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Abstract. Secondary use of health data is made difficult in part because of large 

semantic heterogeneity. Many efforts are being made to align local terminologies 
with international standards. With increasing concerns about data privacy, we 

focused here on the use of machine learning methods to align biological data 

elements using aggregated features that could be shared as open data. A 3-step 
methodology (features engineering, blocking strategy and supervised learning) was 

proposed. The first results, although modest, are encouraging for the future 

development of this approach. 
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1. Introduction 

Health data produced in the context of care can be reused for many purposes 

(phenotyping, research, etc.): this is the field of secondary use of health data. However, 

this reuse is complex (large volumes of data, compartmentalized data, etc.). One of the 

difficulties lies in the heterogeneity of the representation of medical concepts, called 

semantic heterogeneity. Different approaches can be used to reduce this heterogeneity. 

In particular, many efforts are focused on the alignment of local terminologies to 

international standards [1], such as the Logical Observation Identifiers Names and 

Codes [2] (LOINC®) used in many countries to encode biological data. 

The Bordeaux University Hospital has implemented a clinical data warehouse 

(CDW) based on the i2b2 technology. The CDW integrates the data of patients who came 

at least once to the hospital since 2010, representing more than 2 million patients, 13 

million hospital admissions and 2 billion observations. The CDW contains biology data 

integrated from two different biology software (TD-Synergy® until 2018 and Glims® 

since then) whose data are mostly centralized in the hospital’s computerized patient 

record (DxCare®) resulting in a total of three biology sources. Each of the biology source 

software has its own local terminology and, within a biology source, several data 

elements (i.e. codes in the local terminology) may encode the same concepts, resulting 

in a high degree of semantic heterogeneity. One of the sources is partially aligned to 

LOINC. Thus, mapping these biological sources to each other would result in mapping 

local codes to LOINC. 
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With the development of machine learning methods, and in the context of 

strengthening personal data protection with the General Data Protection Regulation2 

(GDPR), many studies have raised privacy and security issues in AI methods [3]. 

Here, we propose to study the machine learning alignment of clinical datas through 

the example of biology records. Moreover, we aim at evaluating the performances of 

machine learning methods using aggregated features, thereby limiting the risk of 

compromising data privacy. 

2. Methods 

The proposed alignment methodology consists of three successive steps (Figure 1):  

1) the data element selection and feature extraction, 2) the blocking strategy, and  

3) a supervised classification. 

 

Figure 1. The 3-step alignment methodology 
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Data element selection and feature engineering. This first step consists in 

selecting the data elements3 corresponding to the numerical biology with more than 

10,000 observations available in the CDW (data-driven approach). For each selected data 

element, a data cleaning step with outlier removal was performed before computing the 

features. The following features were calculated: mean, standard deviation, median, 

quartiles, minimum, maximum, deciles, number of patients and stays, number of results 

by time of day (day or night), number of results above and below the norm. In addition, 

the sample distribution of each data element has been determined (using 1024 bins). 

Blocking strategy. The final objective is to link similar identities (data elements) 

within the same data source and between several data sources. The number of possible 

comparisons is  where n is the sum of the cardinality of all data sources. To 

diminish the computational cost, it is necessary to have a blocking strategy [4] which 

limits the number of comparisons. The objective of this second step was therefore to 

constitute sub-groups of data elements in order to reduce the number of similarity 

features to be computed in step 3. This blocking strategy was based on: 

1. The constitution of groups of homogeneous units on the basis of a 

standardization of units according to the Unified Code for Units of Measure4 

(UCUM) terminology. 

2. Within the groups of data elements with a high cardinality (i.e. containing 15 or 

more data elements), an unsupervised clustering step using the hierarchical 

clustering (HC) method in order to form subgroups with lower cardinality. 

Supervised classification. The third step was to compute the similarity features 

between all the data elements in each group resulting from the two previous steps. The 

following similarity features were calculated: difference in mean, difference in minimum, 

difference in maximum, difference in median, difference in quartile, difference in range 

and percent overlap of distributions. These similarity features were then used to train 

different supervised classification models: logistic regression, support vector machine 

(SVM) and random forest. The classification models were trained on a training sample 

(70%) and evaluated on a test sample (30%) using a gold standard of hand-crafted 

alignments by two experts in medical informatics (SC and RG). 

Concerning the evaluation of the proposed method: 

1. For the blocking strategy step, the evaluation only included gold standard 

concepts related to two or more data elements. Of these concepts, the percentage 

of those contained in a single homogeneous subgroup was assessed. 

2. For the supervised classification method step, the evaluation was performed on 

the test set with recall, precision, F-measure, AUC and AUCPR. 

3.  Results 

Biological data integrated in the CDW represented 591,410,461 observations encoded in 

170,933 data elements. The numerical biology corresponded to 475,117,464 

observations (80.34%) encoded in 140,135 data elements (81.98%). After filtering out  

 
3 As defined by the ISO/IEC11179-3 standard. In our case, the data element corresponds to a code of a 

local terminology encoding a particular biological concept. Several data elements can encode the same concept 

(e.g. “HB001” and “HB002” are data elements that both correspond to the concept of Hemoglobin). 
4 https://ucum.org/ucum.html 
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Table 1. Results of the supervised classification models 

 Threshold Precision Recall F-measure AUCPR AUC 
Logistic regression 0.725 0.361 0.618 0.456 0.403 0.870 

Support Vector Machine 0.710 0.391 0.476 0.430 0.393 0.800 

Random forest 0.235 0.545 0.845 0.663 0.662 0.955 

 

data elements with at least 10,000 observations available, 4,580 data elements (3.27%) 

remained representing 436,623,181 numerical observations (91.90%). Among these data 

elements, 1,421 (31.02%) were not associated with a unit (representing 89,465,534 

observations). The others were associated with 153 different units. 

After normalizing the units with UCUM, the data elements were grouped into 72 

homogeneous unit groups (70 data elements could not be normalized with UCUM, 

representing 249,510 observations). The mean cardinality of these homogeneous unit 

groups was 44.29 data elements (sd=106.97). 42 homogeneous unit groups had 

cardinality less than or equal to 15 data elements and 30 homogeneous unit groups had 

cardinality greater than 15 data elements (mean=97.90; sd=151.32; maximum=709 for 

the percent unit). 

The hierarchical clustering (HC) performed next on the 30 homogeneous unit groups 

with cardinality greater than or equal to 15 generated 277 clusters, with an average 

cardinality of 10.60 data elements (sd=30.94; maximum=336). Among the gold standard, 

considering biological concepts with at least 2 data elements, 95% of them were 

associated with data elements belonging to a single cluster. 

Similarity features were computed in each of the 277 clusters (obtained by HC) and 

42 groups of homogeneous unit groups with low cardinality, resulting in a total of 35,606 

data element pairs. 3,756 (10.55%) of the data element pairs were associated with the 

same biological concept. 

The results of the three supervised classification models are presented in Table 1. 

The best performing model was the random forest with an F-measure of 0.663, a recall 

of 0.845 and a precision of 0.545. Concerning the logistic regression and SVM models, 

the F-measures were respectively 0.456 and 0.430. The recall-precision curves for each 

model are presented in Figure 2 and found better overall performance for the random 

forest with AUCPR of 0.662. 

 

Figure 2. Recall-precision curves for the three classification methods 

4. Discussion 

We proposed a 3-step data-driven methodology to help achieve alignments between 

numerical biology data elements. The particularity of this work is the use of unsupervised 
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learning methods to implement a blocking strategy before training supervised 

classification models based on aggregated features that limit the privacy risk of re-

identification based on trained algorithms. 

Using HC to generate a blocking strategy reduced the cardinality of the 

homogeneous unit groups from 97.9 to 10.6 data elements without separating data 

elements of a same concept into different clusters. The performance of the HC was better 

than those obtained with the k-means method. 

The supervised classification step yielded modest results. Using a random forest 

model gave the best results with an F-measure of 0.66 associated with a recall of 0.845 

and a precision of 0.545 with a low threshold. The AUC was 0.955 in the context of a 

highly unbalanced data set (90/10). These results are slightly less good than those found 

in the literature [5], [6]. 

5. Conclusions 

This preliminary work presents a 3-step method to align biological data elements using 

aggregated features that has obtained encouraging results. Further feature engineering 

work, including the addition of co-occurrence features, combined with semantic 

approaches, could optimize the performance of the proposed method, especially in the 

supervised learning step. An external validation step, using data from other healthcare 

institutions, will also be necessary to assess the generalizability of the method. Initiatives 

such as EHDEN5 could provide a framework for implementing such an evaluation. Since 

this alignment method relies only on aggregated data at a very high level, sharing 

aggregate features related to LOINC concepts could help healthcare facilities to align 

their own local terminology with LOINC. 

References 

[1]  Wade G, Rosenbloom ST. Experiences mapping a legacy interface terminology to SNOMED CT. BMC 

Med Inform Decis Mak. 2008 Oct;8 Suppl 1(Suppl 1):S3-3. doi: 10.1186/1472-6947-8-S1-S3. 
[2]  McDonald CJ, Huff SM, Suico JG, Hill G, Leavelle D, Aller R, et al. LOINC, a Universal Standard for 

Identifying Laboratory Observations: A 5-Year Update. Clin Chem. 2003 04;49(4):624-33. doi: 

10.1373/49.4.624. 
[3]  Murdoch B. Privacy and artificial intelligence: challenges for protecting health information in a new era. 

BMC Med Ethics. 2021 Sep;22(1):122-2. doi: 10.1186/s12910-021-00687-3. 

[4]  Giang PH. A machine learning approach to create blocking criteria for record linkage. Health Care Manag 
Sci. 2015 Mar;18(1):93-105. doi: 10.1007/s10729-014-9276-0. 

[5]  Parr SK, Shotwell MS, Jeffery AD, Lasko TA, Matheny ME. Automated mapping of laboratory tests to 

LOINC codes using noisy labels in a national electronic health record system database. J Am Med Inform 
Assoc. 2018 Oct;25(10):1292-300. doi: 10.1093/jamia/ocy110. 

[6]  Nikiema JN, Griffier R, Jouhet V, Mougin F. Aligning an interface terminology to the Logical 

Observation Identifiers Names and Codes (LOINC®). JAMIA Open. 2021 Jun;4(2):ooab035-5. doi: 
10.1093/jamiaopen/ooab035. 

 
5 https://www.ehden.eu/ 

R. Griffier et al. / Data Element Mapping in the Data Privacy Era336

https://dx.doi.org/10.1186%2F1472-6947-8-S1-S3
https://doi.org/10.1373/49.4.624
https://doi.org/10.1186/s12910-021-00687-3
https://doi.org/10.1007/s10729-014-9276-0
https://doi.org/10.1093/jamia/ocy110
https://doi.org/10.1093/jamiaopen/ooab035
https://www.ehden.eu/

