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Abstract: The gut microbiome is involved in nutrient metabolism and produces metabolites that,
via the gut–brain axis, signal to the brain and influence cognition. Human studies have so far had
limited success in identifying early metabolic alterations linked to cognitive aging, likely due to
limitations in metabolite coverage or follow-ups. Older persons from the Three-City population-based
cohort who had not been diagnosed with dementia at the time of blood sampling were included,
and repeated measures of cognition over 12 subsequent years were collected. Using a targeted
metabolomics platform, we identified 72 circulating gut-derived metabolites in a case–control study
on cognitive decline, nested within the cohort (discovery n = 418; validation n = 420). Higher serum
levels of propionic acid, a short-chain fatty acid, were associated with increased odds of cognitive
decline (OR for 1 SD = 1.40 (95% CI 1.11, 1.75) for discovery and 1.26 (1.02, 1.55) for validation).
Additional analyses suggested mediation by hypercholesterolemia and diabetes. Propionic acid
strongly correlated with blood glucose (r = 0.79) and with intakes of meat and cheese (r > 0.15), but
not fiber (r = 0.04), suggesting a minor role of prebiotic foods per se, but a possible link to processed
foods, in which propionic acid is a common preservative. The adverse impact of propionic acid on
metabolism and cognition deserves further investigation.

Keywords: propionic acid; gut microbiota; metabolomics; cognitive decline; gut–brain axis; Alzheimer’s
disease; dementia
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1. Introduction

The gut microbiota, composed of micro-organisms (bacteria, archaea, bacteriophages,
eukaryotic virus and fungi) that colonize the gut, plays an important role in human phys-
iology and health [1,2]. The contribution of the microbial community to food digestion
and nutrient metabolism is central to the biological functions of the host-microbiota sys-
tem. Encoding specialized enzymes (e.g., for the breakdown of complex polysaccharides,
polyphenols and synthesis of vitamins) that are not present in the human genome, the
microbiome releases specific microbial and diet-derived metabolites in the gut and the
bloodstream, such as pro-inflammatory factors, short-chain fatty acids, indole and phenolic
metabolites and neurotransmitters [3].

There is a strong biological interplay between diet, the gut microbiota and the central
nervous system, referred to as the gut–brain axis [4], which involves both direct gut-to-
brain communication (through the nervus vagus), as well as more distant signaling via
circulating metabolites in the systemic milieu; some of which cross the blood–brain barrier
and exert direct neurobiological effects [5,6]. Emerging evidence even suggests a link
between specific food- and gut microbiota-derived metabolites and cognitive aging and
associated diseases, in particular dementia and its most frequent form, Alzheimer’s disease
(AD) [7,8]. Candidate metabolites include anthranilic acid, a derivative of tryptophan
produced by the kynurenic pathway [9,10]; trimethylamine oxide (TMAO), synthetized
by gut microbiota from dietary betaine, choline and carnitine [11]; and cholesterol-derived
biliary acids [12]. Short-chain fatty acids (SCFA), produced by microbial fermentation
of certain dietary fibers, are also key metabolites of the gut–brain axis, which have been
implicated in AD, e.g., by interfering with the protein–protein interactions necessary for
toxic amyloid beta (Aβ) and aggregate formation [13]. They have also been involved in
neuroinflammation, a critical underlying pathway of the gut–brain axis [14].

However, evidence of the associations between microbial metabolites and cognitive
ageing in humans has so far been fragmented. Detection of diet- and gut-derived metabo-
lites deserves highly sensitive metabolomics approaches, which have been developed only
recently and have not yet been applied on a large scale in biomedical research [15]. Fur-
thermore, studies have so far been limited in sample size and in the number of candidate
metabolites analyzed, often without a replication stage. Moreover, causality is a critical
issue in microbiome research [16]. Given that studies have so far been cross-sectional, they
cannot infer whether diet- or microbiota-related metabolic changes are causally related to
brain diseases or are a consequence.

Therefore, identifying blood biomarkers before the onset of cognitive decline in long-
term prospective studies is an essential step to identify early gut-derived metabolic alter-
ations that potentially lead to cognitive aging and dementia. It is important to replicate
discovery findings in populations with different ages and geographic origins, who have
different environmental exposures and lifestyle, to ensure the robustness and external
validity of results [17].

By using a case–control study nested in a large population-based cohort of older
persons, we investigated the continuum of changes related to brain aging on a global scale
(which results from both normal aging and brain pathologies, such as AD), focusing on long-
term cognitive decline. We applied a large-scale and quantitative multi-metabolite platform
to serum samples to determine circulating levels of 72 food- and gut microbiota-derived
metabolites and studied their association with cognitive decline.

2. Materials and Methods
2.1. Study Population

The Three-City (3C) study is a French cohort initiated in 1999 with the primary aim
of studying vascular risk factors for dementia. It included 9294 non-institutionalized
community dwellers aged 65 years or over from the following three French cities: Bordeaux
(n = 2104), Dijon (n = 4931) and Montpellier (n = 2259) [18]. The 3C protocol was approved
by the Consultative Committee for the protection of persons participating in biomedical
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research at Kremlin-Bicêtre University hospital in France and all participants provided
written informed consent. At baseline, face-to-face interviews were conducted to collect
socio-demographic data, lifestyle and health parameters. In addition, anthropometric
and blood pressure measurements were performed, as well as fasting blood sampling
for the constitution of a biobank. The number of medications regularly consumed by
participants was recorded. Follow-up visits were conducted at home every two to three
years. At baseline and at each follow-up visit, a battery of cognitive tests was performed by
a certified and experienced neuropsychologist [18].

In Bordeaux, a nutritional survey was performed by a trained dietitian during a
home interview conducted at the first follow-up in 2001–2002, including a food frequency
questionnaire and a 24 h recall [19,20].

2.2. Nested Case–Control Samples

We worked with two different study centers (in Bordeaux and Dijon cities, France) to
define separate samples (for discovery and validation stages, respectively) of a nested case–
control study on serum metabolome and cognitive decline. Eligible participants showed
no signs of dementia at baseline, had available serum samples in the biobank and had
undergone at least one repeated cognitive evaluation over the subsequent twelve years of
follow-up [21]. The averages of Z-scores of five neuropsychological tests (Mini-Mental State
Examination [22], Benton Visual Retention Test [23], Isaacs’s Set Test [24], Trail-Making Test
part A [25] and Trail-Making Test part B [25]) were used to define a composite score of global
cognition. Individual slopes of cognitive change in the cognitive composite were computed
using linear mixed models. Cases were defined as the participants with the worst slopes of
cognitive change, and each case was matched to a control (i.e., a participant with a slope
of cognitive change better than the population median) based on age (±3 years), sex and
educational level (lower or higher than secondary school). In total, 209 cases in Bordeaux
were successfully matched to a control, leading to a discovery sample of 418 participants.
Similarly, in Dijon, 212 cases were successfully matched to a control, amongst whom 2 had
no metabolomics measurement available and were excluded, leading to a validation sample
of 420 participants.

2.3. Metabolomics Analysis of Serum Samples

Targeted metabolomics was conducted using a quantitative multi-metabolite platform
for the simultaneous detection and quantification of 206 food-related metabolites, gut
microbiota derivatives and endogenous metabolites (Supplementary Table S1) [26].

Serum samples were first subjected to protein precipitation with methanol containing
0.1% formic acid, followed by acetonitrile extraction, as previously described [21]. Su-
pernatants were transferred to 96-well injection plates after addition of a set of internal
standards. Analyses were carried out by ultra-high performance liquid chromatography
coupled to tandem mass spectrometry (UHPLC-MS/MS), using the operating conditions
described elsewhere [26]. Calibration curves were prepared at 10 concentration levels in
the range 0.01–1000 µg/L.

The concentration of metabolites known to be influenced by pre-analytical factors
(e.g., improper handling/storage of blood samples) was checked for the absence of abnor-
mal values (±3 × IQR). The coefficients of variation for peak areas, retention times and
peak widths of the internal standards were computed to evaluate the reproducibility. We
assumed missing values to be mostly due to concentrations under the limit of quantification.
To reduce the influence of missing values in the analysis, we studied only metabolites with
≥50% non-missing values in either the cases or the controls. The remaining missing values
were imputed to zero.

In this study, we focused on 72 out of the 206 metabolites of the targeted metabolomics
platform that are known to be produced or influenced by the gut microbiota, including
aromatic amino acids and derivatives, biogenic quaternary amines, secondary bile acids,
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B-group vitamins, SCFA and metabolites derived from the gut biotransformation of dietary
polyphenols (Supplementary Table S2).

2.4. Other Variables

Covariates were considered at the time of blood drawn at the baseline. They in-
cluded smoking (in pack-years), alcohol consumption (in grams per day), body mass
index (BMI, computed as weight/height2 (kg/m)), hypercholesterolemia (fasting blood
cholesterol ≥ 6.2 mmol/L and/or taking lipid-lowering medication), diabetes (defined as
fasting glycemia ≥ 7 mmol/L and/or taking diabetes medication) and hypertension (blood
pressure ≥ 140/90 and/or antihypertensive treatment).

2.5. Statistical Analyses

In the primary analysis dedicated to metabolite discovery, associations between the
concentration (normalized) of each metabolite and the odds of cognitive decline were
investigated using logistic regressions conditioned for matching variables (defined as the
strongest risk factors for cognitive decline in older persons, i.e., age, sex and educational
level), with correction for multiple testing based on the Benjamini–Hochberg false discovery
rate (FDR) [27]. Since the use of an independent validation stage lowers the risk for false
positives, we allowed for the discovery stage a permissive FDR-adjusted threshold of
FDR < 0.15 for selection in subsequent validation. Selected metabolites (with p < 0.15 in
the discovery stage) were tested for replication, using conditional logistic regressions. The
statistical threshold for the validation stage was set at α = 0.05. In all logistic regression
models, the log-linearity hypothesis was tested, and the metabolites that were not log-
linearly associated with the odds of cognitive decline were transformed by the highest
performing polynomials [28].

A secondary set of analyses was conducted on the metabolites identified and validated
in the primary stage, considering lifestyle and cardio-metabolic conditions that could
confound and/or mediate the relation of metabolites to cognitive decline. These secondary
analyses were run using the pooled dataset (combining discovery and validation samples).
First, a directed acyclic graph (DAG) was drawn; DAGs are visual representations of causal
assumptions in epidemiological studies that help determine which adjustment variables
should be included in the models. DAG methodology requires the a priori establishment
of the potential confounders (i.e., variables that are associated with both the exposure(s)
and the outcome but are not on the same causal path) and mediators (i.e., variables that
are on the causal path between exposure(s) and outcome) of the relation under study.
The list of potential confounders and mediators and the DAG were determined based on
existing knowledge. Next, a multivariable-adjusted analysis was performed, including
adjustment factors as determined by the DAG. Then, formal causal mediation analysis
was carried out using counterfactual mediation analysis for matched data, to estimate the
natural direct effect (NDE) of the selected metabolites on cognitive decline and their natural
indirect effect (NIE) through potential mediators. We adapted the method proposed by
Kim et al. [29,30] to several mediators modeled non-concomitantly in conditional logistic
regression models (one for each mediator), while adjusting for both potential confounders
and other mediators.

Missing data for covariates (≤5% for all variables, in both samples) were imputed
by multiple imputations (using chained equations with the fully conditional specification
method; M = 5 imputations), whenever necessary.

Statistical analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary,
NC, USA), R version 4.0.3 (R Foundation, Vienna, Austria) and DAGITTY version 3.0 for
DAG construction.

3. Results

Cases and controls from both the discovery and validation samples were approxi-
mately 76 years old, on average, with 66% and 63% female participants, respectively, and
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71% with an education level above secondary school in both samples (Table 1). Baseline
characteristics were generally comparable between the two samples, except for hyperten-
sion, which was slightly more prevalent in the validation sample (Dijon). In both samples,
diabetes was significantly higher in cases than in controls (13% versus 6%, p = 0.01), while
the other characteristics did not significantly differ by case–control status (p > 0.05).

Table 1. Baseline characteristics of cases of cognitive decline over 12 years and matched controls in
the discovery and validation samples.

Discovery
(n = 418)

Validation
(n = 420)

Cases Controls Cases Controls

Matching variables

Age (years), mean (SD) 75.9 (4.4) 75.7 (4.2) 76.5 (5.2) 76.1 (4.7)
Women 138 (66) 138 (66) 133 (63) 133 (63)
Level of education above secondary level 149 (71) 149 (71) 150 (71) 150 (71)

Baseline characteristics

BMI (kg/m2), mean (SD) 26.8 (4.3) 26.1 (3.6) 25.7 (4.5) 25.0 (3.6)
Alcohol consumption (g per day), mean (SD) 13.0 (14.6) 14.6 (17.2) 12.3 (14.5) 12.4 (12.7)
Smoking (pack-years), mean (SD) 9.1 (19.7) 7.3 (14.6) 8.1 (19.2) 6.0 (12.8)
High blood pressure 164 (78) 159 (76) 176 (84) 174 (83)
Hypercholesterolemia 79 (38) 93 (44) 85 (40) 80 (38)
Diabetes 27 (13) * 12 (6) * 27 (13) * 12 (6) *
Number of medications, mean (SD) 4.9 (2.7) * 4.1 (2.4) * 5.5 (3.0) * 4.0 (2.9) *

Values represent sample sizes (percentage), unless otherwise stated. * Statistically significant difference (p < 0.05)
between cases and controls, based on paired t-test for quantitative variables and on McNemar test for matched
data for qualitative variables.

In the discovery stage, seven food- and gut-microbiota-derived metabolites associated
with the odds of cognitive decline were selected (Table 2), including three amino acid
derivatives (phenylacetylglutamine, indolelactic acid and kynurenic acid); a TMAO sub-
strate (betaine), a vitamin B (pantothenic acid), a SCFA (propionic acid) and a polyphenol
derivative (3′,4′-DHPV-S). Among these, only propionic acid was replicated in the valida-
tion stage (see distribution in Supplementary Figure S1). For each 1 standard deviation (SD)
increase in propionic acid concentration in serum, the odds of cognitive decline increased
by 40% in the discovery sample (OR = 1.40, 95% CI 1.11–1.75, FDR-corrected p = 0.07) and
by 26% in the validation sample (OR = 1.26, 95% CI 1.02–1.55, p = 0.03) (Table 2).

For multivariable-adjusted analyses, we considered lifestyle factors (smoking and
alcohol consumption) and cardio-metabolic risk factors (BMI, hypertension, hypercholes-
terolemia and diabetes) as covariates of interest. First, we tested interactions of propi-
onic acid with each of these factors regarding cognitive decline and all were found to
be non-statistically significant (p > 0.15). Second, as there was suggestive evidence in
the literature that cardio-metabolic health could mediate the relation of propionic acid to
cognitive decline [31–34], we established a DAG with alcohol consumption and smoking
as potential confounders and BMI, hypertension, hypercholesterolemia and diabetes as
potential mediators (Supplementary Figure S2). After adjustment for potential confounders
(Figure 1, model 1), propionic acid remained significantly associated with cognitive decline
(OR = 1.38, 95% CI 1.15–1.64 in the pooled sample). When adjusting subsequently for
potential mediators (Figure 1, model 2), the association was attenuated and did not reach
significance in the pooled sample (OR = 1.23, 95%CI 0.99–1.52). Adjusting for the number
of regularly consumed medications did not modify the results.
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Table 2. Associations 1 between standardized concentrations of food- and gut microbiota-derived
metabolites in serum and the odds of subsequent cognitive decline over 12 years in discovery and
validation stages.

Discovery (n = 418) Validation (n = 420)

Metabolite OR 2 95% CI FDR-Adjusted
p Value 3 OR 95% CI p Value

Phenylalanine 0.93 0.76; 1.14 0.83
Tyrosine 1.18 0.97; 1.44 0.37

Tryptophan 1.11 0.92; 1.35 0.70
Phenyl-lactic acid 1.26 1.02; 1.57 0.26

p-HPLA - - 0.33
Phenylacetylglutamine 1.34 1.08; 1.66 0.09 * 1.14 0.94; 1.39 0.19

Epinephrine - - 0.84
p-Cresol-G 1.13 0.93; 1.36 0.64
p-Cresol-S 1.13 0.93; 1.37 0.68
Indoxyl-S - - 0.80
Serotonin 0.96 0.79; 1.15 0.87

Indolelactic acid 1.38 1.11; 1.72 0.07* 0.93 0.77; 1.12 0.46
Indoleacetic acid 1.12 0.91; 1.37 0.70

5-HIAA - - 0.84
Indolepropionic acid 1.00 0.84; 1.20 1.00

Kynurenine 1.17 0.95; 1.43 0.49
Kynurenic acid 1.34 1.07; 1.67 0.10 * 1.07 0.88; 1.29 0.49

Xanthurenic acid 1.12 0.92; 1.37 0.68
Anthranilic acid 0.97 0.80; 1.18 0.94

Picolinic acid 0.93 0.77; 1.12 0.80
Ergothioneine 0.98 0.81; 1.18 0.94

Lactic acid 1.10 0.91; 1.34 0.76
Choline 1.19 0.97; 1.45 0.37
TMAO 1.03 0.84; 1.26 0.94
Betaine 0.73 0.60; 0.88 0.04 * 0.97 0.8; 1.17 0.73

Carnitine 1.07 0.88; 1.31 0.83
GDCA 1.24 1.01; 1.52 0.26

Thiamine - - 0.92
Riboflavin 0.87 0.71; 1.07 0.59

Niacinamide 1.26 1.03; 1.55 0.21
Pantothenic acid 1.43 1.15; 1.77 0.04 * 1.04 0.86; 1.24 0.70
4-pyridoxic acid - - 0.94

Biotin 1.38 1.03; 1.86 0.26
Propionic acid 1.40 1.11; 1.75 0.07 * 1.26 1.02; 1.55 0.03

Butyric acid 1.08 0.90; 1.30 0.80
Valeric acid 0.93 0.76; 1.13 0.80

2-HBA 1.10 0.87; 1.38 0.80
3-HBA-S 0.99 0.82; 1.19 0.99
4-HBA-S 1.06 0.87; 1.29 0.84

2,6-DHBA 1.06 0.88; 1.29 0.84
3,4-DHBA 0.95 0.77; 1.16 0.87

HA 0.82 0.67; 1.02 0.33
4-HHA 0.95 0.78; 1.16 0.87
3-HHA 0.98 0.79; 1.20 0.94

iVA 1.01 0.83; 1.22 0.99
2-HPAA 1.08 0.89; 1.31 0.80

4-HPAA-G 1.18 0.94; 1.47 0.50
3-HPAA-S 1.00 0.82; 1.20 0.99

3,4-DHPAA-S 1.00 0.82; 1.21 0.99
FA-S 0.95 0.78; 1.16 0.87

3-HPPA 0.96 0.78; 1.17 0.89
HPPA-S 0.91 0.74; 1.13 0.80
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Table 2. Cont.

Discovery (n = 418) Validation (n = 420)

Metabolite OR 2 95% CI FDR-Adjusted
p Value 3 OR 95% CI p Value

3,5-DHPPA-S 1.02 0.85; 1.23 0.94
DHCA-3S 1.03 0.84; 1.25 0.94

DHFA 1.11 0.91; 1.35 0.76
DHFA-S 0.89 0.73; 1.08 0.68
DHiFA-S 1.00 0.83; 1.22 0.99
3-HPHPA 1.01 0.83; 1.23 0.99

PYR-S 0.99 0.82; 1.20 0.99
MePYR-S 0.97 0.80; 1.18 0.94

CAT-S - - 0.80
4-MeCAT-S 0.84 0.66; 1.05 0.47

VAN 0.82 0.66; 1.02 0.33
3′,4′-DHPV-S 0.70 0.54; 0.91 0.09 * 1.04 0.86; 1.25 0.69

MHPV-S 0.83 0.68; 1.02 0.33
UroA-G 0.92 0.75; 1.14 0.80
UroA-S 0.89 0.71; 1.11 0.71
UroB-G 1.04 0.86; 1.27 0.89
UroB-S 1.05 0.86; 1.28 0.87

DHRSV-S 0.98 0.80; 1.19 0.94
EL 0.87 0.71; 1.06 0.51

EL-S 0.83 0.69; 1.01 0.33
1 Estimated using conditional logistic regressions (conditioned using matching variables, i.e., age, sex and
educational level). 2 For 1 SD increase in metabolite concentration, when used continuously (standardized).
Note that in the case of non-log-linear relationships between a metabolite and the odds of cognitive de-
cline, a transformation into fractional polynomials was used to satisfy the model assumptions. The associ-
ation of the metabolite with the odds of cognitive decline was then estimated with a combination of model
parameters. Since results cannot be interpreted based on single fractional polynomial parameters but on
the overall polynomial function, for the sake of simplicity, these parameters were not provided (OR miss-
ing in table). The p-value associated with the log-likelihood ratio test of all parameters of the polynomial
function together (i.e., testing the global effect of the metabolite on the odds of cognitive decline) is pre-
sented. 3 p-value after Benjamini–Hochberg false discovery rate correction. Metabolites with p-values ≤ 0.15
highlighted with a asterisk in the discovery stage were selected for the validation stage. Abbreviations:
2,6-DHBA: 2,6-dihydroxybenzoic acid; 2-HBA: 2-hydroxybenzoic acid, 2-HPAA: 2-hydroxyphenylacetic acid,
3,4-DHBA: 3,4-dihydroxybenzoic acid; 3,4-DHPAA-S: 3,4-dihydroxyphenylacetic acid sulfate; 3,5-DHPPA-S:
3-(3,5-dihydroxyphenyl)propionic acid sulfate; 3′,4′-DHPV-S: 3′,4′-dihydroxyphenyl-γ-valerolactone sulfate;
3-HBA-S: 3-hydroxybenzoic acid sulfate; 3-HHA: 3-hydroxyhippuric acid; 3-HPAA-S: 3-hydroxyphenylacetic acid
sulfate; 3-HPHPA: 3-(3-hydroxyphenyl)-3-hydroxypropionic acid; 3-HPPA: 3-(3-hydroxyphenyl)propionic acid;
4-HBA-S: 4-hydroxybenzoic acid sulfate; 4-HHA: 4-hydroxyhippuric acid; 4-HPAA-G: 4-hydroxyphenylacetic
acid glucuronide; 4-MeCAT-S: 4-methylcatechol sulfate; 5-HIAA: 5-hydroxyindole-3-acetic acid; CAT-S: catechol
sulfate; CI: confidence interval; DHCA-3S: dihydrocaffeic acid 3-sulfate; DHFA: dihydroferulic acid; DHFA-S:
dihydroferulic acid 4-sulfate; DHiFA-S: dihydroisoferulic acid 3-sulfate; DHRSV-S: dihydroresveratrol sulfate; EL:
enterolactone; EL-S: enterolactone sulfate; FA-4S: ferulic acid 4-sulfate; GDCA: glycodeoxycholic acid; HA: hip-
puric acid; HPPA-S: hydroxyphenylpropionic acid sulfate; IAA: indole-3-acetic acid; IPA: indole-3-propionic acid;
iVA: isovanillic acid; MePYR-S: methylpyrogallol sulfate; MHPV-S: 4′-hydroxy-3′-methoxyphenyl-γ-valerolactone
sulfate; OR: odds ratio; p-cresol-G: p-cresol glucuronide; p-cresol-S: p-cresol sulfate; p-HPLA: p-hydroxyphenyl-
lactic acid; PYR-S: pyrogallol sulfate; TMAO: trimethylamine N-oxide; UroA-G: urolithin A glucuronide; UroA-S:
urolithin A sulfate; UroB-G: urolithin B glucuronide; UroB-S: urolithin B sulfate; VAN: vanillin.

When we further deconstructed the effect of propionic acid on cognitive decline
with mediation analyses (Supplementary Figure S3), the direct effect (NDE) of propionic
acid (coded as >75th versus <25th percentiles) on the odds of cognitive decline was 1.75
(95% CI 1.01, 3.09). The indirect effect (NIE) operating through hypercholesterolemia was
statistically significant (1.33 95% CI (1.05, 1.94)) and the one operating through diabetes was
borderline non-significant (1.17 (0.99, 1.52)). The percentage of mediation (NIE/total effect)
from hypercholesterolemia was 34% and from diabetes, it was 21%. The mediating effects of
BMI (defined as ≥ versus < 30 kg/m2) and of hypertension were not statistically significant
(OR for NIE through BMI = 1.06 (0.87, 1.36) and OR for NIE through hypertension = 1.69
(0.92, 3.47)).
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Figure 1. Multivariable-adjusted associations 1 between standardized concentration of propionic
acid in serum and the odds of subsequent cognitive decline over 12 years in the discovery (n = 418),
validation (n = 420) and pooled samples (n = 838). 1 Estimated using conditional logistic regressions
(conditioned using matching variables, i.e., age, sex and educational level). Model 1: adjusted for
potential confounders (alcohol consumption and smoking). Model 2: adjusted for confounders
(alcohol consumption and smoking) and potential mediators (body mass index, hypertension, hyper-
cholesterolemia, and diabetes).

Fasting blood glucose levels were strongly correlated with the concentration of propi-
onic acid (Pearson’s correlation = 0.79, p < 0.001 in the pooled sample) and when using blood
glucose instead of diabetes in mediation analyses (defined as ≥ versus < median value
(4.9 mmol/L)), mediation by glycemia was statistically significant (OR for NDE of high
versus low propionic acid = 2.26 (1.36, 4.32) and OR for NIE through blood glucose = 2.03
(1.24, 3.86)).

4. Discussion

We adopted a novel epidemiological approach to the gut–brain axis through evalua-
tion of a large panel of circulating post-biotics in relation to subsequent long-term cognitive
decline, in a population-based cohort. Among the 72 metabolites determined using a
multi-metabolite UHPLC-MS/MS analysis, 7 were associated with the odds of cognitive
decline in the discovery stage, including 3 amino acid derivatives (phenylacetylglutamine,
indolelactic acid and kynurenic acid); a TMAO substrate (betaine), a B vitamin (pantothenic
acid), a SCFA (propionic acid) and a polyphenol derivative (3′,4′-DHPV-S). Among these,
only propionic acid was significantly associated with cognitive decline in the validation
stage. Finding a consistent association between propionic acid and cognitive decline in two
samples of different geographic origin (south-west and north-east of France for discovery
and validation, respectively), exposed to different environments, neutralizes some poten-
tially unmeasured confounders, and supports the robustness of our results. Overall, for
each increase of 1-SD of propionic acid in serum (i.e., approximately 20 µg/L), the odds
of cognitive decline increased by 26% and 40% in the validation and discovery samples,
respectively. Additionally, in secondary exploratory mediation analyses, we found a poten-
tially mediating role of cardiometabolic conditions, specifically hypercholesterolemia and
fasting glycemia (diabetes with borderline significance).
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Propionic acid is a SCFA produced by Bacteroidetes and Firmicutes spp. via colonic
fermentation of dietary fibers and undigested polysaccharides, which are found in high
concentrations in prebiotic foods (e.g., artichokes, leeks, salsify, onions and apples) [35].
It is estimated that in a human being who weighs 85 kg, the gut microbiota produces
approximately 29.5 mg/kg/day of propionate via colonic fermentation [36]. In addition
to gut fermentation, the two other sources of propionate are the oral microbiome and the
intake of processed, packaged foods, such as bread and cheese, where it is incorporated as
a preservative (i.e., anti-microbial agent). Hence, in the US, propionic acid has been found
in concentrations of 0.1% to 0.4% in foods such as baked goods, dairy and meat products,
puddings, gelatins and jams [31,37,38], meaning that most people are exposed to dietary
sources of propionate daily. In our study, serum propionic acid was not correlated with
intake of dietary fiber (r = 0.04, p = 0.41 in Bordeaux sample), but was significantly correlated
with meat and cheese intake (Pearson’s correlation = 0.18 and 0.15; p = 0.001 and 0.005,
respectively). This may indirectly suggest that the exogenous origin of food preservatives
may contribute to circulating propionic acid in our population. Regardless of the source
(either synthesized by the microbiota or of exogenous origin from processed food), most of
the propionate produced/ingested reaches blood circulation [39]; 90% is metabolized by
the liver [40,41] and part of the remaining fraction crosses the blood–brain barrier through
the GRP41 transporter [42]. However, human data on SCFA bioavailability, including
propionic acid, are very limited due to the volatile nature of these metabolites [43,44].

Propionic acid exerts many physiological functions, including its role in the promotion
of enteric smooth muscle contractions and in immune function [45,46]. It also plays a
role in glucose and energy metabolism, serving as a substrate for gluconeogenesis (via
the succinate pathway) [31,47]. However, the effect of propionic acid on brain health
and aging is still poorly understood. Our results provide novel findings that suggest
an adverse impact of propionic acid on cognitive aging, in a controversial area. On the
one hand, our findings are in contradiction with studies that have found that SCFAs,
including propionate, benefit both the integrity of the blood–brain barrier via the GRP41
receptor [13,48] and the maturation and function of brain microglia. SCFAs also exert anti-
inflammatory activity, especially in acute neurological conditions (e.g., ischemic stroke) [49].
They decrease pro-inflammatory cytokines both in vitro and in mice studies [14]. The
role of SCFAs in neurodegenerative diseases has been controversial, with, for example,
some studies suggesting that SCFAs may decrease [44,50,51] and others suggesting that
they may promote [52,53] Aβ aggregation (the primary AD neuropathology), potentially
via activation of microglial activity. Our findings are consistent with two small studies
that reported increased propionic acid concentrations in saliva and cerebrospinal fluid of
AD patients [54,55]. A study also reported a greater amount of Bacteroides (the bacteria
phylum that produces propionic acid) in the microbiota of AD patients compared to healthy
subjects [56].

A novel concept raised by our study is the mediation of the adverse association of
propionic acid to cognitive decline by blood glucose, suggesting metabolic disruption as a
central pathway in the relation of propionic acid to cognitive aging. Impaired metabolic
health (i.e., hyperglycemia and insulin resistance) is an important risk factor for cognitive
decline and dementia [57], and in our population, serum propionic acid was strongly
correlated with blood glucose. This is consistent with recent preclinical and clinical studies
where oral administration of propionic acid had potent hyperglycemic effects (i.e., in-
creased glucose production, insulin secretion and glycogenolysis). For example, in a small
randomized controlled trial of 28 healthy volunteers, consuming propionic acid (1500 mg
calcium propionate) under various metabolic conditions led to metabolic alterations, sug-
gesting inappropriate activation of the insulin counter-regulatory hormonal network [58].
In addition, although recognized as safe by the US food and drug administration [59], there
is recent evidence that exogenous propionic acid (when taken orally) may be a metabolic
disruptor [58]. The dietary sources of propionic acid used as a preservative (processed
meats, dairy products and sweets) are also components of the Western diet, which is a risk
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factor of dementia and cognitive decline [60]. It is, thus, possible that the association found
with propionic acid in our study is a surrogate marker of a more general deleterious impact
of Western diets on cognitive health. The mediation found not only with diabetes, but also
with hypercholesterolemia in our study would favor this hypothesis, as Western diets were
reported to induce dyslipidemia and insulin resistance [61,62], which in turn may increase
odds of developing cognitive decline.

There are other potential metabolic pathways that link propionic acid to brain health
that may deserve further exploration. Of these are ammonia and glutamate, two metabo-
lites with inter-related cerebral metabolism [63], which are both (i) increased in the brain in
response to higher propionic acid [43,64] and (ii) altered in AD pathology [65,66]. Hence,
higher brain ammonium levels have been reported in AD patients, while glutamate, a
major excitatory neurotransmitter, has an established excitotoxicity in AD [65,66]. Thus,
propionic acid may have a neurotoxic effect, increasing both ammonium-related cerebral
energetic defects and glutamate excitotoxicity. Another metabolite of interest in the path-
way from propionic acid to cognitive health is kynurenic acid. It is endogenously produced
from tryptophan and inhibits the excessive release of glutamate during excitotoxicity [67];
thus, the protective association of kynurenic acid with cognitive health is expected. Nev-
ertheless, in our discovery stage, kynurenic acid was associated with higher cognitive
decline, potentially reflecting a compensatory mechanism against increased glutamate
neurotoxicity, although the findings were not replicated. In addition, caution in the in-
terpretation of our correlational findings in terms of central pathways is warranted, as
for some of these metabolites, blood measures poorly reflect intracerebral concentrations
(e.g., blood glutamate is 100 to 200 times less concentrated in the blood than brain [68]).
Therefore, using these blood biomarkers, we were not able to accurately evaluate media-
tion by these central pathways and we limited our investigation of potential mediation to
peripheral metabolism.

Our study has important strengths, including the use of two population-based samples
from independent study sites for both discovery and validation; an assessment of a large
panel of circulating post-biotics, using a unique multi-metabolite platform with sensitive,
cutting-edge metabolomics technology (UHPLC-MS/MS); and a prospective evaluation of
cognitive decline over more than a decade. This enabled a broad overview of the metabolic
pathways that underlie the gut–brain axis. Moreover, the prospective design ensured
that any of the biological changes observed in participants that did not exhibit signs of
dementia at the time of blood sampling preceded cognitive deterioration, and thus allowed
the identification of early gut–brain axis markers of cognitive aging, while minimizing the
risk of reverse causality (which may occur when cognitive changes influence behaviors,
such as diet, and related biology, including gut microbiota activity).

Despite many strengths, this study also has some limitations. First, while we tried
to minimize the risk of false positives through the use of an external validation stage, the
risk of false negatives could not be dismissed completely. Indeed, the sample size was
relatively high for a UHPLC-MS/MS study, but could still be insufficient to ensure adequate
statistical power to detect differences in the levels of metabolites with low circulating basal
values and high inter- and intra-individual variability. Moreover, serum samples were
analyzed at the study baseline only; therefore, we could not examine longitudinal changes
in the serum metabolome during the course of cognitive decline. Finally, although the
metabolite panel was large, it did not cover all metabolites of the gut–brain axis (due to the
lack of available standards, or detection limitations by UHPLC-MS/MS technologies). For
example, some microbiota-derived metabolites that are potentially related to cognition, such
as γ-aminobutyric acid (GABA), ammonium, some phytoestrogens and oligosaccharides,
such as lipopolysaccharide (LPS), were not quantified.
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5. Conclusions

In conclusion, in this novel exploration of the gut–brain axis, we measured a large
panel of post-biotics in a cohort of older persons and found an association between in-
creased circulating propionic acid levels and higher cognitive decline. Propionic acid may
be derived from the fermentation of undigested dietary fiber by the gut microbiota, as well
as from dietary intake, as it is a common food preservative in processed food such as meat,
dairy products and sweets. Moreover, we found preliminary evidence to support the po-
tential mediation by impaired cardio-metabolic health (diabetes and hypercholesterolemia),
which deserves further research.
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potential confounders and mediators in the relation of propionic acid in serum to cognitive decline;
Figure S3: Counterfactual mediation analysis for matched data to estimate the mediating effect of
hypertension, hypercholesterolemia and diabetes in the relation of propionic acid in serum to the
odds of cognitive decline over 12 years in the pooled sample (n = 838); Table S1: List of the 206 food-
related metabolites quantified in serum by the multi-metabolite metabolomics platform (with the 72
candidate food and gut microbiota-derived metabolites emphasized in bold); Table S2: List of the
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