated and found to be P(e×f×r) = ((0.8 × 0.51 × 0.65) = 0.2652
(26.25%)). In this study, P(e×f×r) × N(articles) = 13.52 articles should therefore theoretically
associate those three designs. Seventeen articles (33.3% of total) were actually found to
present those characteristics, giving a 6.8% difference between the predicted value and the
actual number of articles assessed.

The main data from the articles selected are shown in Table 2 and Figure 4, and
additive information may be found in the Supplementary Data Table.
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Table 2. Bone repair outcomes of the scoped articles sorted by silicon form, role and investigated formulation.

Si Form Si Role % of Articles Main Focus Number of Articles Outcome Publications

Si
is

in
na

ti
ve

m
at

er
ia

l

w
it

h
a

pr
im

ar
y

ro
le

21.6%

CaSiO3 scaffolds 2
- improved bone regeneration (vs. CaSiO3/Fe composite or pure

Fe scaffold)
- improved bone regeneration (vs. B-TCP)

Ma 2018 [47]
Wu 2012 [48]

MgCaSi compounds 3

- MCS/GA/PCL: 30% MCS formulation improved bone
regeneration (vs. 0 and 15%)

- CaSi–Mg6/PVA: Double layer CSi/PVA improved bone
regeneration at 12 weeks (vs earlier times and vs. CaSi-Mg6/PVA
single composites)

- Mg2% CaSi/PVA6%: improved bone regeneration
(vs. Ti scaffold)

Zhang 2018 [49]
Shao 2017 [50]
Wang 2021 [51]

Sr5(PO4)2SiO4
(SPS) bio-ceramics 1 improved ICRS score (vs. CTR and TCP). Improved neobone

structural organization Deng 2018 [52]

borosilicate glass (BG)
with MBG 1 improved bone regeneration (vs. BG alone) Qi 2018 [53]

MBG/CSH/PCL 1 60% MBG: improved bone regeneration (vs. lower % BG or
CSH/PCL alone) Qi 2017 [54]

C3S materials 2

- C3S/MBG: improved bone regeneration (vs. C3S alone
and vs. ctrl)

- C3S/Col1: no significant bone regeneration (vs. ctrl), or by
adding cells (SCAPs)

Pei 2016 [55]
Touya 2022 [45]

LiCaSi 1 L2C4S: improved bone regeneration (vs. β-TCP) Chen 2019 [56]
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Table 2. Cont.

Si Form Si Role % of Articles Main Focus Number of Articles Outcome Publications

Si
is

in
na

ti
ve

m
at

er
ia

l

w
it

h
a

se
co

nd
ar

y
ro

le
(1

/2
)

56.8% Organic doping 9

- dECM coating CS/PCL scaffold: improved bone regeneration (vs.
CS/PCL alone)

- Ginsenoside Rb1-loaded CS scaffold: improved bone
regeneration (vs. CS alone)

- Caffeic acid coated MTA/PCL: improved bone regeneration (vs.
no coating)

- FGF-loaded CS/PCL scaffold: improved bone regeneration (vs.
CS/PCL alone)

- SVVYGLR grafted on CS scaffold: improved bone regeneration
(vs. CS alone)

- BMSCs-loaded Mg8-CS scaffold: no significant difference in bone
formation (vs. no BMSCs loading)

- rhBMP-2-loaded MS/CPC scaffold: improved bone regeneration
(vs. CS alone)

- FGF-2-loaded gelatin/MgCS/PCL: improved bone regeneration
(vs. gelatin/MgCS/PCL vs. MgCS/PCL)

- Zein/n-MS/PCL: improved bone regeneration
(20%ZN/30%n-MS/50%PCL vs. 10%ZN/30%n-MS/60%PCL vs.
0%ZN/30%n-MS/70%PCL)

Wu 2019 [57]
Chen 2021 [58]
Tien 2021 [59]
Kao 2020 [60]
Zhu 2020 [61]
Shen 2018 [62]

Li 2017 [63]
Lai 2021 [64]
Ru 2018 [65]

Si
is

in
na

ti
ve

m
at

er
ia

l

w
it

h
a

se
co

nd
ar

y
ro

le
(2

/2
)

Non-organic doping 8

- Cu-loaded silica nanoparticles in PLGA: improved bone
regeneration (vs. SN alone or PLGA alone)

- SrCS/PCL scaffold: improved bone regeneration (vs. CS/PCL
alone)

- Mg/Sr-doped CS: improved bone regeneration (vs. MgCS or
SrCS)

- Graphene/CS scaffold: improved bone regeneration (vs. 0
graphene)

- Csi-Mg10/PVA6%/alginate/chitosan: improved bone
regeneration (vs. Csi alone)

- Csi-Mg14/PVA 6%: improved bone regeneration (vs. every
inferior Csi-Mg compound)

- CsiMg4@CsiMg10-p/PVA 6%: improved bone regeneration (vs.
CsiMg4@CsiMg10 vs. CsiMg10@CsiMg4 vs.
CsiMg10@CsiMg4-p)

- (10%Mg90%Ca)Si: 8 weeks lower but 16 weeks improved bone
regeneration (vs. bredigite and vs. pure CaSi)

Lian 2020 [44]
Chiu 2019 [66]
Lin 2022 [67]
Lin 2019 [68]
Ke 2020 [69]

Sun 2016 [70]
Chen 2021 [71]
Shao 2018 [72]
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Table 2. Cont.

Si Form Si Role % of Articles Main Focus Number of Articles Outcome Publications

Si
is

in
na

ti
ve

m
at

er
ia

l

w
it

h
a

se
co

nd
ar

y
ro

le
(2

/2
)

Multiple doping 2

- BMP2-loaded MBG-coated 1393BG: improved bone regeneration
(vs. 1393 alone) (BMP2-loaded > MBG + 1393)

- hGF and Sr-loaded CS: improved bone regeneration (vs. Sr
loading alone and vs. CS alone)

Wang 2020 [73]
Wang 2021 [74]

New scaffold as whole 7

- LCS (Li2Ca2Si2O7): improved bone regeneration and ICRS (vs.
ctrl and β-TCP)

- B-BG and 30 wt% sodium alginate: improved bone regeneration
(vs. HA and ctrl)

- Al-β-Ca2SiO4: improved bone regeneration (15%Al vs.
C2S alone)

- Si-HA/DMB/PCL: qualitatively appreciated bone colonization
- MPC3-BG: improved bone regeneration (vs. MPC alone and ctrl)
- AW/PLA: improved bone regeneration (vs. AW alone or

PLA alone)
- akermanite (Ca(2)MgSi(2)O(7))/PVA: improved bone

regeneration (vs. β-TCP)

Deng 2018 [75]
Zhang 2020 [76]

Yu 2020 [77]
Meseguer 2013 [78]

Li 2020 [43]
Tcacencu 2018 [79]

Liu 2016 [80]

porosity 2

- 600 µm pores: most bone ingrowth, good mechanical strength
and excellent Mg2+ ion release potential
(vs. 480 and 720 µm pores)

- 200–320 µm pores: slower degradability but improved bone
regeneration (at 16 weeks vs. 450–600 µm pores)

Qin 2022 [41]
Wu 2021 [40]

surface treatment 1 C3S with nanoneedle surface structure: improved bone regeneration
(vs. no treatment) Yang 2017 [81]
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Table 2. Cont.

Si Form Si Role % of Articles Main Focus Number of Articles Outcome Publications

Si
is

an
ad

di
ti

ve
m

at
er

ia
l

w
it

h
a

pr
im

ar
y

ro
le

19.6%

Doping 9

- SiO2 and ZnO in β-TCP scaffolds: improved bone regeneration
(vs. no doping)

- Si-BG-loaded PLA scaffolds: equal integration and bone
regeneration (vs. Ti6Al4V and vs. empty defects)

- SiO2 and MgO (0.5%) in β-TCP scaffolds: improved bone
regeneration (vs. no doping)

- MgO, ZnO, SrO and/or SiO2 in TCP: Mg/Si-doped scaffold
improved bone regeneration (vs. all others and pure TCP)

- Si + 4 and Fe + 3 doping in TCP: enhanced blood vessels and
osteoid tissue formation (vs. TCP alone)

- 100 nm Si particles in PCL: enhanced bone regeneration (vs. 500
and 800 nm particles)

- SiP nanosheets in GelMA-PEGDA: enhanced angiogenic activity
and osteogenic induction for bone regeneration (vs.
BP/GelMA-PEGDA and GelMA-PEGDA alone)

- SiO2 (0.5%) and ZnO (0.25%) in β-TCP scaffolds: improved bone
regeneration (vs. no doping)

- 10% Zn-Silicate/HA/Col: improved bone regeneration (vs. 10%
Zn-Silicate/HA/Col + P38 inhibitor and 10% Zn-Silicate/HA . . .
+ Col ERK1/2 inhibitor)

Nandi 2018 [39]
Plyusnin 2020 [82]

Bose 2017 [37]
Ke 2019 [83]

Bose 2018 [38]
Yang 2021 [42]
Xu 2021 [84]

Fielding 2013 [85]
Song 2020 [86]

Coating 1
- MBG-BG-coated Ti-6Al-4V: improved bone regeneration

(vs. no coating) Zhang 2021 [46]

w
it

h
a

se
co

nd
ar

y
ro

le

2% Chitosan + BGn70 + Tri 1
Chit@BGn70 + Tri (tri-molecule dexamethasone-FGF2-phenamil-loaded
chitosan/bioglass-coated PCL scaffold): improved bone regeneration
(vs Chit@BGn70 vs. ctrl)

Kim 2021 [87]
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The list of articles was divided into two main categories, for silicon was either part
of the native material (1), or was added as an external component of the initial material
assessed (2). In each category, two additional subcategories were created to sort the studies
depending on the fact that the silicon has either a primary role (a), or a secondary role (b)
over the bone regeneration assessed (Table 3).

Table 3. Decision table of articles sorting.

Category Si Is in the Native Material Si Is Primary in the Study

1a Yes Yes
1b Yes No
1c No Yes
1d No No

By creating these four categories, all the articles retrieved via the algorithm employed
were able to be sorted without the possibility of an article belonging to more than one
category. Closest articles were then gathered by focus of interest, creating final subcategories
with the largest size possible.

Three main sources of Si were identified: tetraethyl orthosilicate (TEOS) (37%), pure
SiO2 (29%) and wollastonite (CaSiO3) (20%). The remaining 14% of sources were shared by
Ca2Si, Ca3Si, Na2SiO3 and RSiO3/2, or were of undefined origin. According to the sorted
articles, TEOS and CaSiO3 were principally involved as scaffold basal constituents, while
SiO2 free forms were mostly presented as doping agents.

3.3. Outcomes
3.3.1. Articles’ Sorting and Main Outcomes

• Category 1—Si is in the native material

With 78.4% of the total studied articles sorted in this category, the use of Si as a native
part of the investigated material was the leading category.

- 1a—Si is in the native material with a primary role

Within articles including Si as a native part of the material, 21.6% of the total (11 out of 51)
articles placed silicon as a primary element of focus. The compositions of the investigated
materials were variable with monocalcium-based inks [47,48], tricalcium-based inks [45,55];
glasses also involved [53,54]; elements such as magnesium [28–30], strontium [52] or
lithium [56] were also core components of calcium–silicate materials. Controls were usually
either an empty defect, β-TCP or titanium scaffolds. Only Touya et al. [45], using laser-
assisted bioprinting in a mouse calvaria defect model, reported an absence of enhanced
tissue mineralization despite encouraging in vitro results, whether associated with cells or
not. Overall, the outcome was the improvement in bone repair compared to the control.

- 1b—Si is in the native material with a secondary role

The largest subcategory, including 56.8% of the total (29 out of 51) articles reviewed,
could be divided into three main focuses: doping an existing scaffold, assessing a new
material formula (in which Si is of minor interest for the authors) or investigating physical
differences between scaffolds with the same composition. Scaffolds were doped by either
organic, non-organic or mixed elements with coating or loading strategies.

Two articles implanted materials loaded with cells. Shen et al. [62] reported no
significant difference in bone formation between loading or not their magnesium and
calcium–silicate scaffold with bone marrow stromal cells. Wang et al. [74] used gingival
fibroblast and observed an improved bone regeneration compared to their sole implants.

Plant-derived organic compounds [58,59,65], animal growth factors [60,63,64,73],
osteopontin-derived peptide [61] and decellularized matrix [57] were investigated. Overall,
they all triggered an enhanced bone regeneration compared to their respective
non-loaded controls.
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Most non-organic doping involved magnesium [67,69–72], while others included
copper [44], strontium [66] or graphene [68]. All of the studies reported an improvement in
bone regeneration associated with loaded materials compared to their controls.

In several studies [43,75–80], Si was part of the native material, but not considered
as a determining factor in the bone repair evaluated. Although Meseguer et al. [78] only
performed qualitative observations, all studies reported a bone repair enhancement.

For three studies, physical properties of the material assessed constituted the focus
of the investigations: porosity [40,41] and surface texture [81] were highlighted to be
determining parameters for bone repair response.

This category illustrates the use of Si as a structural/vehicle agent.

• Category 2—Si is an additive material

Among the scoped articles, 21.6% of the total were sorted in this category.

- 2a—Si is an additive material with a primary role

Si was used as a determining additive material in 19.6% of total studied articles.
All but one of the articles in this category reported the use of Si as a doping

agent [37–39,42,82–86] meant to be released through time in the implant micro-environment.
Zhang et al. [46] presented the coating of a titanium scaffold with a bioglass. All articles
reported an improved bone regeneration compared to their siliconless counterparts (for
Zhang et al., at the periphery of the implant).

- 2b—Si is an additive material with a secondary role

Only one (2% of total) article was sorted in this category [87], as the element of focus
was a tri-molecule dexamethasone-FGF2-phenamil loading in a chitosan/bioglass-coated
PCL scaffold. Silicon was associated to the coated bioglass on the PCL scaffold, and was
one ingredient out of a vast association of doping agents. This study also reported an
improved bone regeneration.

3.3.2. Quality Assessment and Risk of Bias

Results from the quality assessment of the studies selected for detailed analysis are
shown in Figure 5.

All scoped articles were analyzed according to SYRCLE and ARRIVE 2.0 methods.
As ARRIVE is, to date, not associated with any graphical representation, the performed
quality assessment was depicted inspired by the SYRCLE display tool robvis [88].

According to SYRCLE evaluation, 86.5% of answers to each risk of bias were “Unclear”
as the information needed was either missing or incomplete for most studies, while 11.5%
were attributed as “Low” when information was unequivocal and 2% as “High”. If one
or more item of any article was filled by a “High” potential risk of bias, the whole article
was systematically considered to be also of “High” potential risk of bias, regardless of
the element that led to the decision to attribute the initial “High”. Two categories were
identified as most involved in sorting High risks of bias: the animal random housing (cat. 4)
and the treatment of outcome data (cat. 8–9). Randomness of housing could not be ensured
as it was not necessarily specified in many studies. Some studies presented differences
between the number of animals used displayed in the methods section, and the number of
animals displayed in the results section without justifying it.

With the ARRIVE 2.0 method, 75% of items were “Reported”, 25% were “Unclear”
and only 1% were found to be “Not reported”; the categories with most missing or partially
reported data were the inclusion and exclusion criteria, and the blinding.

Overall, the articles were found to be of satisfying quality but associated with risks of
bias. However, those risks could be mostly attributed to a lack of information provided by
authors rather than clearly misconducted experiments.



Bioengineering 2022, 9, 388 14 of 23

Bioengineering 2022, 9, x FOR PEER REVIEW 13 of 23 
 

Si was used as a determining additive material in 19.6% of total studied articles. 
All but one of the articles in this category reported the use of Si as a doping agent 

[37–39,42,82–86] meant to be released through time in the implant micro-environment. 
Zhang et al. [46] presented the coating of a titanium scaffold with a bioglass. All articles 
reported an improved bone regeneration compared to their siliconless counterparts (for 
Zhang et al., at the periphery of the implant). 
- 2b—Si is an additive material with a secondary role 

Only one (2% of total) article was sorted in this category [87], as the element of focus 
was a tri-molecule dexamethasone-FGF2-phenamil loading in a chitosan/bioglass-coated 
PCL scaffold. Silicon was associated to the coated bioglass on the PCL scaffold, and was 
one ingredient out of a vast association of doping agents. This study also reported an im-
proved bone regeneration. 

3.3.2. Quality Assessment and Risk of Bias 
Results from the quality assessment of the studies selected for detailed analysis are 

shown in Figure 5. 

 
Figure 5. Visualizing risk of bias assessments of studied articles following (A,B) SYRCLE and
(C) ARRIVE 2.0 guidelines with robvis tool.

4. Discussion

Silica-based materials exist in various forms, depending on the purity of sole Si, or
complexation, resulting in a hybrid material. Even though Si was found in the literature to
be part of natural metabolism and to benefit from a high renal clearance [89], some forms
of silica may exert toxicity or deleterious effects at the scale of the whole organism [90,91].
None of the articles in this review seemed to employ such Si derivatives. Investigating
the possibility to use Si as a drug delivery carrier, the size of 70 nm and below [92] of
the Si particles applied to skin was found to be responsible for systemic exposure in mice
and exerted mutagenic activity [93]. Even though such findings were consistent with the
inhalation or digestion of such a size of nanoparticles [94,95], the literature insists on the
good compatibility of these sizes with the dermal route even at a 2000 mg/kg dose [96].
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In this review, the Si nanoparticles’ smallest reported form was of 100 nm diameter [84],
and no systemic effect was reported. However, Si content within the ink formulations
investigated was unassessable due to the ink preparation process. Although the initial
source and proportion of Si or Si-based derivatives within the material was indicated in
many studies, the washing, drying and sintering steps contributed to affect the material
mass or volume, and therefore the element’s contents. Moreover, in different articles, the
purpose of Si was to be released through time. Hence, measures of the native material’s Si
content regarding this strategy were irrelevant, and the focus on the outcome, i.e., the bone
repair compared to appropriate controls, constituted the principal focus of this review.

Indeed, Si, beyond being cytocompatible, was reported to exert a bioactive effect,
by enhancing angiogenesis in endothelial cells [97], and enhancing mineralization [98] in
osteogenic lineages. These two critical events being tightly associated to an efficient bone
repair, the direct impact of Si upon them was investigated.

However, other articles excluded from our scope used alternative strategies. For in-
stance, in a study by Li et al. [99] (rejected for assessing only the subcutaneous implantation
of material), the strategy relied on the support of activated and polarized macrophages
to stimulate angiogenesis consecutive to bone defect creation. Mediated by Si ions, M2
macrophages were polarized. Associated with HUVEC, they significantly improved angio-
genesis and enhanced bone repair subcutaneously. The immune system could therefore be
a first order actor to modulate the tissue repair response after a trauma, of which silicon
may offer a therapeutic interest.

With the emergence of biofabrication strategies for tissue engineering, the develop-
ment of compatible materials on both technological and therapeutic aspects has increased,
especially recently [23]. Indeed, more than half of the recovered articles through the al-
gorithm were published in 2019 or later, highlighting the uprising place of material inks
developed in bone tissue engineering. Among the initially gathered articles, 51 studies
remained in the scope. The article sorting was designed in the perspective of best answering
the original question “Which silica-based ink formulations have been shown effective for
bone tissue regeneration?”. Categories were designed to avoid duplicates, and no article
was found to belong to multiple subcategories. This sorting could help decipher relevant
trends of the use of Si in recent Si-based materials.

Indeed, it was outlined that in ~60% of articles, the role of silicon was not the de-
termining aspect of the study. Overall, Si was considered as holding a structural role
within printed materials. For the doped materials, when Si was often brought alongside
with Zn, Mg or other elements, it was not possible to formally consider Si as the unique
discriminated agent of bone repair enhancement, except for two studies. A trend of 96% of
studies nevertheless reported a bone repair improvement in the formulations involving Si.

This review focused on 3D printing-associated materials. Although the printing
of silicium is not new, its application essentially used to belong to the electronic [100],
security [101] or glass [102] industries.

Overall, 80% of articles used the extrusion-based printing technique. This trend was
found to be highly consistent with the outcome of a recent systematic review dedicated
to hydrogel bioprinting [23] that found extrusion to be used in 76% of 393 articles. It
also agreed to a previous review over the privileged place of extrusion [103], in spite of
a huge difference between the percentage of each printing technique involved (also first
rank with 36.18% of 351 articles), in which the presence of cells within the biomaterial was
mandatory in the search algorithm. Extrusion seems then to be by far the gold standard
technique in non-involving cells’ strategies, which is consistent with the cells’ sensitivity
to shear stress and associated loss of viability [104]. Moreover, due to the low viscosity
nature of most materials investigated here and the inherent constraints of ink deposition
this low viscosity triggered, extrusion was the most relevant tool to perform an efficient,
reproducible printing process. Overall, a very limited number of studies investigated
the association of cells [45,62,74] to the Si-derived material as part of the engineered final
product to implant, and most of the publications relied on the host response rather than an
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enhanced biological activity due to additive cells. Only Wang et al. [74] found the addition
of cells to their material to significantly improve bone formation.

In this review, the in vivo models investigated only concerned small animals. The
rabbit appeared to be the most recurring target to assess bone repair, among other animal
species or bone defects. This result goes against previous findings, as rat was reported by
O’Loughlin et al. [105] (2008) to be the preferred model of fracture healing investigation.
Some bone models possess analogous examples in humans or other species. Assessing var-
ious bones can therefore target a larger number of finer, physiologically equal models [106].
Hence, investigating the broadest range of animals and bones is crucial to provide an exten-
sive and more truthful physiological bone response to implanted engineered biomaterials.
However, in the effort to identify a baseline model to assess bone repair, thus providing a
more standardized approach to enable comparison between studies and new materials, the
diversity of animal and bone models might appear as a hurdle. The choice of a small animal
model, beyond physiological fidelity, surgical accessibility or translation potential towards
larger models, is associated with greater material advantages [107]. Indeed, smaller animals
are more available and affordable in terms of basal caretaking costs per capita (purchase,
housing, feeding, monitoring and overall costs of experiment-associated materials). Ques-
tioning here the bone regeneration potential of silica-based (bio)inks, the rabbit model
appeared, hence, to be the most pragmatic and suitable model and logically federated
the largest number of studies. Preclinical studies following the identification of the most
outstanding materials regarding bone repair should consider the implantation in larger
mammal models, as the studies presented here can only provide an in vivo first glimpse of
a small model response.

Tightly bound to the animal species model choice, the baseline characteristics are also
essential. Even though the outcome (a fully-filled, mature mineralized tissue with equal —if
not superior—mechanical capacities regarding native tissue consecutively to creation of a
bone defect) could be expected to be the major interest, the healing dynamics involved,
the physiological performance and well-being of biological material over time should
also be considered. In the scope of reaching the most reliable bone model to standardize
the research of bone tissue engineering, extensive attention should then be brought with
priority to the baseline characteristics of studied animals. First, the age of animals should be
systematically reported, for this variable has a tight relationship with bone repair following
a trauma [108,109]. Regarding gender, if fracture incidence was reported to be different
through gender and age [110], there is no consensus in the literature regarding an influence
of the sex over bone repair. Even though several studies in mice reported that males had
a faster bone healing, they were unable to formally discriminate this result from the fact
that studied males had more weight than females, or a superior activation of signaling
pathways [111]. Overweight and obesity were indeed reported to delay and reduce bone
healing post trauma [112,113].

To summarize, the age, weight and sex of animals should at least be reported system-
atically in each study. For example, as rabbit was the most abundant model in the articles
scoped here (65% of total), it is proposed here to select specimens (either male of female) of
28–30 weeks of age for skeletal maturity [114,115] (specifically based on the growth plate
closure age over life expectancy age), preferentially with homogeneous weights.

The choice of the defect location in animals is of major interest regarding healing
dynamics through time. Each bone has its own indications for the creation of a defect [116],
and studies may exhibit different approaches. Each model offers different relevant defects
in terms of the physiological response and mechanical consequences, aiming or not for
the creation of a critical-size defect [117]. For instance, flat bones were reported to heal
same size defects faster than long bones [118]. Moreover, there seems to be an absence of
consensus concerning the size of critical defects in humans [119], which adds challenge to
the establishment of a universal defect for in vivo investigations. In this review, the question
was to provide an extensive sight of the silica-derived inks regarding the enhancement
of bone repair consecutive to the creation of a defect, beyond natural healing. Therefore,
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although of great importance, the size of the defect here was not determining, and this
review focused on the ink formulation employed and the final outcome compared to
appropriate controls. In this review, the majority of defects were associated with long
bones, especially the femur (51% of articles). Regarding the most representative animal
used, femoral defects created in rabbit varied from 5 × 5 mm to 6 × 10 mm cylindrical
defects (33.3% of total articles). The most abundant defects (6 out of 17 (11.7% of total
articles)) were associated with a 6 × 6 mm size [59,60,64–66,80]. Thus, in the challenge of
proposing a consensual model regarding the development of silica-based inks for bone
repair, the prevalence of 6 × 6 mm cylindrical femoral defects in rabbits in this review
should be highlighted.

It was challenging for bone repair assessment to be quantitatively compared through
the screened articles due to the heterogeneity in animal/bone defect/healing time models.
First, the most recurrent techniques displayed to qualitatively appreciate and quantitatively
measure bone regeneration were, respectively, histological staining and micro-computed
tomography (micro-CT). Indeed, 78% (40 out of 51) of articles investigated bone repair with
both histology and micro-CT. Most of the time, histological analysis remained qualitative,
and the tissue organization and interaction with the implanted/remodeled material were
described and compared to controls. In this regard, outcomes presented in this review were
limited to the quality of bone repair in the presence of silica-derived materials.

Regarding articles’ quality and risk of bias, SYRCLE methodology highlighted a dra-
matic lack of animal procedure transparency and availability; ethical statements or animal
procedures, as incorporated in studied articles, were unable to provide enough information
to fill the required items. Most studies cited an ethical authority that provided an approval
to conduct an in vivo experiment. However, until the full experimental procedure docu-
ments become available as a Supplementary File attached to any animal experiment-related
publication, the tools for risk of bias detection will widely remain irrelevant. We hereby
emphasize the absence of animal experiment-related protocols attached to publications.
A better transparency will improve publications at many levels, especially in terms of
the reliability and reproducibility of conducted experiments. Unfortunately, likely due
to potential patents and/or the intellectual property involved with publications, most of
the animal procedure complete protocols remain unavailable, and therefore the displayed
elements within most manuscripts cannot be considered as whole.

Concerning the regeneration process, the immune status of the animal model was ques-
tioned. It was considered that, in animals with an altered immune system, the conclusions
of observed results could be inconsistent with a normal physiological response involving
immune system key mechanisms [120,121]. Therefore, studies with immune-compromised
animals were categorized as having an “Unclear” risk of bias.

Overall, although of great interest, the SYRCLE risk of bias assessment seemed not
to represent the best tool to judge the quality of studies assessing the development of
material formulations, for a majority of blinding-related aspects were conflictual with the
implantation of a material versus an empty defect. ARRIVE 2.0 methodology was perceived
as the opposite of SYRCLE regarding the proportion of items found to meet the requirement
of the guidelines with the reported/unclear/not reported system. However, this scoring
was not able to underline the weaknesses of some studies. For example, an inappropriate
methodology employed regarding statistical hypotheses and tests could be performed in
an article, or conflicts of interests could be displayed. According to the scoring system, the
items 7-Statistical Methods and 21-declaration of interests would be considered reported and,
consequently, provide a pledge to quality.

In spite of aiming for a single purpose, bone repair, this review highlighted the
plurality in strategies: from the scaffold/ink preparation process to the delivery of the
material. Most studies involved processes with several intermediary steps such as soaking,
drying, sintering, etc., to generate a scaffold, while few were able to deliver a final product
by one-step assembling and in situ printing [43,45]. Although the tissue engineering
definition [122] depicted a trinity involving cells, adjuvants and support materials, almost
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none of the articles here investigated focused on a strategy relying on the use of cells, and
most used an inorganic material-associated approach. This is consistent with a pragmatic
will of obtaining a standardized, patient adjustable, quickly available elaborated material.

This manufacturing aspect raises the question of the materials’ availability for patients
regarding the acceptable delay from the moment of demand versus the moment of delivery.
Moreover, the questions about the strategy underlying the formulation are crucial, for the
materials can be supposed to immediately replace a bone on a mechanical perspective with
poor physiological respect, or to be associated with a longer (closer to natural) healing time
but aim to restore the bone tissue as if it was native. Still regarding formulation, targeted
physiological aspects can be crucial, choosing to stimulate vascularization, mineralization
and innervation, or to first prevent a microbiological contamination hazard while keeping
the composition as simple as possible, with a defined architecture and physicochemical
properties expected to address physiologically-specific needs.

From a translation-to-clinic perspective, the manufacturing of new materials must
therefore overcome considerable challenges. The scale up from the in vitro evaluation of
materials with in vivo assessment in small animal models to in vivo therapeutic implan-
tation to large mammals with respect to the laws and regulations for health seems yet to
remain for a minority of products [123,124]. The increasing number and diversity of 3D
printing approaches this last decade might help to bring more materials and applications
to the clinic, and research should be continued in this effort.

5. Conclusions

Involved in bone tissue repair strategies since the 1970s, silicon and its derivatives
recently grew in interest in the additive manufacturing and bioprinting fields. In this
review, silicon appeared to be a versatile element to improve bone repair, whether as a
constitutive or as a functionalizing, additive element. This review highlighted the dominant
place of extrusion printing and the privileged place of rabbit and the femur, respectively, as
animal and bone defect models for bone tissue engineering regarding the development of
biocompatible inks suited for 3D printing. Considering the trend of an increasing number
of publications related to the in vivo application of silica-derived inks for bone tissue
engineering, it is expected that future printed patient-designed prostheses will integrate Si
within the manufacturing process.
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