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Abstract 13 

 14 

This review aims at answering the following question: how can a researcher be sure to succeed in 15 

grafting a protein onto a polymer surface? Even if protein immobilization on solid supports has been 16 

used industrially for a long time, hence enabling natural enzymes to serve as a powerful tool, emergence 17 

of new supports such as polymeric surfaces for the development of so-called intelligent materials 18 

requires new approaches. In this review, we introduce the challenges in grafting protein on synthetic 19 

polymers, mainly because compared to hard surfaces, polymers may be sensitive to various aqueous 20 

media, depending on the pH or reductive molecules, or may exhibit state transitions with temperature. 21 

Then, the specificity of grafting on synthetic polymers due to difference of chemical functions 22 

availability or difference of physical properties are summarized. We present next the various available 23 

routes to covalently bond the protein onto the polymeric substrates considering the functional groups 24 

coming from the monomers used during polymerization reaction or post-modification of the surfaces. 25 

We also focus our review on a major concern of grafting protein, which is avoiding the potential loss of 26 

function of the immobilized protein. Meanwhile, this review considers the different methods of 27 

characterization used to determine the grafting efficiency but also the behavior of enzymes once grafted. 28 

We finally dedicate the last part of this review to industrial application and future prospective, 29 

considering the sustainable processes based on green chemistry. 30 

 31 
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 34 
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aminopenicillanic acid; APTES, aminopropyl triethoxy silane; ATR-FTIR, Attenuated Total Reflection-36 

Fourier Transform Infrared Spectroscopy; CD, Circular Dichroism; CDI, 1,1’-carbonyldiimidazole; 37 

COC, cyclic olefin copolymer; EDC, 1-ethyl-3-((dimethylamino)propyl)carbodiimide hydrochloride; 38 

EEDQ,  N-ethoxycarbonyl-2-ethoxy-1 2-dihydroquinoline; EGF, Epidermal growth factor; EPS, 39 

expanded polystyrene foam; FESEM, Field Emission Scanning Electron Microscopy; FRET, Förster 40 

Resonance Energy Transfer; β-Gal, β-galactosidase; GFP, Green fluorescent protein; GI, glucose 41 

isomerase; GOS, galacto-oligosaccharides; HA, hyaluronic acid; HFBI,  hydrophobin; HFCS, high 42 

fructose corn syrup; Ig,  Immunoglobulins; IGI, immobilized D-glucose isomerase; LCST, Lower 43 

Critical Solution Temperature; MOF, metal organic frameworks; NCC, nano-crystalline cellulose; NHS, 44 

N-hydroxylsuccinimide, PA6, polyamide 6; PA6,6, polyamide 6,6; PAA, poly(acrylic acid); Pam, 45 

polyacrylamide ; PAN, poly(acrylonitrile); P(AN-co-Am), poly(acrylonitrile-co-acrylamide); PCL, 46 

poly(-caprolactone); PCL-PEO-PCL, poly(ε-caprolactone)-block-poly(ethyleneoxide)-block-poly(ε-47 

caprolactone); PDA, polydopamine; PDMS, polydimethylsiloxane; PE, polyethylene; PEG, 48 

poly(ethylene glycol); PEGA, hydrophilic acrylamide-PEG commercial resin; PEI, polyethyleneimine; 49 

PEM, polyelectrolyte multilayer; PET, poly(ethyleneterephthalate); PFTase, Protein Farnesyl 50 

Transferase; PGMA, poly(glycidyl methacrylate); P(GMA-co-MA), poly(glycidyl methacrylate-co-51 

methyl methacrylate); PHA, polyhydroxayalkanoate; PHB, polyhydroxybutyrate; PHEA, 52 

poly(hydroxyethyl acrylate); PHEMA, poly(hydroxyethyl methacrylate); PLL, poly(L-lysine); PLLA, 53 

poly(L-lactic acid); PMMA, poly(methylmethacrylate); PNIPAM, poly(N-isopropyl acrylamide); 54 

poly(S-co-MA), poly(styrene-co-maleic anhydride); PP, polypropylene; PPC, poly(propylene chloride); 55 

PS, polystyrene; PSBMA, poly(sulfobetaïne methacrylate); PVA, polyvinylalcohol; PVDF, 56 

poly(vinylidene difluoride); SBS, poly(styrene)-block-poly(butadiene)-block-poly(styrene); SECM, 57 

Scanning Electrochemical Microscopy; SEM, Scanning Electron Microscopy; SFG, Sum Frequency 58 

Generation spectroscopy; SPR, Surface Plasmon Resonance; Tg, glass transition temperature; TEM, 59 

Transmission Electron Microscopy; TG, triglycine; TGA, Thermogravimetric analysis; TGF, 60 

Transforming Growth Factor; TNBS, 2,4,6-trinitrobenzene sulfonate; ToF-SIMS; Time of Flight 61 

Secondary Ion Mass Spectroscopy; UCST, Upper Critical Solution Temperature; XPS, X-Ray 62 

Photoelectron Spectroscopy. 63 
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Proteins immobilized on solid supports have been used industrially for a long time, the immobilization 70 

bringing increased stability, ease of handling for multiple runs, and ease of recovery when linked to 71 

magnetic beads(Bolivar et al., 2022; Pei et al., 2022), hence enabling natural enzymes to serve as a 72 

powerful tool. This has been extensively described and reviewed, the reader is therefore encouraged to 73 

consult this rich literature (Brena et al., 2013; Rodrigues et al., 2019; Santos et al., 2015; Wahab et al., 74 

2020a). Very early, different immobilization methods (Klibanov, 1979) were proposed: covalent 75 

attachment, adsorption, covalent crosslinking or entrapment. Single enzyme immobilization started in 76 

the sixties (Guisan, 2013) based on these methods, followed by the challenge of immobilizing multiple 77 

enzymes (Ren et al., 2019). If the strategy has not evolved fundamentally, numerous parameters 78 

(Boudrant et al., 2020) have been however assessed, with the objective of keeping or improving the 79 

activity of the immobilized protein. Indeed, in order to keep the protein active, its conformation should 80 

be maintained, its orientation controlled (especially for the active site of enzymes) and untimely protein 81 

release should be avoided. The influence of the support itself has been particularly examined and found 82 

important (Santos et al., 2015; Wahab et al., 2020b), either through its available chemical groups or its 83 

mechanical property. It is noteworthy that a hydrophilic support is often considered as the best option 84 

to keep the enzyme active. Controlling hydrophilicity around the enzyme helps keeping the enzyme in 85 

a natural conformation. However, grafting on a solid support often introduces some hydrophobic groups 86 

which then have to be counterbalanced by other hydrophilic groups (Santos et al., 2015). Compared to 87 

early reviews describing in a very general way the different methods of grafting proteins or enzymes on 88 

solid surfaces, recent reviews are more focused on specificities, such as grafting of proteins on 89 

renewable polymers, supramolecular strategies (Finbloom and Francis, 2018), grafting on micro- or 90 

nanostructured materials (Bilal and Iqbal, 2019a), specific applications such as membranes, biocatalysis 91 

(Romero-Fernández and Paradisi, 2020) or water purification (Xu et al., 2013). A recent tutorial review 92 

takes the original standpoint of the enzyme immobilization pitfalls, examining many different points 93 

that could go wrong and lead to poor results, going furthermore from laboratory to industrial 94 

environment(Bolivar et al., 2022). Among the various existing reviews, the lack of overview for the 95 

grafting on polymeric surfaces is surprising, especially linked to the strong development of so-called 96 

intelligent materials (Bratek-Skicki, 2021) designed for biological applications. A recent review 97 

(Rodriguez-Abetxuko et al., 2020) presented an analysis of the use of polymer scaffolds for enzyme 98 

immobilization, but it was mainly focused on polymer-enzyme hybrids either as new bioconjugates or 99 

soluble assemblies. Only a very small part was dedicated to the polymer surfaces and there was no 100 

mention of the desirable characterization techniques for such systems. 101 

 Among all assessed immobilization strategies, the covalent grafting of proteins presents the 102 

asset of ensuring a strong attachment of the protein to its support, therefore avoiding untimely release. 103 

However, covalent immobilization implies to control the molecular orientation of the enzyme in order 104 

to preserve or improve its biological activity (Liu et al., 2013). The related constraints to this strategy, 105 

such as protein structure resolution, dealing with unspecific enzyme-support interactions or enzyme 106 
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engineering, make it more challenging and economically costly. A tremendous progress has been made 107 

by developing precise modification of proteins by protein engineering techniques which enables 108 

introduction of non-standard amino acid in the sequence of the final enzyme(Pei et al., 2022). 109 

Furthermore, covalent grafting on hard surfaces or polymeric ones does not constitute the same 110 

challenge and this is most often overlooked in the literature. This review therefore aims at explaining 111 

the specificities of covalent grafting of proteins onto polymeric surfaces, pointing at the different 112 

grafting methods, the available characterizations and the existing or possible future industrial 113 

applications. It is noteworthy that all polymeric systems are mentioned in this review, including beads 114 

but also flat surfaces or fibers. The polymeric surface is thus the precise interface between the polymer 115 

itself and its environment. 116 

 117 

 118 

2. Specificity of grafting on synthetic polymers 119 

As mentioned in the introduction, proteins have been often grafted onto hard inorganic materials. These 120 

can be divided in two categories depending on the composition with only inorganic atoms present 121 

(metallic surfaces, silicon) or other atoms (silicon dioxide, iron oxide, ceramics, metal organic 122 

frameworks (MOFs), graphene). On such surfaces, the main point for a successful grafting is to be sure 123 

of the chemical functions available and their density. If both are known, then the reactive chemical group 124 

on the protein (if exposed) is expected to react and form the desired covalent bond. Chemical functions 125 

on hard surfaces are often hydroxyl ones and they can be transformed into many reactive groups, using 126 

functional silanes. Some cases imply specific processes, such as gold for which the main strategy is to 127 

directly use the strong bond Au-S (Tähkä et al., 2019) or graphene-based systems where a chemical 128 

modification of the aromatic rings is needed. Before describing the specificities of grafting proteins onto 129 

synthetic polymers, it is useful to gather the properties of such pristine hard surfaces (table 1). Their 130 

common characteristics are the presence of crystalline domains, the absence of any phase transition 131 

close to room temperature, the immobility of the network and the fact that solvents or solutions have 132 

either no influence on their structure or degrade them. Table 2 next presents the same characteristics for 133 

polymeric systems in order to get a global overview. Their common properties are the variety of 134 

chemical functions available and the possible presence of transitions near room temperature. In the next 135 

paragraphs, we are going to compare these systems in more details in terms of chemical reactivity and 136 

physical properties. 137 

 138 

Table 1. Main characteristics of hard support materials. 139 

 Inorganic matrix Oxide matrix 
Graphene-based 

systems 
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Network 3D 3D 2D 

Morphology 
Crystalline, porous or 

not 

Crystalline and/or 

glassy, porous or not 

Partly crystalline, 

not porous 

Bonds Covalent Covalent and/or ionic Covalent 

Pristine chemical 

groups 
Mt-Mt Mt-OH or Mt-O-Mt C-C 

Phase transition near 

room temperature 
None None None 

Mobility of the network 

atoms 
None None None 

Influence of solvents None or degradation None or degradation 
None or 

degradation 

Influence of pH None or degradation None or degradation 
None or 

degradation 

Influence of ionic 

strength 
None None None 

 140 

Table 2. Main characteristics of polymeric matrices 141 

 Bulk polymers Crosslinked polymers Hydrogels 

Network 1D 3D 3D 

Morphology 
Semi-crystalline or 

glassy, not porous 

Semi-crystalline or 

glassy, porous or not 
Amorphous, porous 

Bonds Covalent 
Covalent and/or ionic 

and/or complexes 

Covalent and /or 

ionic and/or 

complexes 

Pristine chemical 

groups 

Alcohols, esters, 

carboxylic acids, 

amines, ethers, amides, 

urethanes, siloxanes… 

Alcohols, esters, 

carboxylic acids, 

amines, ethers, amides, 

urethanes, siloxanes… 

Alcohols, esters, 

carboxylic acids, 

amines, ethers, 

amides, urethanes, 

siloxanes… 

Phase transition near 

room temperature 

Possible glass or 

melting temperature 

Possible glass or 

melting temperature 

Possible order-

disorder transition 

Mobility of the network 

atoms 

Depending on the glass 

or melting temperature 

Depending on the glass 

or melting temperature 

Existing mobility 

by essence, linked 

to the high-water 

content 

Influence of solvents 
None, swelling or 

dissolution 
None or swelling Change of swelling 

Influence of pH None or degradation None or degradation 

Possible change of 

swelling or 

degradation 

2.1 Chemical reactivity 142 

In order to chemically graft proteins onto surfaces, the presence of available chemical functions is 143 

essential. A very recent review presents all types of available functionalizations of nanomaterials 144 

(Wieszczycka et al., 2021), which are also valid for any surface. Among inorganic systems, only oxide 145 

support materials exhibit available reactive functions, in the form of either hydroxyl groups or Mt-O-146 

Mt bonds which can be broken and used for the grafting. The routine technique in this case is the use of 147 

functional silanization (Liu et al., 2020). An alternative is the introduction of chemical functions by the 148 
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shell-by-shell method, a first layer of molecules is grafted on the surface, followed by another shell 149 

entangled with the first one (Stiegler et al., 2020).  For inorganic matrices such as metals or silicon, an 150 

activation of the surface is mandatory, and this leads most of the time to the introduction of a thin layer 151 

of oxide, thereby exhibiting a similar reactivity to the pure oxide matrices. The associated activation 152 

methods will be subsequently described in the next part of this review, since some can also be used for 153 

polymers. For the graphene-based systems, here also an activation is mandatory, implying the breaking 154 

of very resistant C=C aromatic bonds (Al-Lolage et al., 2019; Wang and Jiang, 2019). Regarding the 155 

available reactive functions, MOFs constitute an exception in this category. Indeed, their composition 156 

enables the presence of a variety of chemical functions, such as amine, carboxyl, hydroxyl, epoxy, or 157 

glyoxyl groups (Liang et al., 2020; Ye et al., 2020). 158 

 159 

 Compared to these systems, MOFs being the exception, polymers exhibit a very large variety of 160 

chemical groups, coming directly from the range of functional monomers available. Indeed, based on 161 

the different types of polymerizations (radical, ionic, coordination chain polymerizations or 162 

polycondensations…), the panel of corresponding monomers spans from simple acrylates to 163 

cyclosiloxanes or multifunctional molecules. Many of them are commercially available (scheme 1), but 164 

the organic chemistry tools enable the synthesis and development of other functional monomers on 165 

demand. This review focuses on synthetic polymers but including the possible use of the natural 166 

polymers such as polysaccharides enlarges the variety of macromolecules even more. 167 

 168 

 169 

Scheme 1. Examples of commercially available functional monomers of interest for the grafting of proteins 170 

 In some cases, the synthesis of desired functional polymers is however not immediate for people 171 

not in the field or the desired functional monomers (or polymers) not commercially available. The 172 

activation methods described in the next part of this review are then possible, in a similar manner than 173 

for the previous inorganic systems. Even in this case, polymers can present the asset of leading to stable 174 

activation groups, compared to inorganic surfaces yielding for instance Mt-O-C bonds which are known 175 

to be sensitive to hydrolysis in some cases. It is also noteworthy here that in many instances, polymers 176 

are used to bring functionalization on inorganic systems. By first grafting a polymer on the inorganic 177 

surface, the inherent properties of the inorganic part can be maintained and used, together with the 178 
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tunability of the polymer layer (Dumri and Hung Anh, 2014; Kang et al., 2015; Malar et al., 2019; Wang 179 

and Jiang, 2019).  180 

2.2 Physical properties 181 

Beside the chemical reactivity, the physical behavior of the surface is also essential to ensure an efficient 182 

protein grafting. At this point, it might be useful to present an overview of the physical properties of 183 

polymers in general (table 3 and scheme 2). The common physical characteristics is the existence of a 184 

glass transition temperature, below which the material is hard and breakable and above which 185 

movements start to occur locally in the macromolecular chains. This glass transition is essential 186 

considering the desired application. Indeed, depending on the desired temperature of usage, a certain 187 

type of polymer should be favored. Polymers are generally divided in several families, depending on 188 

their morphology and mechanical behaviour. Thermoplastics consist in linear polymer chains that can 189 

be used in bulk. They are most often used below their glass transition temperature (Tg) to benefit from 190 

good mechanical properties. Regular elastomers and thermosets are both crosslinked systems and as 191 

such cannot be solubilized any more. Elastomers are used above the glass transition temperature to 192 

obtain an elastic behaviour, whereas thermosets are below Tg and are by essence hard systems. 193 

Thermoplastics elastomers, made of block copolymers of different Tgs, were developed later, and the 194 

application between both Tgs enables to have a mixed behaviour between regular thermoplastics and 195 

thermosets: they are rigid but can be easily processed and recycled which is not possible for thermosets. 196 

 197 

When comparing the grafting of proteins onto hard inorganic surfaces and polymeric ones, the existence 198 

of this glass transition is critical, because above Tg, as already mentioned, local movements exist in the 199 

macromolecular chain. This implies that chemical groups which are exposed at one point to the outside 200 

can move towards the inside and become hidden, and therefore not available any more for possible 201 

reactions with a protein. This is particularly well known for contact angle measurements of elastomers: 202 

the contact angle changes over several minutes to hours periods (Campeau et al., 2017; Zhang et al., 203 

2013) after a chemical or physical treatment. This means that any further grafting on the modified 204 

surface should be performed as soon as possible. The influence of temperature can also lead to strong 205 

changes of hydrophilicity of the polymer, this is known as Upper Critical Solution Temperature (UCST) 206 

or Lower Critical Solution Temperature (LCST) when the polymer becomes hydrophobic respectively 207 

below (UCST) or above (LCST) a critical temperature. The most popular LCST system is poly(N-208 

isopropyl acrylamide) PNIPAM (Sánchez-Moreno et al., 2018; Yang et al., 2020) for which the LCST 209 

is at ca. 32°C, therefore close to temperature of biological experiments. This has led to numerous 210 

systems with temperature-responsive behaviour, from drug release to control of cell attachment.  211 

 212 
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Table 3. Families of polymers from their macroscopic morphology 213 

 
Amorphous 

thermoplastics 

Semi-

crystalline 

thermoplastics 

Thermoplastic 

elastomers 
Elastomers Thermosets 

Mechanical 

properties at 

room 

temperature 

Rigid, 

breakable 

Can be slightly 

distorted 

Cold stretching 

possible 

Rigid Elastic 

Rigid, even at 

high 

temperature 

Preferred 

usage 

temperature 

Below Tg 
Between Tg 

and Tm 

Between Tg1 

and Tg2 
Above Tg Below Tg 

Solution 

behaviour 
Soluble Soluble Soluble Insoluble Insoluble 

Chain 

structure 
Linear Linear Linear Crosslinked crosslinked 

Melting Fluidification Melting Melting Infusible Infusible 

Crystallinity Amorphous 
Semi-

crystalline 

Possibly 

semi-

crystalline 

Amorphous Amorphous 

Recyclability Yes Yes Yes No No 

Examples PMMA, PS PE, Nylon SBS 

Silicone 

rubber, 

natural 

rubber 

Polyurethanes, 

Epoxy resins 

 214 

 215 

Scheme 2. Schematic representation of the different polymer families 216 

 Beside temperature response, polymers may also be sensitive to the chemical environment, this is 217 
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particularly true for polyelectrolytes, the solubility of which will depend on the pH or the ionic strength 218 

of the solution. From this standpoint, polyelectrolytes exhibit a similar behaviour to proteins. The use 219 

of polyelectrolyte as a protein support might be delicate because strong electrostatic attraction may lead 220 

to the denaturation of the protein and on the other hand strong repulsion may lead to the absence of 221 

grafting. To the best of our knowledge, very few cases of protein grafting onto polyelectrolytes exist. 222 

Interestingly, the presence of a polymer, chitosan in the example reported by Kumar, has also been 223 

already used to tune the accessibility of the enzyme and its activity (Malar et al., 2019). 224 

 225 

In a global manner, the important points to keep in mind when grafting onto polymers is that they provide 226 

the opportunity of a wide range of chemical functions, but that one should be careful about possible 227 

transition occurring in the temperature range used. The next paragraphs will show different examples of 228 

such chemical diversity, either for non specific or specific grafting of proteins. 229 

3. Non specific grafting 230 

The non-specific grafting of proteins onto various substrates has already been extensively studied 231 

(Barbosa et al., 2013, 2015; Bezerra et al., 2015; Bilal and Iqbal, 2019b; Cen et al., 2019; Delaittre et 232 

al., 2015; Facin et al., 2019; Jochems et al., 2011; Lyu et al., 2021; Rodrigues et al., 2019, 2021; Smith 233 

et al., 2020a; Tacias-Pascacio et al., 2021; Wahab et al., 2020b). Here, we will present the various 234 

available routes if a “basic” grafting of the protein onto the polymeric substrates is sought. Most of the 235 

time, in order to covalently link a protein to a polymeric surface, the latter has to be functional 236 

(functional groups coming from the monomers used during polymerization reaction) or functionalized 237 

(post-modification of the surfaces). The different strategies will thus be successively presented. The 238 

nature of the functional groups is rather limited and only few different functional groups are used to 239 

perform such grafting reactions. 240 

One of the main strategies to covalently link proteins onto polymeric surfaces is to use the amino groups 241 

present on the proteins (preventing thus tricky modification of proteins) and to make them react with 242 

antagonist functional groups, such as epoxides, aldehydes, carboxylic acids or even hydroxyl groups 243 

through a coupling agent. The targeted reacting group is dependent on the chemical nature of the surface. 244 

3.1 Epoxide groups 245 

Epoxide groups have extensively been studied as they present advantages to covalently link proteins 246 

onto polymeric supports. Thus, in the case of epoxidized surfaces, the linkage of the proteins proceeds 247 

through a two-step procedure: first the protein is adsorbed onto the surface via several interactions, 248 

secondly the adsorption of the protein allows a multi-point covalent attachment of the protein through 249 

regular epoxide chemistry (generally reaction of amino functions of the protein) (Mateo et al., 2000a, 250 

2000b). 251 
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In the literature, many authors employed commercial epoxy-functionalized supports. For instance, 252 

Eupergit C beads (copolymer of methacrylamide, bisacrylamide and epoxy bearing monomer) were used 253 

to immobilize Penicillin G acylase from Escherischia coli or Acetobacter turbidans, β-galactosidase 254 

from Aspergilus oryzae, chymotrypsin and lipase from Candida rugosa (Mateo et al., 2000a, 2000b). 255 

Polymethylmethacrylate (PMMA) epoxy activated beads (sepabeads)  served as support for laccase from 256 

Myceliophthora thermophila (Kunamneni et al., 2008). 257 

 258 

Figure 1. Grafting of proteins through epoxide groups. Illustration from(Arica et al., 2017) (A) and (Liu et al., 2018a) (B). 259 

Apart from beads, (nano)fibers were also studied to support a variety of proteins. The epoxy units could 260 

be directly present onto the fiber thanks to the chemical nature of the polymer (Liu et al., 2018b, 2018a), 261 

or have to be added by a post-modification of the fibers (Arica et al., 2017; Huang et al., 2008; Oktay et 262 

al., 2015a). Thus nanofibrous membranes, bearing epoxidized functions, were obtained through electro-263 

spinning of poly(glycidyl methacrylate-co-methyl methacrylate) (P(GMA-co-MA)) and were directly 264 

reacted with lipase B from Candida antarctica (Liu et al., 2018b, 2018a). On another hand, depending 265 

on the chemical nature of the polymer, different chemistries were employed for the introduction of oxide 266 

functional groups. For example, poly(acrylonitrile-co-2-hydroxyethylmethacrylate) (PANCHEMA) 267 

fibers obtained by electro-spinning were reacted with epichlorohydrin and lipase from Candida rugosa 268 

was thus covalently bonded (Huang et al., 2008). In another study, PGMA was grafted  through free 269 

radical polymerization from polyvinylalcohol (PVA) nanofibers to allow the covalent immobilization 270 

of α-amylase from porcine pancreas (Oktay et al., 2015a), or from poly(propylene chloride) (PPC) fibers 271 

for the immobization of laccase from Trametes versicolor (Arica et al., 2017). 272 
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3.2 Aldehyde groups 273 

Another important functional group that is looked for onto surfaces is aldehyde as it can react easily 274 

with the amino groups of proteins to yield imine function. As this reaction can be reversible, in order to 275 

gain stability with time, it is sometimes necessary to reduce the imine function to a very stable secondary 276 

amine. As aldehyde groups are almost never “naturally” present on polymers, the surfaces have to be 277 

modified/activated following different routes, depending on the chemical nature of the polymer. 278 

The method of choice for the modification of cellulosic surface is the use of sodium periodate that will 279 

oxidize glucosidic rings to yield 2 aldehydes per oxidized saccharidic unit. Through this technique, many 280 

proteins/enzymes were supported onto cellulosic fibers, like α-chymotripsin (Singh et al., 1979), papain 281 

(Jin and Toda, 1988; Vasconcelos et al., 2020), glucoamylase (Varavinit et al., 2001), protein A/G (Ma 282 

and Ramakrishna, 2008), lipase from Candida rugosa (Huang et al., 2011) or laccase from Pleurotus 283 

florida (Sathishkumar et al., 2014). 284 

 285 

 286 

Figure 2. Grafting of proteins onto polysaccharides through partial degradation of polysaccharidic chain and aldehyde groups 287 

formation. Illustration from (Sathishkumar et al., 2014) 288 

In the case of agarose/Sepharose supports, another route is preferred, namely the glyoxyl one. Those 289 

supports can be commercially available or modified through a multi-step synthesis by reacting some 290 

hydroxyl groups with glycidol followed by oxidation of the epoxide ring by sodium periodate to yield 291 

aldehyde functions (Grazu et al., 2006; Guisán, 1988). On these activated supportsthe covalent 292 

immobilization of various proteins was described: penicillin G acylase (Guisán, 1988; Mateo et al., 293 

2005), α-galactosidase from Kluyveromyces lactis (Mateo et al., 2005), bovine trypsin (Mateo et al., 294 

2005), glutamate racemase (Mateo et al., 2005), β-galactosidase from Escherichia coli (Grazu et al., 295 

2006), catalase from bovine liver (Grazu et al., 2006), IgG from rabbit (Grazu et al., 2006), glutamate 296 

dehydrogenase from Thermus thermophilus (Bolivar et al., 2009), papain (Pessato and Tavano, 2015) 297 
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and lipases from Candida Antarctica, Thermomyces lanuginosus or Rhizomucor miehei (dos Santos et 298 

al., 2017; Rueda et al., 2016), Like for the epoxide functionalized surfaces, a multi-point attachment of 299 

the protein is observed (Mateo et al., 2006), A similar strategy was also developed to immobilize β-300 

galactosidase from Escherichia coli onto silk fibers (Monier, 2013), To this end, poly(acrylonitrile) 301 

(PAN) was first grafted onto silk fiber, and all the cyano groups were reacted with hydrazine and in a 302 

second step with glyoxal. 303 

 304 

Figure 3. Grafting of proteins through glyoxyl route. Illustration from (Rodrigues et al., 2021) 305 

Among the activation of surfaces with aldehyde, the use of glutaraldehyde (a bis-aldehyde) as a “sticker” 306 

between the protein and the surface is probably the most employed route to immobilize proteins onto 307 

polymeric surfaces. The chemistry of glutaraldehyde is not fully understood as it can lead to several 308 

kinds of structures (linear polymers, 6-membered units, etc.) (Barbosa et al., 2014). Nevertheless, 309 

literature examples have suggested that one moiety of the glutaraldehyde could react either with the 310 

amino groups present on the surface or 2 hydroxyl groups also present on the surface and the other 311 

aldehyde function could react with an amino group of the protein. 312 
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 313 

Figure 4. Grafting of proteins through glutaraldehyde route 314 

This technique was employed either with synthetic or natural polymers or blends of the 2 types of 315 

polymers. Among the synthetic polymer utilized, one can cite PVA, polyamides or polyacrylamide. For 316 

the natural polymers, chitosan is the most described. Some examples of immobilization are presented in 317 

the following table showing that this technique is quite versatile and can be applied to many supports 318 

and many proteins. 319 

 320 

Table 4. Examples of protein grafting onto polymers through aldehyde groups 321 

Polymer support Protein Ref 

P(AN-co-Am) Lipase from Pseudomonas cepacia 
(Lou et al., 

2018) 

Electrospun PAN/PVDF/Cu Laccase from Trametes versicolor 
(Xu et al., 

2017) 

Electrospun poly(S-co-MA) grafted 

Jeffamines 
Acetylcholinesterase 

(Stoilova et 

al., 2010) 

Partially hydrolyzed PA6,6 films β-glucosidase, trypsin 
(Isgrove et 

al., 2001) 

Electrospun PA6,6 

partially hydrolyzed 

with C nanotubes6 

α-chymotrypsin 

Laccase from Trametes versicolor 

(Wong et al., 

2017) 

(Chen et al., 

2020) 

PA6 

Partially hydrolyzed 

Electrospun with chitosan 

Tyrosinase from Agaricus bisporus 

Laccase from Trametes versicolor 

(Harir et al., 

2018) 

(Maryšková 

et al., 2016) 
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Casted P(VA-vinyl butyral) Papain 

(Zhuang and 

Allan 

Butterfield, 

1992) 

Polysulfone membranes coated with PVA Lipase from Candida rugosa 
(Gupta et al., 

2010) 

Electrospun chitosan/PVA 

 

with C nanotubes 

removal of PVA 

Acetylcholinesterase 

Laccase from Trametes versicolor 

Laccase from Trametes versicolor 

Lipase from Candida rugosa 

(El-Moghazy 

et al., 2016) 

(Xu et al., 

2013) 

(Xu et al., 

2015c) 

(Huang et al., 

2007) 

Chitosan 

beads 

beads 

hydrogel 

Lipase B from Candida antarctica 

Inulase 

β-galactosidase from Aspergillus 

oryzae 

Lipase from Thermomyces 

lanuginosus 

(dos Santos et 

al., 2017) 

(Singh et al., 

2017) 

(Wahba, 

2017),(Urrutia 

et al., 2018) 

(Bonazza et 

al., 2018) 

Agarose Lipase B from Candida antarctica 
(Barbosa et 

al., 2012) 

Agar/κ-carrageenan hydrogels coated with 

PEI 

β-galactosidase from Aspergillus 

oryzae 

(Wahba and 

Hassan, 

2017) 

Cellulose membrane Bovine serum albumine 
(Shaimi and 

Low, 2016) 

Carboxymethylcellulose beads grafted with 

PAm 
Urease 

(Alatawi et 

al., 2018) 

Electrospun silk fibroin nanofibers α-chymotrypsin 
(Lee et al., 

2005) 

Electrospun Zein Laccase from Trametes versicolor 
(Jhuang et al., 

2020) 

3.3 carboxylic acid functions 322 

The third functional groups that can be useful to covalently bond proteins onto polymeric surfaces are 323 

carboxylic acid and its derivatives (esters, anhydrides, etc.). They can either react directly with the 324 

protein or be modified before reacting with the protein. Nevertheless, when carboxylic acid groups are 325 

directly involved in the reaction with enzymes, the grafting yield is generally low. It is thus preferable 326 

to activate those groups to allow a better yield. The most common activation system of carboxylic acid 327 

is based on the use of 1-ethyl-3-((dimethylamino)propyl)carbodiimide hydrochloride (EDC) / N-328 

hydroxylsuccinimide (NHS) coupling system. Like the use of glutaraldehyde, this synthetic strategy can 329 

be applied to many polymeric supports and many proteins. Some examples are listed in the Table below. 330 

 331 
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Table 5. Examples of protein grafting onto polymers through carboxylic acids or their derivatives 332 

Polymer support Protein Ref 

Electrospun poly(acrylonitrile-co-maleic 

acid) 

Lipase from Candida rugosa (Ye et al., 

2006) 

Electrospun partially hydrolyzed PAN/Fe3O4 Antibody (Chauhan 

et al., 2018) 

Electrospun partially hydrolyzed PCL Matrigel (mixture of proteins) (Ghasemi-

Mobarakeh 

et al., 2010) 

Electrospun partially hydrolyzed PHA Collagen and neuromimetic peptides (Masaeli et 

al., 2014) 

Electrospun PMMA/Fe3O4 Laccase from Trametes versicolor (Zdarta et 

al., 2020) 

Electrospun PMMA/polyaniline Laccase from Trametes versicolor (Jankowska 

et al., 2020) 

Electrospun PA6/PSBMA/PAA Antibodies (Tseng et 

al., 2016) 

Sodium alginate/graphene oxide beads Pectinase  (Dai et al., 

2018) 

Alginate or chitosan coated with alginate 

beads 

Acrylamidase (Bedade et 

al., 2019) 

 333 

 334 

 335 

Figure 5. Grafting of proteins through carboxylic acid groups activated by EDC/NHS. Illustration from (Tseng et al., 2016) 336 
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 337 

Figure 6. Grafting of proteins through anhydride groups or carboxylic groups. Illustration from (Kim et al., 2005) (left), (Nair 338 

et al., 2007) (middle) and (Smith et al., 2020a) 339 

When carboxylic acid groups are not present on the surface, this latter can be first treated with plasma 340 

and then the same EDC/NHS coupling system is employed to covalently graft the proteins. Different 341 

kinds of plasma were used in the literature, like air, O2, CO2, N2, micro-wave, etc. In some cases, the 342 

plasma treatment is used to polymerize monomers from the surface by free radical polymerization 343 

(Völcker et al., 2001). In other cases, the plasma treatment directly functionalizes the surface with 344 

functional groups (Guex et al., 2014; Heidari-Keshel et al., 2016; Khademi et al., 2017; Ma et al., 2005; 345 

Mahmoudifard et al., 2016; Teske et al., 2020; Vasile et al., 2011a; Wieland et al., 2020). This treatment 346 

can be applied to many kinds of surfaces and allowed the immobilization of a wide variety of proteins 347 

as indicated in the table below. 348 

 349 

Table 6. Examples of protein grafting on polymeric supports after plasma treatment 350 

Polymer support Protein Ref 

Silicone rubber grafted with (meth)acrylic 

acid 
Human fibronectin 

(Völcker et al., 

2001) 

PVDF films Protein A, Triglycine 
(Vasile et al., 

2011a) 

Electrospun PCL 

 

Gelatin 

Growth factor 

(Ma et al., 

2005) 

(Guex et al., 

2014) 

Electrospun PHB Collagen 

(Heidari-

Keshel et al., 

2016) 

PLLA films Papain 
(Teske et al., 

2020) 

Electrospun poly(ether sulfone) 

 

Antigen, antibody 

Collagen 

(Mahmoudifard 

et al., 2016) 

(Khademi et 

al., 2017) 

PMMA or PA6 or PP films IgC antibodies 
(Wieland et al., 

2020) 
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 351 

Other activation procedures were also described in the literature. For instance, the esters pendant groups 352 

of poly(-methyl L-glutamate) beads were transformed into azido groups before reacting with papain 353 

(Hayashi et al., 1992). The anhydride groups of poly(styrene-co-maleic anhydride) fibers, obtained by 354 

electro-spinning, could react with the amino groups of different kinds of enzymes, α-chymotrypsin (Kim 355 

et al., 2005), lipase from Mucor javanicus (Nair et al., 2007) or carbonic anhydrase (Jun et al., 2020). 356 

 357 

In the case of PAN support, a specific route was developed to graft proteins. PAN was reacted with 358 

HCl/EtOH to transform the cyano groups into imidoesters that can further react with the amino group 359 

of proteins (Handa et al., 1982, n.d.; Li et al., 2011, 2007; Li and Wu, 2009). Thus, glucoamylase from 360 

Rhyzopus niveus (Handa et al., 1982), α-amylase from Bacillus subtilis (Handa et al., n.d.) and lipases 361 

from Candida rugosa (Li et al., 2007; Li and Wu, 2009) or Pseudomonas cepacia (Li et al., 2011) were 362 

grafted onto PAN beads or fibers. 363 

 364 

 365 

Figure 7. Grafting of proteins onto PAN chains. Illustrations from (Li et al., 2007) (left) and (Smith et al., 2020a) (right). 366 

3.4 Hydroxyl group 367 

The last functional groups which were used to graft protein onto polymeric surfaces are hydroxyl groups. 368 

As these latter are not able to react directly with the amino groups of the proteins, they have first to be 369 

activated through reaction with 1,1’-carbonyldiimidazole (CDI) (Baştürk et al., 2013; Çakıroğlu et al., 370 

2018; Oktay et al., 2015b; Xu et al., 2015a, 2015b). This treatment is mainly applied to PVA containing 371 

surfaces. Thus, α-amylase from porcine pancreas (Baştürk et al., 2013) or Horseradish peroxidase (Xu 372 

et al., 2015a) could be grafted onto electrospun PVA/PAA fibers or PVA/PAA/SiO2 fibers respectively. 373 

Horseradish peroxidase was also grafted onto electrospun PVA/NCC (nano-crystalline cellulose) or 374 
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Chitosan/NCC fibers (Xu et al., 2015b), Collagen was grafted onto electrospun crosslinked PVA fibers 375 

(Oktay et al., 2015b). In a last example, acetylcholinesterase from Electrophorus electricus was grafted 376 

onto electrospun PVA/sorbitol fibers (Çakıroğlu et al., 2018). 377 

 378 

 379 

Figure 8. Grafting of proteins through hydroxyl groups activated by CDI. Illustration from (Çakıroğlu et al., 2018). 380 

3.5 Other activations 381 

Another method of activation, applied mainly for agarose supports, is the use of BrCN, which is a 382 

method developed more than 50 years ago (Axén et al., 1967). Thanks to this method, various proteins 383 

like α-chymotrypsin (Schnapp and Shalitin, 1976), catechol deoxygenase (Smith et al., 1990; Smith and 384 

Ratledge, 1989), papain (Homaei et al., 2010) were successfully grafted. It was also coupled with the 385 

EDC/NHS method to link papain or lipase onto agarose support (Kilara et al., 1977). Nevertheless, 386 

nowadays, this method is less employed in the literature. 387 

 388 

In few examples, -rays was used to activate polymeric surfaces (Beddows and Guthrie, 1980; Flores-389 

Rojas et al., 2018; Kumakura and Kaetsu, 1984). For instance, acrylic acid was polymerized from 390 

polyethylene chains through irradiation with 60Co source. BSA was then covalently bonded via the 391 

activation of the carboxylic groups with N-ethoxycarbonyl-2-ethoxy-1 2-dihydroquinoline (EEDQ) 392 

(Beddows and Guthrie, 1980). In the same vein, glycerol methacrylate was grafted onto silicone rubber 393 

surfaces. It was then treated with sodium periodate to allow the grafting of lysozyme (Flores-Rojas et 394 

al., 2018). In another study, papain was directly grafted onto PHEA or PHEMA during HEA or HEMA 395 

polymerization initiated by irradiation with 60Co source (Kumakura and Kaetsu, 1984). 396 

 397 

3.6 “Click-chemistry” and/or other “coupling” route 398 

Instead of using amino groups of the proteins, it is also possible to use the thiol groups if cysteine amino 399 

acids are present in the protein sequence. Thiol-maleimide coupling reactions are thus performed. To 400 

this end, maleimido groups were first introduced on the polymeric surface. Through this synthetic route, 401 

antimicrobial peptides were grafted onto silk fibers (Song et al., 2016). Divinyl sulfone was also 402 
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employed as a coupling agent between agarose supports and lipases from Pseudomonas fluorescens, 403 

Rhizomucor miehei, Thermomyces lanuginosus or Candida antarctica (Jose C. S. dos Santos et al., 2015; 404 

Jose C.S. dos Santos et al., 2015). 405 

Finally, in few cases, proteins were modified in order to be grafted onto polymeric surfaces. For instance, 406 

a growth factor protein was functionalized with an aldehyde group to achieve its coupling onto modified 407 

hydrogels through oxime ligation (Batalov et al., 2021). There are also few examples of antibodies that 408 

were modified with azido groups to be grafted onto alkyne-containing surfaces through copper-catalyzed 409 

click chemistry (Finetti et al., 2016; Shi et al., 2008). 410 

 411 

Figure 9. Grafting of proteins through click chemistries. Illustrations from (Jose C. S. dos Santos et al., 2015) (B) and (Shi et al., 412 

2008) (C). 413 

Among all the strategies developed during the last decades, it appears nowadays that the multi-point 414 

attachment of the enzymes onto their support is preferable as it allows a better stability in time but also 415 

against heat or organic co-solvent. Different reviews have been published on this topic and the reader is 416 

encouraged to consult them for a thorough evaluation ((Barbosa et al., 2013; Guisan et al., 2022; 417 

Rodrigues et al., 2021). The most followed routes to achieve the multi-point attachment of enzymes is 418 

the reaction of the amino groups of the enzyme with either epoxides or aldehydes (glyoxyl, 419 

glutaraldehyde). To do so, the reaction must be performed in basic solution in order for the lysine 420 

residues to be reactive (pKa~10.5). If the reaction is performed at neutral pH, only the amine at the 421 

terminal of the enzyme will react, preventing thus the multi-point attachment. Main pros and cons are 422 

summarized in table 7. 423 

 424 
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Table 7. Pros and cons of the different methods developed for non-specific covalent grafting of proteins onto polymeric 425 
supports. 426 

Non specific grafting 

method 

Pros Cons 

Through epoxides Multi-point attachment Multi-point attachment in basic solution 

Through aldehydes Multi-point attachment Multi-point attachment in basic solution 

Through carboxylic acid  Production of carboxylic acid onto the support 

needed. 

Activation of the carboxylic acid functions 

Through hydroxyl  Activation of the hydroxyl functions 

Click-chemistry  Modification of either the surface or the 

protein 

4 Regio- or chemoselective grafting 427 

A major concern with either non-specific adsorption or random covalent grafting as discussed above is 428 

the potential loss of function of the immobilized protein. Although stable immobilization can be 429 

obtained by the covalent methods described above, they are typically non selective leading to random 430 

orientation of the protein on the surface with attenuated properties as recognized early by Rao et al. and 431 

Cha et al (Cha et al., 2005; Rao et al., 1998). To ensure uniform and optimal properties, the anchoring 432 

point should be precisely controlled so as to not interfere with the protein’s intended function. Although 433 

most of the literature deals with immobilization onto glass slides for the preparation of microarrays, 434 

some interesting strategies were developed for polymer supports. Here we will show examples of 435 

selective immobilizations grouped according to the location of the anchor point on the biomolecule : N-436 

terminus, C-terminus or internal amino acid, and finally on post-translational modifications such as 437 

carbohydrate chains. 438 

4.1 Immobilization via N-terminus 439 

Proteins’ N termini are an attractive site for anchoring them onto solid substrate as they are accessible 440 

on most expressed proteins and are in most cases reactive as a primary amine. One can in principle 441 

exploit the reduced basicity of the N-terminal amine compared to lysine side chains, whose reactivity as 442 

nucleophiles can be reduced by precise pH control (Baker et al., 2006; Chan et al., 2012), but the 443 

abundance of lysine residues decreases the selectivity in most cases. 444 

Many strategies have been proposed recently where the protein’s N-terminus is first selectively 445 

modified, as reviewed recently (Jiang et al., 2022). Some of these modifications have been exploited to 446 

graft proteins in a chemo- and site-selective manner. The group of M. Francis is particularly active in 447 

this field. After demonstrating a highly selective method for N-term modification by carbonyl-bearing 448 

small molecules (MacDonald et al., 2015), they exploited this chemistry, with the most efficient modifier 449 

(2-pyridinecarboxyaldehyde) to graft functional proteins such as Rnase or a Green Fluorescent Protein 450 

(GFP) chimera via a N‑terminal imidazolidinone linker, figure 10 A (Koo et al., 2019). Additionally, 451 
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this immobilization could be reversed and the protein liberated by addition of hydroxylamine. A 452 

combination strategy is also possible since the authors showed that biotin could be efficiently attached 453 

to the N-terminus of a protein, thereby allowing the highly-efficient binding with surface-coated avidin 454 

(MacDonald et al., 2015). 455 

 456 

 457 

Figure 10.  A) Application of the selective strategy to graft a protein onto polymer beads (Koo et al., 2019). B) Grafting of a 458 

protein to a hydrazine-functionalized bead using the CAAX motif, an aldehyde-bearing farnesyl group, and farnesyl transferase 459 

(Rashidian et al., 2012). 460 

4.2 Immobilization via C-terminus 461 

Selective immobilization of proteins onto solid support via the C-terminus can be achieved using the 462 

native protein, or a modified version of the protein, obtained after either chemical or biochemical 463 

modification. In 2017, Zhang et al. (Zhang et al., 2017) published a report on the site-selective 464 

immobilization of recombinant protein A modified at the C-terminus with a cysteine residue, onto 465 

agarose beads functionalized with maleimide moieties. This improved antibody capture capacity of the 466 

beads when compared to the randomly attached protein A, with a two-fold increase for IgG, IgA and 467 

IgM. 468 

A number of groups have exploited the enzyme Protein Farnesyl Transferase (PFTase) to modify 469 

proteins containing the CaaX motif (where a is an aliphatic AA and X is any AA depending on the 470 

specific PFTase) on the C-terminus and graft a farnesyl motif. The latter can bear a reactive carbonyl 471 

function, such as an aldehyde, and be used to anchor the protein onto a hydrazine-bearing surface, such 472 

as described by the group of DiStefano (Rashidian et al., 2012) (figure 10 B). Their method is versatile 473 

since the CaaX recognition box can be installed on virtually any protein’s C-terminus, but this is also a 474 

disadvantage since a recombinant protein is needed. 475 

4.3 Immobilization via unnatural internal amino acids 476 

Unnatural AA can be introduced in protein sequences to confer chemically orthogonal reactivities to 477 

any other functional moieties. For example, Raliski et al. introduced para-azido phenylalanine in the 478 

sequence of GFP to make it amenable to dipolar cycloaddition (Raliski et al., 2014). They applied this 479 

functionalization strategy to regio- and chemo-selectively graft GFP onto solid supports such as 480 

polystyrene and sepharose beads, with excellent retention of the GFP native fluorescence. 481 
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 482 

Figure 11. A) In Situ generation of the reactive protein (Cho and Jaworski, 2014). B) Enzyme-catalysed anchoring of protein on 483 

PEGA surfaces (Wong et al., 2008). C) Covalent anchoring of GFP via huisgen cyclisation on an unnatural p-azido phenylalanine 484 

(Raliski et al., 2014). D) Covalent attachment of proteins via oxidised glycosyl units and Schiff base formation (Hu et al., 2013). 485 

An astute method was described by Cho and Jaworski where the reactive version of a protein is generated 486 

in situ (Cho and Jaworski, 2014). The enzymes alkaline phosphatase or methyl tryptophan oxidase 487 

operate the site-selective oxidation of a cysteine residue into the aldehyde-bearing formylgycine, which 488 

can then be used to link with amines on the surface. 489 

In their 2008 paper the group of Mickelfield (Wong et al., 2008) described the enzyme-catalyzed 490 

anchoring of a variety of proteins onto PEGA surfaces. They take advantage of the specificity of SFp 491 

enzyme (Phosphopantetheinyl Transferase) to selectively graft proteins that either bear a specific ybbR 492 

helical peptide domain, or are fused to carrier protein. The surfaces to which they are attached have to 493 

be derivatized to bear Co-enzyme A. 494 

In their 2015 paper, Yang et al. (Yang et al., 2015) described a method to tether TGF-β1, whose 495 

biochemical activity depends on whether it is free or attached, to pegylated surfaces. To achieve this, 496 

they used a variation of the Staudinger ligation, where surface-bound azido groups are reacted with 497 

Lysine-bound phosphine moieties. With this chemoselective anchoring strategy, the authors were able 498 

to prepare biofunctional beads that successfully converted CD4+ CD62Lhi T cells into functional 499 

regulatory T cells. 500 
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4.4 Immobilization via saccharide units on proteins and antibodies 501 

Glycosyl units can be found for example at the Fc region of antibodies, and provide chemical diversity 502 

with respect to the main backbone, which can be exploited for site-selective immobilization. Many 503 

reactions are available to create bioconjugates or to graft biomolecules by taking advantage of pendant 504 

glycosyl units. The most common reactions are probably the formation of hydrazone of oximes using 505 

oxidized glycosyl units, and the formation of boronic esters.  506 

4.4.1 On oxidized glycosyl units 507 

Shmanai et al. devised a rather elaborate system to chemoselectively graft antibodies onto polystyrene 508 

substrate, later to be used in immunoassays (Shmanai et al., 2001). For this, they derivatized 509 

poly(meth)acrylic acid with hydrazide functions, which they used to modify the surface of millimetric 510 

polystyrene balls. Using the TNBS (2,4,6-trinitrobenzene sulfonate) test, they were able to determine 511 

the surface density of hydrazide functions on the modified polymer balls. With this selective grafting 512 

strategy, the authors were able to study the influence of spacer length on the capture of mildly oxidized 513 

antibodies via an immunosorbent assay.  514 

Another example was given by Yuan. First, stainless steel substrates were coated with ethylene vinyl 515 

acetate, then treated with O2 plasma, and silanized with aminopropyl triethoxy silane (APTES) to create 516 

amine groups (labeled SCA-SS). Amines were then coupled with the oxidized carbohydrates and 517 

successful binding was assessed via cell uptake by the anti-CD34 antibody (Yuan et al., 2011).  518 

In a 2013 paper, the authors (Hu et al., 2013) prepared antibody-derived fragments on which the glycan 519 

tag, conveniently located away from the binding pocket, was oxidized for covalent attachment with 520 

amine functionalized beads (figure 12 D). Importantly, the grafting could take place at salt 521 

concentrations that otherwise preclude nonspecific adsorption. Moreover, the fragments attached in this 522 

oriented fashion exhibited 4-fold superior activity than the corresponding ionically adsorbed ones. 523 

 524 

4.4.2 Using boronic esters from glyco units and boronic acids 525 

In the field of molecular imprinting, particular attention has been given to the orientation of the proteins 526 

to be used as templates. These efforts produced preferably oriented homogeneous protein constructs 527 

with decreased changes in protein conformation during imprinting and maximal retention of protein 528 

functionality. The field was reviewed recently by Kalecki et al. (Kalecki et al., 2020).  529 

The surface grafting techniques have been employed including some non-covalent ones such as metal 530 

coordination or aptamer binding. Covalent bonding using the specific reaction between boronic acids 531 

and sugar units on proteins was described on a polymer coated sample by Wang et al. (Wang et al., 532 

2014). In this article, the authors designed a clever copolymer resulting from the copolymerisation of 533 

dopamine and an aryl-boronic acid monomer. Good selectivity of the molecular imprinted polymer was 534 

demonstrated with Horse Radish Peroxidase, and they could take advantage of the reversible character 535 
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of the boronic ester formation. 536 

4.5 On exogenous groups 537 

An elegant example of grafting a proteinaceous biomolecule onto a silicone surface was given by Pinese 538 

et al. (Pinese et al., 2016). In this article, the authors used a silicon-containing group to graft site-539 

specifically onto a silicone surface, thereby preserving the antibacterial character of the peptide and 540 

producing a material that could be used to make antiseptic catheter with superior activity compared to 541 

silver-containing ones. For this, the peptide had to be derivatized prior to immobilization. 542 

 543 

These selective grafting methods are of different difficulties, using the protein in its natural form or 544 

implying chemical modification, up to specific recombinant protein synthesis. Incorporation of 545 

unnatural functional groups presents the asset of excellent selectivity at the expense of enhanced 546 

difficulty of the process. It is noteworthy that beyond these specific pros and cons (table 8), the problem 547 

of single- or multiple point attachment also remains, as in part 3. 548 

 549 

Table 8. Pros and cons of the different methods developed for selective covalent grafting of proteins onto polymeric supports. 550 

grafting method Pros Cons 

N-terminus Easy access Competition with internal Lys 

C-terminus Easy access Competition with internal Glu and Asp. Need 

of chemical modification or production or a 

recombinant protein (e.g. CAAX motif) 

unnatural internal amino 

acids 

No competition with 

natural amino acids 

Need of a recombinant protein 

via saccharide units Highly selective Not possible for all proteins/expression 

systems. Variable amongst expression hosts. 

Exogenous groups Highly selective Need of chemical modification 

5 Characterizations of the grafting on polymers 551 

Characterization after grafting is a key step to validate both the grafting itself on the surface and also 552 

the behavior of the grafted enzymes. Different methods are available depending on what needs to be 553 

proved (presence of proteins, orientation, structure of the grafted element, enzymatic activity, specificity 554 

of grafting…). The main difficulties of the characterization remain in the possibly low amount of 555 

material grafted and the low stability of proteins, often limiting the number of techniques available and 556 

resulting in destructive analysis methods. The work becomes even more difficult when the used surface 557 

is a polymer, because some of these techniques are not possible any more. In the subsequent paragraphs, 558 

the focus is set on describing the techniques available for each question raised linked to the protein 559 

grafting. When possible, examples based on grafting on polymers are provided. 560 
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5.1 Revealing the presence of proteins on the surface 561 

Most of the methods described in this chapter could be used to show the presence of proteins on the 562 

surface. But some methods are more efficient and simpler to use in order to make this characterization.  563 

Contact Angle measurement using sessile drop method on a tensiometer is a very simple method that 564 

does not require any prior preparation of the sample and is functional on any smooth surface. The method 565 

requires at least 10 measurements to avoid high variance of the results. Hydrophilicity of the surface is 566 

expected to be modified with immobilization of proteins on the surface. It is possible to differentiate the 567 

proteins immobilized with this method because the hydrophilicity depends on the groups contained in 568 

the protein (Motsa et al., 2022). An important limitation associated to this method is the necessity to 569 

choose the good couple surface/protein. If the surface has a hydrophilicity close to the one of proteins 570 

such has poly(L-lactic acid) (PLLA) (Kasálková et al., 2014), it becomes impossible to prove surface 571 

modification with contact angle measurement. This technic can also be used to show the surface 572 

modification prior to protein grafting like in the case of the silanization of a surface (Libertino et al., 573 

2008). Because contact angle strongly depends on the surface rugosity, the presence of proteins on the 574 

surface can only be assessed by comparing the exact same surface before and after grafting. 575 

Electronic microscopy methods such as TEM, SEM and FESEM (Transmission Electron Microscopy, 576 

Scanning Electron Microscopy, Field Emission Scanning Electron Microscopy) can be used to detect 577 

the presence of proteins on some surfaces. Even if TEM and SEM are not precise enough to observe 578 

single proteins, they can however be used to detect variations in the size of nanoparticles (Khosravi et 579 

al., 2012; Ricco et al., 2014). FESEM is precise enough to detect the presence of proteins so it can be 580 

used directly as an imaging method (Kamat et al., 2013). 581 

Thermal Gravimetric Analysis (TGA) is also a pretty simple method allowing the detection of proteins 582 

on a surface thanks to the evaporation of the water contained in the proteins at 100°C. This 583 

characterization needs dry surfaces with no organic components which makes it of low interest on 584 

polymers. TGA is mostly used on MOF (Gascón Pérez et al., 2018), silica surfaces such as monoliths 585 

(Biggelaar et al., 2019) or nanotubes (Tully et al., 2016). 586 

Fluorescence microscopy is also a straight forward method to identify the presence of proteins on a 587 

surface. The biggest limitation is that it requires fluorescent proteins. For example, the presence of 588 

triglycine (TG) was detected on a poly(vinylidene difluoride) (PVDF) surface using fluorescence (Vasile 589 

et al., 2011b). In this case, fluorescence is also used to prove that grafting is a much more efficient 590 

immobilization method than adsorption. It is also possible to graft antibodies to the immobilized protein 591 

to detect it with fluorescence spectroscopy, Sum Frequency Generation spectroscopy (SFG), X-Ray 592 

Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), Surface Plasmon Resonance 593 

(SPR) but it implies complicated steps for such a simple characterization. 594 

XPS is one of the major characterization technics used on surfaces with grafted proteins. After 595 
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comparison of the spectra before/after immobilization, it is possible to observe the modification of the 596 

composition of the surface. For example, when enzymes are grafted on a stainless-steel surface 597 

functionalized with polyethyleneimine and glutaraldehyde, it is possible to detect every step by 598 

following the signal associated with specific types of bonds such as C-N, C=O, C-O, C-N (Caro et al., 599 

2009).  600 

 601 

Figure 12. High Resolution XPS spectra C 1s A) and N 1s B) of coated stainless-steel surfaces. Spectra are used to identify and 602 

quantify the type of bonds represented on the surface in order to prove they efficiency of coating (Caro et al., 2009). 603 

AFM is the second most common characterization method on protein immobilization on solid surfaces. 604 

The method requires a flat surface to work on.  Once again, AFM can do much more than just detect the 605 

presence of proteins, but the tapping mode can be used to have a good definition and be able to see the 606 

grafting of fibronectin on a glass surface (Vallières et al., 2007). 607 

5.2 Checking if the protein is grafted or adsorbed, assessing its orientation  608 

It is important to differentiate adsorption from grafting because it has a massive influence on enzyme 609 

mobility and orientation. Sometimes, rinsing the surface with buffer is not enough to remove adsorption. 610 

In the case of hydrophobin (HFBI), when the adsorption is completed, a monolayer is formed and it 611 

makes HFBI resistant to desorption with buffer (Takatsuji et al., 2013). Routine method to rule out 612 

simple adsorption remains extensive washing with “extreme” solutions, such as surfactants followed by 613 

re-examination of the presence of proteins by the techniques mentioned in the last paragraph. However, 614 

in some cases, specific techniques can provide further evidence of the grafting. 615 

Surface Plasmon Resonance (SPR) is often used to answer this problematic on surfaces such as 616 

chondroitin sulfate functionalized surfaces (Riahi et al., 2017) or even in association with Time of Flight 617 

Secondary Ion Mass Spectroscopy (ToF-SIMS) analysis on gold surfaces functionalized with NHS (Kim 618 

et al., 2007). It is however useless on polymer surfaces because the method needs surface conductivity 619 

to detect biological material. 620 

ToF-SIMS can also be used to differentiate adsorption and grafting of proteins on the surface. The 621 
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surface can be treated with trealose subsequently to protein grafting and then be analyzed with ToF-622 

SIMS and SPR with or without treatment. When proteins are oriented, both results are corelated. When 623 

proteins are randomly immobilized, the presence of trialose increases correlation between Tof-SIMS 624 

and SPR showing a different behavior depending on protein orientation. In the case of specific 625 

immobilization, proteins will be oriented on the surface which is not the case for adsorption (Kim et al., 626 

2007). It is also possible to show specificity of grafting by analyzing a patterned surface with affinity 627 

for different proteins. When in presence of the two different types of proteins, the surface will be grafted 628 

with only one protein depending of the functionalization of the surface of contact (Dubey et al., 2009). 629 

5.3 Describing the structure of the immobilized protein 630 

Modifications of the structure of the protein/enzyme can completely modify their compatibility/activity. 631 

Usually, the only concern is about the functionality of the object so it could be possible to test it to get 632 

sufficient result (measurement of enzymatic activity on a surface for example). But sometimes, it can 633 

be important to get more information on the structure in order to be sure that no modifications happened. 634 

Circular Dichroism (CD) can be used to determine the structure of proteins adsorbed using a comparison 635 

of the results obtained on different kinds of surfaces such as quartz and Teflon for example (Vermeer 636 

and Norde, 2000). CD can also be used to observe modifications of the secondary and tertiary structure 637 

of enzymes such as horseradish peroxidase after it has been crosslinked with dendrimers to create 638 

nanoparticles (Khosravi et al., 2012). 639 

Microcalorimetry can also be very specifically used to determine the effect of grafting on the structure 640 

of the proteins. It is for example possible to compare the effect on the structure of a single or multipoint 641 

grafting using glutaraldehyde on silica glass (Battistel and Rialdi, 2006). 642 

5.4 Describing grafting density 643 

It is often key to get knowledge of the grafting density in order to determine enzyme specific activity 644 

for example. It can also be important with proteins when they are used as an anchor for subsidiary 645 

reactions. 646 

XPS can be used to solve this kind of problematics. As seen before, the method is very powerful and 647 

can be used to follow the different steps of functionalization and grafting (Abbas et al., 2009) on different 648 

types of surfaces such as metals functionalized with poly(ethylene glycol) (PEG) (Caro et al., 2009) or 649 

even on electroactive polymers (Loh et al., 1996). By studying the intensity of bands related to certain 650 

types of bonds, it becomes possible to quantify the surface density. To get solid results, it is mandatory 651 

to analyze different types of bonds because precision can vary in large proportions. In the case of 652 

enzymes, it can be very interesting to compare the results with those obtained with enzymatic activity 653 

measurements (Ghasemi et al., 2011; Zheng et al., 2015). This type of comparison shows how the use 654 

of different types of bonds can deeply modify the results obtained. 655 
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AFM can also be an interesting tool to describe grafting density on the surface. It is therefore used to 656 

detect the presence of aggregates on the surface (Abbas et al., 2009) resulting in the presence of objects 657 

bigger than the size of a single protein. Even if it is mostly used to study the global evolution of surface 658 

roughness after grafting (Kasálková et al., 2014), AFM can be used to detect single molecules on 659 

extremely flat surfaces. Using single molecule force spectroscopy in tapping mode, it is possible to scan 660 

a surface molecule by molecule in order to precisely study a surface after grafting of proteins (Cecchet 661 

et al., 2007). 662 

 663 

Figure 13. Schematic Representation of A) the Covalent Grafting of Proteins onto the Surface of the Biological Device and of 664 

B) a Biological Recognition Event Investigated by Single-Molecule Force Spectroscopy Experiment from (Cecchet et al., 2007). 665 

FRET (Förster Resonance Energy Transfer) could also be used but since it is not a simple method to set 666 

up and it works only on very specific proteins, the method is not usually used to characterize grafting 667 

but more often to study interactions between proteins in biological materials (Rijn and Böker, 2011). 668 

5.5 Describing the distribution of the proteins on the surface 669 

When grafting density does not reach the saturation of the surface, it can be interesting to study the 670 

distribution of the protein/enzymes on the surface to verify if there are aggregates or if the distribution 671 

is homogeneous. 672 

As described above, it is possible to use FRET on very specific types of proteins to detect it on the 673 

surface. It could be used to detect the presence of some proteins on a tumor after specific treatments in 674 

order to target it efficiently (Resnier et al., 2019). 675 

SECM (Scanning Electrochemical Microscopy) is also a method that can be used to localize enzymes 676 

on a surface. It can be used on supports such as PVDF and poly(ethyleneterephthalate) (PET) but it will 677 

require a prior staining of the surface with copper (Carano et al., 2007). The method allows a mapping 678 

of adsorbed proteins on the surface without requirement of enzymatic activity or label affinity. 679 

5.6 Describing enzymatic activity of the grafted surface 680 

Enzymatic specific activity can be modified in the grafting process because of a modification of the 681 

secondary and tertiary structure of the protein but also because of a lack of mobility. It is therefore 682 
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paramount to study the activity in order to prove the grafting efficiency and the quality of the grafting 683 

process.  684 

The most common way to detect enzymatic activity is to follow the substrate degradation by UV-Vis 685 

spectroscopy. The analysis can easily be set up if there is a substrate available such as 4-nitrophenyl-β-686 

D-xylotrioside which will be hydrolyzed and release para-nitrophenol, absorbing at 401 nm (Montanier 687 

et al., 2019). Sometimes, it is not possible to study enzymatic activity using such methods. 688 

It is therefore interesting to use other systems such as SECM. The method can show enzymatic activity 689 

but is not efficient in order to quantify it. However, it has the significant advantage to localize enzymatic 690 

activity on the surface. It is the case for a biosensor non-homogeneously grafted with HRP on the 691 

surface; by making a comparison between XPS and SECM results, it was possible to observe enzymatic 692 

activity on determined areas of the surface (Glidle et al., 2003). 693 

5.7 Transversal techniques 694 

Some methods can give multiple information with a single analysis but are not applicable to every type 695 

of surfaces and grafting.  696 

SFG coupled with ATR-FTIR (Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy) 697 

can be used to determine the orientation of grafted enzymes on self-assembly monolayers. Orientation 698 

was controlled using thiol-maleimide reaction. Two thiols were introduced in enzyme sequence in 699 

specific areas. Results obtained with these two different enzyme populations were compared to prove 700 

the control of enzyme orientation on the surface (Liu et al., 2013; Shen et al., 2014). A SFG microscope 701 

was also developed allowing simultaneous SFG, ATR-FTIR and enzymatic activity measurements 702 

(Jasensky et al., 2018). By gathering all results, data are obtained on enzymatic activity, enzyme 703 

orientation, orientation, structure and stability. 704 

 705 

Figure 14. A) SFG spectra collected from β-Gal-V152C immobilized at the Mal-EG4 SAM−solution interface. (A right side) 1-706 

Orientation of β-Gal with (tilt angle, twist angle) = (0°, 0°). 2-Dependence of the SFG χzzz/χxxz ratio on the tilt and twist angles 707 

of β-Gal-V152C calculated using the newly developed computer package.56. 3-Possible orientation angle regions deduced on 708 

the basis of the experimentally measured χzzz/χxxz ratio of β-Gal-V152C. Colors indicate the quality of the match. Adapted 709 

from (Liu et al., 2013) B) Graphical abstract showing a scheme of the SFG microscope used in the experiment (middle) to obtain 710 

informations on enzyme orientation (left) and enzyme activity (right). Adapted from (Chen et al., 2018) 711 
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Enzymatic activity measurements can also be an interesting way to characterize the surface after 712 

grafting. The method gives access to multiple information such as the quantification of enzymes on the 713 

surface but also check their stability over time. It even can be used to obtain an idea of the grafting 714 

orientation (homogeneous or not) and also check if enzymatic activity is impacted by the grafting 715 

process. The measurement can be done following the evolution of the media due to substrate evolution. 716 

It is usually performed using UV-Vis spectroscopy measurements because they are very simple to set 717 

up. It is for example possible to follow, by absorbance measurements at 420 nm, the evolution of 718 

concentration of H2O2 in solution due to peroxidase activity (Amounas et al., 2000). Other substrates 719 

can be used with corresponding wavelength analysis for different types of enzymes such as lysozyme 720 

(450 nm) or trypsin (253 nm) (Caro et al., 2010). 721 

Last but not least, it is possible to characterize the surface with an indirect method by labelling the 722 

proteins on the surface and analyzing the probe. The method can be applied to different techniques. It is 723 

possible to characterize the grafting of antibodies on the surface using fluorescence by previously adding 724 

fluorescent antigens that self-assemble with the antibodies (Grosjean et al., 2005). It is also possible to 725 

measure zeta potential to follow Ig (Immunoglobulins) binding to a grafted ligand on the surface (Huan 726 

and Shi, 2021). 727 

The presence of antibody or different types of probes on the surface can also be detected using most of 728 

the techniques described above. 729 

 730 

Choices need to be made to characterize protein grafting on a surface. As shown above, there are no 731 

perfect methods to complete characterization but there still are many options. The techniques used must 732 

be adapted to the application and will be different almost every time, it is up to the experimenter to 733 

figure out which methods fit the best with the application. 734 
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 735 

Figure 15. Sankey diagram of the analytical techniques used to answer biochemical questions. Analytical techniques are 736 
classified by colors with ● (Microscopy techniques), ● (Spectroscopy techniques), ● (Thermal analysis techniques), ● (Other 737 
types of techniques). 738 

Table 9. Principle, advantages and disadvantages of each method described above 739 

Method Principle Advantages Drawbacks 

Contact 

Angle 

Characterization of the wettability of a 

solid surface by measuring the contact 

angle at the interface between a drop of 

liquid and a solid surface. It Is a 

qualitative method. 

-Simple access 

-No preparation 

needed 

-Not destructive 

-Importance of 

repeated 

measurements 

XPS 

X-ray Photoelectron Spectroscopy 

consists in bombarding a surface with X-

rays with a specific wavelength. From it, 

the retro-diffusion of core electrons will 

result. Each electron has a specific 

energy depending of the atom it comes 

from. XPS determines the atom 

composition on the surface with a 

maximum deepness in the sample of 10 

nm.  

-Possibly  

-Quantitative 

method 

-Need of expertise 
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AFM 

Atomic Force Microscopy is used to 

determine the topography of the surface. 

It is based on a cantilever browsing or 

tapping the surface with its tip. The 

movement of the cantilever is detected 

thanks to a photodiode. 

-Easy access 

-Large variety of 

analysis possible 

-Caution needed for 

the interpretation of 

images 

-Expertise needed 

for non-basic 

methods 

SFG 

Sum Frequency Generation Spectroscopy 

is used to analyze surfaces and interfaces. 

It is based on two laser beams mixed at 

an interface generating a beam with a 

frequency equal to the sum of the two 

input lasers.   

-Very simple 

sample preparation 

-Efficient on 

amorphous material 

-Non-Destructive 

-Efficient on 

monolayers  

-Interpretation can 

be tricky 

ATR-FTIR 

Attenuated total reflectance-Fourier 

Transform Infrared Spectroscopy is used 

to measure the infrared absorption 

spectra of molecules. Different bonds 

between atoms will deliver different 

signals on the spectra. 

-Simple access 

-Access to a 

chemical signature 

-Not destructive 

-Low amounts of 

proteins will not be 

visible 

Fluorescence 

spectroscopy 

Fluorescence spectroscopy uses a beam 

of light to excite electrons and cause 

them to emit light. The signal goes 

through a filter and on a detector, which 

allows to detect the signal. 

-Simple access 

-High sensitivity 

-Need of fluorescent 

signal 

TGA 

Thermal Gravimetric Analysis consist in 

measuring variations of mass depending 

on time for a specific temperature or a 

temperature profile. The method shows 

the presence of enzymes on the surface 

but cannot prove the covalent grafting. 

-Simple access 

-No preparation 

needed 

 

-Destructive 

-Low amounts of 

proteins will not be 

visible  
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TEM, SEM 

FESEM 

Transmission Electron Microscopy, 

Scanning Electron Microscopy, Field 

Emission Scanning Electron Microscopy 

are all based on electron microscopy. 

TEM consists in transmitting electrons 

through a sample imaging it using the 

resulting electrons. It can reach 

resolutions of 0.1 nm in the best cases. In 

SEM analysis, the sample is scanned 

using a focuses beam of electrons. It 

gives information on the topography of 

the sample but also on its compositions 

thanks to the back scattered electrons and 

characteristic X-rays. Resolution is 

between 1 and 20 nm. FESEM follows 

the same principle as SEM but it uses a 

single tungsten filament as electron 

source. This difference allows a better 

resolution (2-3 nm) and also a smaller 

penetration in the sample. 

-Simple access 

-High sensitivity 

 

-Preparation needed 

-Interpretation can 

be delicate in some 

cases 

CD 

Circular Dichroism is based on the 

differential absorption of left and right 

polarized light. Chiral molecules with 

optical activity absorb preferentially one 

of the two directions of the polarized 

light. CD with UV light can be used to 

determine the aspect of the secondary 

structure of proteins. 

-Simple access 

-No preparation 

needed 

-Not destructive 

-Low sensitivity 

Micro-

calorimetry 

The method consists in measuring 

enthalpy. When chemical reactions occur 

on the surface, it induces changes in 

energy accompanied by heat release or 

absorption. Microcalorimetry can be used 

to observe fluctuations of energy 

following reactions catalyzed by 

enzymes on the surface of materials. 

-Works with exo 

and endothermal 

reactions 

-Sensitive 

-Continuous 

monitoring of the 

catalysis 

-Experiment 

planning must be 

very precise and 

well thought 

-Sample preparation 

can be difficult 

FRET 

Förster Resonance Energy Transfer 

consists in exciting a first chromophore, 

when it will relax, the energy can be 

received by the second chromophore 

which will also emit fluorescence. The 

method only gives information on 

distance between the molecules. Also, it 

can only be used on compatible 

chromophores. Last but not least, non-

fluorescent molecules cannot be detected 

with this method. 

-Very sensitive 

-Applicable to a 

small range of 

proteins 

-pH sensitive 

-Requires a 

fluorescent tag 
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SECM 

Scanning Electrochemical Microscopy is 

a technique used to measure the local 

electrochemical behavior between 

interfaces. By moving the tip of the 

electrode, it is possible to get an image of 

the topology on the surface. To analyze a 

surface, it is mandatory to have a liquid 

phase in contact with it. Thus it is only 

usable for hydrophilic polymer surfaces. 

-Non-destructive 

-Quantitative 
 

ToF-SIMS 

Time of Flight Secondary Ion Mass 

Spectroscopy The method is used to map 

the composition of the surface. A source 

of primary ions is used to bombard the 

surface. Secondary ions are emitted and 

analyzed with a Time-of-Flight analyzer 

to determine the element they came from. 

-Sensitive 

-Mapping available 

-Destructive 

-Data treatment can 

be complicated 

 740 

6 Applications 741 

As highlighted in the introduction, immobilization of enzymes has been largely used in industrial 742 

processes for decades, meaning a significant amount of reviews are already found in the literature 743 

(DiCosimo et al., 2013; Hassan et al., 2019; Madhu and Chakraborty, 2017; Yushkova et al., 2019). 744 

However, such reviews generally did not restrain applications and are not exhaustive. We aspire to 745 

dedicate this chapter to the immobilization of proteins, enzymes and peptide to polymeric materials 746 

through a covalent bond. The reason is that the majority of immobilization is related to protein 747 

adsorption on porous media, solid surface such as silica, or trapped in hydrogel via physisorption, 748 

chemisorption, entrapment or cross-linked enzyme aggregates (Chapman et al., 2018). We draw the 749 

reader's attention to the fact that industrial enzyme immobilization also lies in innovation such as new 750 

carrier materials or protein engineering integrated to immobilization processes (Sheldon et al., 2021). 751 

As covalent immobilization is more challenging and economically costly, such immobilization strategy 752 

would thus be dedicated to high value-added processes or products, and still requires development of 753 

innovating technology. 754 

6.1 Industrial applications 755 

The first industrial use of immobilized enzymes was reported in 1967 (Tosa et al., 1967). An 756 

aminoacylase from Aspergillus oryzae was nonspecifically immobilized onto diethylaminoethyl-757 

cellulose for the resolution of synthetic racemic D,L amino acids. Today, the global enzymes market 758 

represents USD 8,919 million and is expected to grow to USD 13,815 million by 2027 (“Enzymes 759 

Market Size, Share, Growth | Global Report [2020-2027],” n.d.), where immobilized enzymes will 760 

represent 20 % of the industrial enzyme sales (DiCosimo et al., 2013). Even if industrial applications of 761 



 

35 

 

immobilized enzymes cover a large variety of domains (animal feed, cosmetics, chemistry, paper 762 

industry, textile industry, laundry, diagnostic, biofuel), food and pharmaceutical industries represent 763 

more than 40 % of the total.  764 

Among the largest scale industrial processes utilizing immobilized enzymes, production of high fructose 765 

corn syrup (HFCS) from corn syrup, used as sweetener for beverage, foodstuffs or directly as a food 766 

component, is by far the main product (DiCosimo et al., 2013). It is due to the high efficiency of the 767 

glucose isomerase (GI, also known as D-xylose ketol isomerase) to convert D-glucose from corn to D-768 

fructose. Over 500 tons of immobilized D-glucose isomerase (IGI) are consumed annually, enabling the 769 

production of approximately 10 million tons of HFCS per annum (Tufvesson et al., 2010).  770 

 771 

 772 

Figure 16. General process overview of enzyme/enzyme for production of corn syrup, from (Helstad, 2019). Maize or wheat 773 

starch is hydrolyzed through a total enzyme process, producing syrups such as dextrose, HMCs and HFCS mainly by the action 774 

of α-amylase, glucoamylase and glucose isomerase, respectively.   775 

Actually, IGI used to produce HFCS is proposed as an adsorbed form on inexpensive silica-based 776 

powder followed by cross-linking with glutaraldehyde, making the enzyme extremely stable when used 777 

in a packed bed reactor (Zittan et al., 1975). However, Tükel and collaborators reported a rare example 778 

of the covalent immobilization of GI using an epoxy support made with a copolymer of methacrylamide 779 

and N,N′-methylene-bis(acrylamide), demonstrating an improved catalytic efficiency and a better 780 

reusability of GI (Seyhan Tükel and Alagöz, 2008). 781 

Prebiotic oligosaccharides are non-digestible food ingredients that beneficially affect the host by 782 

selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon, 783 

thereby improving host health (Roberfroid, 2007). Among them, galacto-oligosaccharides (GOS) are 784 

mainly produced commercially by a β-galactosidase (β-Gal) catalyzing the hydrolysis of lactose and 785 
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subsequently the synthesis of oligosaccharides as a reverse reaction (transgalactosylation) (Urrutia et 786 

al., 2013). The main products are oligosaccharides composed by 3 or 4 molecules of β-D-galactose units 787 

linked to each other via a β,1-4 covalent bond. The world market is expected to reach USD 960 million 788 

by the end of 2025 (360 Market updates, 2019). In this context, multi-point covalent immobilization of 789 

the β-Gal was performed on an amino-epoxy solid support made with methacrylic polymer matrix and 790 

was suitable for GOS synthesis in an industrial process (Benjamins et al., 2015). 791 

The global antibiotic market size is expected to reach USD 57.4 billion by 2027 (Market Data Forecast, 792 

2022). Among them, β-lactam antibiotics have become the most widely used class of antimicrobial drugs 793 

(Pan et al., 2018). In order to slow down the emergence of drug-resistant bacteria, 6‐aminopenicillanic 794 

acid (6‐APA) is now used as an intermediate to cope with semisynthetic penicillin produced by 795 

derivatization of 6‐APA. Nowadays, such industrial production occurs using two different penicillin G 796 

acylases, one designed to produce 6-APA and another designed for the synthesis of semisynthetic β-797 

lactams as ampicillin or amoxicillin (Bruggink et al., 1998) that replaced the chemical route. During the 798 

process, penicillin G acylases, among the most commonly industrial enzymes, are used covalently 799 

immobilized on epoxy or amino methacrylate polymer in a sequential hydrolytic/synthetic process 800 

(Katchalski-Katzir and Kraemer, 2000). 801 

 802 

Currently, enzymatic immobilization is important for reducing the production cost of industrial 803 

processes, mainly by facilitating the recovery and reuse of enzymes, improve the processes and reduce 804 

the ecological costs. As previously exemplified, covalent enzyme immobilization could be justified 805 

because it is well worth the cost (IGI formulation is largely unchanged since 1975) or because of a high 806 

value-added product such as in pharmaceutical industries with antibiotics. As covalent immobilization 807 

prevents regeneration of the support and is more expensive to develop, it is not surprising that most of 808 

the immobilized enzymes used in industrial processes are nonspecifically bound to cheap support (Basso 809 

and Serban, 2019). However, next generations of industrial processes still may lay at laboratory scale. 810 

6.2 Laboratory scale applications 811 

To facilitate reading, and to keep online with the topic of this review, we propose to exemplify our words 812 

based on large class of mechanical properties, i.e. rigid, and elastic (Table 3). Furthermore, in a context 813 

of sustainable processes based on green chemistry, this classification will also be compiled with grafting 814 

of proteins on biobased soft material. The reader will find a large number of articles reflecting the 815 

intensity of the worldwide research in this field. Here, we propose a limited number of non-exhaustive 816 

examples of works published on protein immobilization to polymeric support with putative industrial 817 

application. 818 

6.2.1 Rigid polymers 819 

Rigid synthetic polymers such as polyacrylates, or PS are by far the most widely used in biomolecule 820 
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grafting due to low cost of fabrication, chemical resistance or optical transparency. They are generally 821 

resistant to aqueous solvents and acids/bases, rigid but not fragile, and common in the marketplace 822 

(Becker, 2002). However, direct covalent immobilization is not immediate due to the lack of reactive 823 

chemical functions compatible with biomolecule grafting. 824 

In pharmaceutical industries, hydrophobic PS is commonly used to carry out immunoassay in various 825 

carriers, such as plates, balls or tubes. However, due to passive adsorption, immobilized proteins on PS 826 

are often denatured. To circumvent this deleterious effect, Shmanai and collaborators modified a 827 

formylated polystyrene sphere (see section 4.D.1). Hence, the activated PS surface allowed the covalent 828 

immobilization of immunoglobulins G. Antibody molecules are known to display a Y-shape consisting 829 

of one Fc fragment and two Fab fragments, the latter reacting specifically with antigens to yield immune 830 

complexes. During the process, the spatial accessibility of the Fab is of importance to lead to efficient 831 

immunosorbent (Shmanai et al., 2001). Orientated immobilized antibodies presented an increased 832 

activity by 38 % compared to randomly immobilized antibodies to non-functionalized PS. This work 833 

presents an effective tool for antibody immobilization on molded materials made with PS. 834 

Simplified processes are also available to modify surface of synthetic polymers in order to make 835 

covalent grafting easier. For medical applications, such polymers require suitable mechanical stability 836 

and biodegradability. Rosellini and collaborators developed films of poly(ε-caprolactone)-block-837 

poly(ethylene oxide)-block-poly(ε-caprolactone) (PCL-PEO-PCL), which could be functionalized 838 

following a four-step procedure (Rosellini et al., 2015) mainly as described in section 3.C. The authors 839 

grafted on the surface two different pentapeptides, from fibronectin and laminin, using the primary 840 

amine group of the N-terminus of each pentapeptide to orientate the immobilization. The presence of 841 

such peptides enabled to promote specific cell adhesion of immortalized mouse skeletal muscle 842 

myoblast cell line and in vitro experiments demonstrated their proliferation and differentiation as 843 

possible source for cardiac tissue engineering on synthetic materials. 844 

An efficient way to covalently graft protein to rigid polymers would be to benefit from synthetic 845 

polymers exhibiting surface chemical groups. Poly(glycidyl methacrylate-co-methylacrylate) (P(GMA-846 

co-MA)) or poly(styrene-co-maleic anhydride) (PSMA) are strong electron acceptor polymers which 847 

can undergo rapid reaction at pHs compatible with protein or enzyme. Plant biomass conversion to 848 

biofuel is of increasing importance and is already a reality as a renewable and clean source of energy. It 849 

requires a large variety of carbohydrate active enzymes to deconstruct plant polymers to 850 

monosaccharides later fermented into ethanol by yeast (Mohd Azhar et al., 2017). Biodiesel, chemically 851 

consisting of methyl esters of long-chain fatty acids, is also a biofuel but is derived by using the catalytic 852 

transesterification of animal or plant oils with methanol (Sharma et al., 2008). Chemical industrial 853 

production of biodiesel, however, did not satisfy the increasing environmental concerns, and lipase, an 854 

esterase that catalyzes the hydrolysis of ester bonds of lipid, could address these hurdles. Xie and 855 

collaborators recently described the immobilization of a lipase from Candida rugosa on magnetic 856 

organic polymer (Xie and Huang, 2020). The support consisted in Fe3O4 nanoparticles with a synthetic 857 
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polymer shell of P(GMA-co-MA) displaying carboxylic groups (see section 3.C) used to attenuate the 858 

magnetic dipole-dipole attractions between the magnetic nanoparticles. Soybean oil was turned into 859 

biodiesel by the immobilized lipase with a yield of 92.8 %, magnetic immobilized lipase being easily 860 

recovered from the reaction. A yield of 79.4 % conversion was still achieved after reuse of five cycles.  861 

 862 

 863 

Figure 17. SEM images of Fe3O4 (a, b), Fe3O4-poly(GMA-co-MAA) (c, d) and the immobilized lipase (e,f). Bottom left, room 864 

temperature magnetization curves of Fe3O4 (a), Fe3O4-poly(GMA-co-MAA) (b) and the immobilized lipase (c). Bottom right, 865 

the recycling test results of the immobilized lipase for transesterification of soybean oil. From (Xie and Huang, 2020) 866 

Some enzyme immobilization-based processes required a signal-processing system through the use of a 867 

transducer. It is the basis of the enzyme-based biosensors, one of the most extensively studied 868 

biosensors. So far, the only industrial usage of enzyme-based biosensors is in clinical applications for 869 

diagnosis of diabetes mellitus, where a glucose oxidase is used to control over blood-glucose levels, 870 

even for usage at home (Mehrotra, 2016). Covalent immobilization of enzyme is required to offer stable 871 

complexes between enzymes and support, thus decreasing contamination and interference to the signal. 872 

The sensing principle is to detect the presence of molecules of interest by measuring their presence 873 

converted by the transducer into measurable signals. Electrochemical biosensors, using metallic 874 
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electrode, provide advantages such as simplicity, low cost and high sensitivity. Urea is an important 875 

molecule as it is present in blood serum and is a marker for liver and kidney function (Taylor and 876 

Vadgama, 1992). But urea analysis is also of importance in agricultural and food industries. Cortina and 877 

collaborators developed an impedimetric biosensor consisting of an electrode covered with a pH-878 

sensitive methacrylic acid-methyl methacrylate copolymer that dissolves specifically at pH values 879 

higher than 7 (Cortina et al., 2006). Urease, an enzyme catalyzing the hydrolysis of urea in ammonium 880 

and bicarbonate ions, was immobilized to the polymer coating by carbodiimide coupling. Enzymatic 881 

activity increased the pH of the medium, induced solubilization of the polymer whose degradation was 882 

monitored by changes in impedance measurements. 883 

Beyond the type of rigid synthetic polymers and the chemistry developed to covalently immobilize 884 

proteins, readers have also to keep in mind that the shape and the surface properties of the solid support 885 

are also to be considered. Actually, emerging supports are assessed as, for instance, electrospun 886 

nanofibers (Smith et al., 2020b), or covalent organic frameworks (Gan et al., 2021). Their interest lies 887 

in their large surface area to volume ratio, interconnectivity or even pre-designable structure. It is also 888 

of interest to consider the technology developed with microfluidic chips, consisting in 889 

microminiaturized devices containing chamber and tunnel surfaces made with PMMA, PS or cyclic 890 

olefin copolymer (COC) (Kim and Herr, 2013). All the previous concept remains fully applicable for 891 

operational considerations for protein immobilization in microfluidic systems.  892 

 893 

Figure 18. Schematic diagram of set up of electrospinning apparatus horizontal set up, from (Riazi et al., 2016). 894 

6.2.2 Elastomers 895 

Mechanochemistry is a relatively new field of research investigating the effect of mechanical forces to 896 

chemical modification in macromolecules, involving irreversible rearrangement through bonds breaking 897 

(Davis et al., 2009). This phenomenon is also involved in numerous vital processes in nature such as 898 

cell growth, activation of ion channels, blood clotting or spatial orientation (Funtan et al., 2019), without 899 

involving the breaking of covalent bond. These processes require much less energy and are collectively 900 

termed soft-mechanochemistry (Lavalle et al., 2016). They often involve conformational change within 901 

protein, converting the external force into a biochemical signal (Vogel, 2006). It is a reversible process, 902 
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leading the researchers investigating this area to develop covalent grafting of protein on elastic 903 

polymers. The aim here is to control, with an on/off signal, the activity of a protein or an enzyme through 904 

the stretching of an elastic support. 905 

Longo and collaborators developed a reversible biomechano-responsive surface to induce 906 

conformational changes within protein (Longo et al., 2015). As proof of concept, GFP was covalently 907 

immobilized on polydimethylsiloxane (PDMS). Alpha-amino-omega-propargylpolyethylene glycol 908 

chains were grafted to the surface to provide antifouling properties. The alkyne groups were then used 909 

to control the immobilization of GFP by click-chemistry, as two non-natural amino acids carrying azide 910 

chemical function were genetically introduced at specific position in the GFP (see section 4.C). 911 

Stretching unidirectionnally the PDMS surface with grafted GFP by 10 %, 20 % and 30 % led 912 

respectively to 23 %, 42 % and 60 % decrease of the initial fluorescence. Repeated stretching-relaxation 913 

cycles demonstrated a fully reversible recovering of the fluorescence. The decrease of fluorescence was 914 

explained by the modification of the GFP upon stretching. 915 

 916 

Figure 19. (a) GFP modified genetically at two opposite positions of the β-barrel with a unnatural amino acid bearing a para-917 

azidophenyl group (pAF). (b) Schematic representation of the GFP covalently linked through POE linkers onto a modified PDMS 918 

sheet at rest and stretched. (c) Evolution of the normalized fluorescence of the GFP-modified PDMS as a function of the degree 919 

of stretching during three stretching−unstretching cycles, from (Lavalle et al., 2016). 920 

Enzymatic activity can also be modulated by stretching. Rios and collaborators covalently immobilized 921 

a β-Gal on elastic silicone (Longo et al., 2015). β-Gal is a tetrameric enzyme, comprising four 922 

polypeptide chains held together through non-covalent bonds, the catalytic site being composed of two 923 

different subunits. Silicone was covered with a poly(L-lysine)/hyaluronic acid (PLL/HA) exponentially 924 

growing polyelectrolyte multilayer (PEM) films using PLL chains chemically modified by thiopyridyl 925 

groups. The β-Gal, modified by maleimide groups, was immobilized by reaction of the maleimide 926 

groups to the thiopyridyl moieties of the elastomer. A decrease of 40 % of the enzymatic activity was 927 

observed by stretching the elastomer by 100 %, and 87 % of the initial rate was obtained by the release 928 
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of the stretch. 929 

Proteins involved in mechanotransduction processes have the ability to exhibit specific active peptide 930 

sequences under mechanical stretch (Vogel, 2006). These exposed cryptic sites are involved in specific 931 

signaling pathways, as exemplified by cell adhesion. Bacharouche and collaborators developed a 932 

reversible mechanoresponsive surface to mimic cryptic sites (Bacharouche et al., 2013). Silicone was 933 

again used as elastomer support as described in section 3.C. A non-stretched state buried biotin 934 

molecules into PEG brushes, preventing them from coming in contact with streptavidin, the receptor. 935 

As the silicone was stretched, the PEG density decreased, allowing the biotin to become accessible to 936 

streptavidin, in a fully reversible manner. 937 

 938 

 939 

Figure 20. (A) Schematic representation of the fully reversible cryptic site mechanoresponsive surface. (B) Evolution of the 940 

fluorescence intensity for a series of three stretching (60%)/unstretching (0%) cycles. (C) Evolution of the fluorescence intensity 941 

at various stretching ratios: 0% (nonstretched state), 20%, 40%, 60%. From (Bacharouche et al., 2013). 942 

Elastomers could also be used to develop scaffold-like spongy material, and like a sponge, be squeezed 943 

to induce an enzymatic mechanoresponse. Based on this mechanism, Jain and collaborators developed 944 

enzyme-polymer surfactant core–shell conjugates supplemented with aqueous mixture of silica or silk 945 

nanoparticles (Jain et al., 2018). The sponge presented a high level of porosity and ability to undergo 946 

compression-decompression cycles without structural degradation. Furthermore, the amount of product 947 

generated by the enzyme after 25 minutes was increased by around 8 times by compressing-948 

decompressing the sponge every 15 seconds. 949 
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6.2.3 Natural polymers 950 

Anthropogenic climate change induces a transition toward a circular bio-based economy. It is partially 951 

the case when industrial applications favor biocatalysis as an alternative to chemical catalysis (Wu et 952 

al., 2021). But beyond the recyclability of some polymers such as PMMA, PS, PE, nylon or SBS (Table 953 

3), it is also possible to develop applications using covalent immobilization of enzymes on renewable 954 

carbon based polymers, polymers found in nature (Bilal and Iqbal, 2019c). They show unique 955 

physicochemical properties and are massive-scale available, non-toxic and biocompatible. 956 

Chitosan is a polysaccharide produced from chitin, sourced from marine exoskeleton of crustaceans 957 

namely shrimps and crabs. It is composed of randomly distributed β-(1,4)-linked 2-amino-2-deoxy-D-958 

glucose and 2-acetamido-2-deoxy-D-glucose units, thus exhibiting numerous amine and hydroxyl 959 

groups, enabling effective binding of protein without the involvement of cross-linking agents. Niu and 960 

collaborators developed the covalent immobilization of an antimicrobial enzyme on activated chitosan 961 

(Niu et al., 2020), whom chemistry is described in section 3.C. The antimicrobial agent is lysozyme, a 962 

hydrolytic enzyme responsible for the lysis of Gram-positive bacteria. The authors demonstrated that 963 

such lysozyme grafting was able to improve the thermal stability of the enzyme but also its activity by 964 

256 %. They also demonstrated that strawberries treated with this antimicrobial chitosan had their shelf 965 

life extended by 3 days.  966 

 967 

Figure 21.  Illustration of the preparation of water-soluble N-succinyl chitosan and application as  lysozyme-N-succinyl chitosan 968 

for fruit preservation, (from (Niu et al., 2020). 969 

Urrutia and collaborators developed a two-step functionalization approach to graft a β-Galactosidase on 970 

chitosan (Urrutia et al., 2018), mainly following the activation steps described in section 3.A. The 971 

authors improved the performance of the β-Galactosidase and 10 sequential batch reactor operations, 972 

they showed that the production of galacto-oligosaccharides was increased by a factor of 4.7 compared 973 

to the soluble enzyme.  974 

Cellulose is a natural polysaccharide, very similar to chitosan, found mainly in plant cell walls. It is 975 

composed of repeated β-(1,4)-linked D-glucopyranosyl units, displaying a large amount of hydroxyl 976 

groups which could be activated. It is inexpensive and commercially available. Common derivatives of 977 
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cellulose are cellulose acetate and diethylaminoethyl cellulose (DEAE-cellulose). Sharifi and 978 

collaborators developed the immobilization of an organophosphorus hydrolase to cellulose microfibers 979 

using epoxy groups (Sharifi et al., 2018). The methodology consisted in generating epoxy groups as 980 

presented in section 3.A. Organophosphorus hydrolase is known to hydrolyze a wide range of 981 

organophosphorus compounds, highly toxic molecules found in insecticides, pesticides and warfare 982 

agents. The authors demonstrated a catalytic efficiency increase by about 4.85-fold on the degradation 983 

of organophosphates compared to the free enzyme and improved the storage stability. Sperandeo and 984 

collaborators immobilized antimicrobial peptides (AMP) onto microcrystalline cellulose, allowing 985 

binding of the peptide through any desired position within the peptide chain or extremities (Sperandeo 986 

et al., 2020). AMP are widely spread in all domains of life, used by organism to defend themselves from 987 

external pathogens. These peptides are positively charged amphipathic molecules and mainly induce 988 

bacterial membrane disruption, leading to cell lysis. To graft AMP to cellulose, the authors first modified 989 

them both by adding thioester to AMP and cysteine to cellulose. Fmoc-cysteine was used to derivatize 990 

cellulose to completion. The authors highlighted that cellulose conjugated to the AMP causes a 991 

significant decrease in the concentration of viable bacterial cells compared to unmodified cellulose. 992 

Silk fibroin is a polymer of amino-acids produced by domesticated Bombyx mori silkworm cocoon. It 993 

contains large amounts of glycine, alanine, and serine as well as readily activated chemical groups, such 994 

as tyrosyl/phenol, sulfhydryl, and imidazole groups, making this support suitable for catalyst 995 

immobilization (Lv, 2020). Asakura and collaborators proposed to covalently immobilize an alkaline 996 

phosphatase to silk fibroin using two different procedures (Asakura et al., 1989). Alkaline phosphatase 997 

catalyzes the hydrolysis of organic phosphate and is widely used as model enzyme in biochemistry.  The 998 

grafting maintained also slightly the enzymatic activity over a long period of time. Monier described a 999 

new fibrous polymeric support based on natural worm silk fibers (Monier, 2013). It was prepared by 1000 

means of graft copolymerization of polyacrylonitrile using a photo-initiator in order to create cyanide 1001 

groups, which were converted in aldehydes using hydrazine. Finally, the fibers were activated with 1002 

glyoxal to allow covalent bond with primary amine group at the surface of a β-Galactosidase. The 1003 

resulting material was thoroughly characterized and the determination of the kinetic parameters of the 1004 

immobilized enzyme as well as the reusability of the complex confirmed that this new fibrous support 1005 

is of interest for enzymatic immobilization. 1006 

Collagen is also a polymer of amino acids found in skin, tendons, cartilage, bones and tissues in general. 1007 

It is sourced mainly from bovine horn and skin or fish scales and skin. Collagen is the main product in 1008 

pharmaceutics and food industry with a high demand. However, it is rarely used for immobilization of 1009 

protein. However, Fernandes-Cunha and collaborators recently covalently immobilized growth factor to 1010 

collagen (Fernandes-Cunha et al., 2017).  1011 

 1012 
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  1013 

Figure 22. Photochemically immobilizing of  epidermal growth factor (EGF)  on collagen surface using riboflavin as a 1014 

photosensitizer (step 1 to 3). Topography of dry collagen-coated surfaces measured by AFM. (A) Collagen coating without 1015 

treatment, (B) after blue light exposure alone for 20 seconds without EGF or riboflavin,(C) pulsed blue light exposure with 1016 

riboflavin for 5 seconds but without EGF, (D) pulsed blue light exposure with riboflavin for 20 seconds without EGF, (E) pulsed 1017 

blue light exposure with riboflavin for 5 seconds with EGF, (F) pulsed blue light exposure with riboflavin for 20 seconds  with 1018 

EGF. From (Fernandes-Cunha et al., 2017). 1019 

 1020 

Epidermal growth factor (EGF) is a protein involved in regulation of cell proliferation and could be used 1021 

to enhance wound healing. The authors developed a strategy to immobilize EGF on collagen in order to 1022 

provide a cytocompatible substrate used as a cell scaffold or carrier for direct modification of tissue that 1023 

enhances cell proliferation, especially in the case of cornea injuries. Collagen was coated on the surface 1024 

of PS-well plates and the photosensitizer riboflavin was used as a  highly reactive molecule to induce 1025 

the formation of covalent bonds between  amino acids from EGF and collagen (Hsu and Sugar, 1026 

2016).The photo-immobilized EGF maintained its bioactivity by enhancing the proliferation and 1027 

spreading of corneal epithelial cells. Additionally, the photo-crosslinking reaction was not harmful to 1028 

cells and maintained viability at values near 100 %. 1029 

Preserving our planet also includes the treatment of our waste or its reuse. Yassin and Gad proposed to 1030 

use expanded polystyrene foam (EPS) packaging waste as a support to immobilize a horseradish 1031 

peroxidase (Yassin and Gad, 2020). The inert EPS was at first coated with polydopamine (PDA). This 1032 

polymer is originated from mussel foot proteins and provides a large amount of catechol (as in L-Dopa) 1033 

and primary amine groups that can be functionalized at will. Indeed, functional molecules containing 1034 

nucleophilic groups (thiols, amines) can be easily immobilized onto quinones present in the structure of 1035 
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PDA to obtain synthetic derivatives. The peroxidase used in this work was an enzyme that catalyzes the 1036 

oxidation of diaminobenzidine and was used as a bleaching of dye wastewater agent. This strategy 1037 

provided a noteworthy tolerance of the grafted enzyme to higher and elevated temperature compared to 1038 

the free enzyme, compatible with industrial process. Under this condition, the immobilized enzyme 1039 

achieved almost complete oxidation of the dye within 120 min. After ten cycles of reusability, the 1040 

enzyme still provided 80 % of efficiency. 1041 

 1042 

 1043 

Figure 23. Scheme representing coating of expanded polystyrene foam (EPS) with polydopamine (PDA) layer followed by 1044 

horseradish peroxidase (HRP) immobilization to realize HRP@PDA/EPS, from (Yassin and Gad, 2020). 1045 

7 Conclusion 1046 

By analyzing the specificities of grafting proteins onto polymeric surfaces, the following points could 1047 

be pointed out: 1048 

- Keep always in mind the needed compatibility of the chemical conditions both for proteins and 1049 

polymers. Many polymers can be exposed to different reactants in order to provide desirable 1050 

functions, but a lot of conditions would lead to the degradation or denaturation of the proteins. 1051 

Reversely, proteins most often need aqueous buffers which might lead in extreme cases to 1052 

degradation of the polymer.  1053 

- Keep in mind that polymers may adapt to their environment (temperature, solvent, ionic 1054 

strength, pH…). This may lead to a complete change of the surface morphology or type. 1055 

- Be aware of possible changing orientation of the chemical groups, both on proteins and 1056 

polymers, especially above their glass transition temperature. This means that working with 1057 

proteins on polymers should always be considered as a system with possible evolution in time 1058 
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- “Seeing” proteins signals is not sufficient to prove a covalent grafting. This is a long-lasting 1059 

problem, already known naturally on inorganic surfaces. However, the presence of similar 1060 

chemical groups and atoms on both the proteins and its polymeric support renders this point 1061 

particularly challenging to examine. 1062 

 1063 

Finally, from a general standpoint, inorganic surfaces present the advantages of being well known with 1064 

a lot of examples in the literature, being quite resistant and compatible with the proteins. However, they 1065 

suffer from poor versatility if used by themselves. Polymers on the other hand exhibit a wide diversity 1066 

of structures, chemical functions, hydrophilicity and mechanical properties. This thus constitutes an 1067 

extremely versatile tool for the grafting of proteins. However, one should keep in mind their specificities 1068 

to ensure that no misinterpretation of the experiments occurs. 1069 
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