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ABSTRACT

The healthcare burden of cardiovascular dis-
eases remains a major issue worldwide. Under-
standing the underlying mechanisms and
improving identification of people with a
higher risk profile of systemic vascular disease
through noninvasive examinations is crucial. In
ophthalmology, retinal vascular network imag-
ing is simple and noninvasive and can provide

in vivo information of the microstructure and
vascular health. For more than 10 years, differ-
ent research teams have been working on
developing software to enable automatic anal-
ysis of the retinal vascular network from differ-
ent imaging techniques (retinal fundus
photographs, OCT angiography, adaptive
optics, etc.) and to provide a description of the
geometric characteristics of its arterial and
venous components. Thus, the structure of
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retinal vessels could be considered a witness of
the systemic vascular status. A new approach
called ‘‘oculomics’’ using retinal image datasets
and artificial intelligence algorithms recently
increased the interest in retinal microvascular
biomarkers. Despite the large volume of associ-
ated research, the role of retinal biomarkers in
the screening, monitoring, or prediction of
systemic vascular disease remains uncertain.
A PubMed search was conducted until August
2022 and yielded relevant peer-reviewed articles
based on a set of inclusion criteria. This litera-
ture review is intended to summarize the state
of the art in oculomics and cardiovascular dis-
ease research.

Keywords: Artificial intelligence; Deep
learning; Retina; Cardiovascular disease; OCT-
angiography; Adaptive optics; Oculomics;
Fundus photographs; Retinal vascular imaging;
Retinal vessels

Key Summary Points

Why carry out this study?

Literature on artificial intelligence, retinal
imaging and cardiovascular disease
assessment is constantly growing. New
tools are available to extract microvascular
information from retinal imaging to
screen and predict patients’ cardiovascular
status.

This literature review is intended to
summarize the state of the art in
oculomics and cardiovascular disease
research.

What was learned from the study?

Oculomics is a fantastic tool to bring
incremental personalized value to
conventional cardiovascular risk
assessment scores.

Oculomics showed promising results, and
it now needs to be applied to real-world
healthcare cardiovascular workflows.

INTRODUCTION

Over the past 2 decades, interest in retinal
vascular imaging has been increasing. Tech-
nological developments in modalities such as
retinal fundus photography, optical coher-
ence tomography–angiography (OCT-A) or
adaptive optics have made it possible to derive
accurate retinal vascular metrics. For example,
data on vessel calibre, tortuosity, branching
angle and retinal fractal dimension can be
extracted from fundus photographs using
semi-automated analysis software with repro-
ducible algorithms [1–3]. With OCT-A, it is
possible to describe the retinal vascular net-
work at capillary level in different plexuses.
Effective quantitative retinal vascular metrics,
such as vessel density, vessel perfusion and
flow index, are available with OCT-A devices
[4–6]. These fundus photograph and OCT-A
retinal vascular metrics were shown to be
correlated with the detection, severity and
progression of various clinical eye diseases
(e.g., diabetic retinopathy, vascular occlusion,
glaucoma) [7–11]. Fundus and OCT-A features
were associated not only with vascular ocular
disorders, but also with systemic vascular dis-
eases [12]. Indeed, it is recognized that small-
vessel or microvascular pathology plays a
major role in processes leading to the devel-
opment of cardiovascular disease (CVD) and
its risk factors [13–15]. However, the micro-
circulation has been difficult to access, and
thus robust microvascular biomarkers have yet
to be developed. The retinal vasculature,
which can be accessed noninvasively, repre-
sents a unique biological model for the study
of microvascular abnormalities and pathology
associated with cardiovascular disease [16–18].
Numerous studies have investigated the rela-
tionship between retinal microvascular
abnormalities and systemic system. Hence,
impaired retinal vascular network patterns
were associated with increased cardiovascular
risk score assessment [18, 19], cardiovascular
mortality [21] and cardiovascular risk factors
[22]. The field of ocular biomarkers of systemic
disease is now conceptualized as ‘‘oculomics’’
research [23, 24].
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However, recent rapid developments in arti-
ficial intelligence (AI) in medical imaging hold
promise for improved screening, diagnostics
and community healthcare [25]. In the field of
retinal vascular imaging, AI techniques have
found a particularly good fit. Initially,
researchers focused on high-incidence ocular
diseases such as diabetic retinopathy [26, 27],
age-related macular degeneration [28] or glau-
coma [29, 30]. Cardiovascular risk stratification
was recently presented as an accessible outcome
for AI algorithms and retinal vascular imaging.
Indeed, historical prediction models for CVDs
such as the Framingham risk score [31] and the
recently updated SCORE2 [32, 33] in the general
population may have some limitations in
specific ethnic groups and intermediate risk
profile patients [34, 35].

Hence, researchers investigated automatic
image analysis algorithms to highlight markers
of retinal vascular health to confirm previous
findings on the association between feature-
based retinal microvasculature parameters and
cardiovascular status. Machine learning (ML)
and deep learning (DL) showed huge potential
for automatic analysis and quantification of
retinal vascular biomarkers to predict cardio-
vascular risk factors and vascular systemic
events [36, 37].

The scientific literature on this topic is con-
stantly growing. In the present literature review,
we summarize the recent developments in AI
for retinal vascular imaging (retinal fundus
photographs and OCT-A) and cardiovascular
profile evaluation. The aim of this review is to
critically evaluate the state of the art in ‘‘ocu-
lomics’’ and cardiovascular disease research.

TECHNIQUES IN AI TO EXTRACT
RETINAL MICROVASCULAR
PARAMETERS

Machine Learning

ML is one of the many subsets of AI and refers to
creating programmes based on data as opposed
to programming rules. ML has its roots in large
datasets and identifies interaction patterns

among variables [38]. These techniques can dis-
cover previously unknown associations and
thereby generate novel hypotheses. In medicine,
ML is widely used to build automated clinical
decision systems. Most ML approaches fall into
two main categories: supervised and unsuper-
vised methods [39]. Unsupervised learning does
not require labeled data. It aims to identify hid-
den patterns present in data and is often used in
data exploration and generation of novel
hypotheses. Supervised learning starts with the
goal of predicting a known output or target. It
focuses on classification, which involves choos-
ing among subgroups to best describe a new data
instance, and on prediction, which involves
estimating an unknown parameter. The com-
puter approximates what a trained physician is
already capable of doing. This task is achieved
through the extraction of meaningful and robust
features (invariance to illumination, transla-
tions, scale, etc.), which are known as engineered
or hand-crafted features, that require a huge
amount of time or heuristic approaches [40].

Deep Learning

DL is a specialized subset of ML that imitates the
neural structure of the central nervous system
by creating artificial neural networks (ANNs).
An ANN is a computing system based on a
network of units called ‘‘artificial neurons’’
organized into layers. Layers of neurons per-
form transformations of the signal as it travels
from the input (first) layer to the output (last)
layer. DL is presented when deep neural net-
works (DNNs) form the basic architecture of AI
algorithms. A DNN is an ANN with multiple
intermediate layers positioned between the
input and output layers. It allows each level to
learn to transform its input signal into a grad-
ually more complex and higher-level represen-
tation, making them more efficient at learning.
A key benefit of DNNs is that their performance
was shown to continuously improve with the
size of the training dataset. The DL architecture
found to be most suitable for retinal vascular
imaging data is that of convolutional neural
networks (CNNs). CNNs encode connectivity
patterns between neurons that mimicked the
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organization of the mammalian visual cortex.
Trained with large annotated datasets, CNNs
essentially allowed computers to start recog-
nizing visual patterns and are primarily
responsible for the recent resurgence and over-
whelming interest in AI within the field of
retinal imaging [41].

Publicly Available Dataset for Retinal
Imaging

Retinal imaging analysis with AI was boosted by
the availability of large, real-world images
datasets. Recently, robust retinal imaging data-
sets (i.e., MESSIDOR, STARE project, DRIVE,
E-ophtha and EyePACS) with accurate labelling,
high image quality and operable format were
used by different research teams [27, 42–46]. A
recent review highlighted 94 open-access oph-
thalmology datasets with completely available
access [47]. Khan et al. were able to access
507,724 images from at least 122,364 individu-
als. The most common types of retinal images
were fundus photographs followed by OCT and
OCT-A images. Researchers could access images
of healthy, myopic, hypertensive and diabetic
eyes with basic demographic data (age and sex)
from different ethnic groups (Asia, North Africa,
Middle East, Europe, North America). These
publicly available datasets allow researchers to
analyse images from heterogeneous populations
and from different devices and then to refine
their algorithms using these external datasets.
Moreover, various imaging modalities have
been available with different programmes, for
example, screening programmes in primary,
secondary and tertiary centres, which reinforces
the generalization of AI algorithms.

Fundus Image Processing from Semi-
automated to Automated Methods

Traditional Semi-automated Feature-based
Image Analysis Methods
Since the late 1940s, ophthalmologists have
been interested in the association between
subjective and qualitative retinal vascular signs
on fundus photographs (e.g., retinal haemor-
rhages, exudates, cotton wool spots, diffuse or

focal reduction in vascular calibre) and systemic
vascular diseases (hypertension and arterioscle-
rosis) [48]. The ability to image the retina and
its vasculature was a turning point in this
approach. Parr et al. were among the pioneers in
developing objective and reproducible quanti-
tative measurements of retinal vascular calibre
from fundus photographs [49]. To this end,
three software programmes are more commonly
used, namely, Integrative Vessel Analysis
(IVAN), Singapore I Vessel Assessment (SIVA)
and Vascular Assessment and Measurement
Platform for Images of the Retina (VAMPIRE).
Retinal microvascular parameters are measured
based on a semi-automated detection of retinal
arterioles, venules and optic nerve head. Vari-
ous quantitative retinal vascular parameters can
be computed objectively over up to two disc
diameters such as retinal calibre expressed as
central retinal arteriolar equivalent (CRAE),
central retinal venular equivalent (CRVE), arte-
riole-to-venule diameter ratio (AVR)[50–52],
tortuosity [53, 54], branching angle [55] and
fractal dimension [2, 56–59]. These software
programmes were found to be highly repeat-
able and reproducible [52, 60].

For more than 20 years, numerous research
teams have been working on the associations
between retinal microvascular characteristics
extracted from these softwares and systemic
vascular diseases. Retinal microvascular abnor-
malities (reduced arteriolar and wider venular
calibre, increased tortuosity, suboptimal retinal
vascular network) were associated with hyper-
tension [18, 61–65], cardiovascular mortality
[21, 56, 66, 67], ischaemic stroke [59, 68, 69]
and increased cardiovascular risk score [19].
Furthermore, theses associations were con-
firmed in multiple large population-based
studies from different ethnic groups, including
European [19, 70, 71], Australian [72], North
American [60, 73] and Asian cohorts [74].

Nevertheless, these semi-automated software
programmes presented several limitations, which
led to a drive for new retinal image technology.
Indeed, these original approaches were extremely
time consuming for large fundus datasets; more-
over, the agreement or inter-changeability
between different software programmes was
debatable [75–77]. Another limitation was that
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the software depends greatly on the architecture
and definitions of the retinal microvasculature.
The definitions of the retinal image parameters
were determined in the early studies based on
either clinical observation (e.g., CRAE and AVR to
represent retinal arteriolar narrowing [51]) or the
hypothesis of an optimal state in the vascular
structure based on physiological theories (e.g.,
branching angles and junctional exponent to
represent Murray’s law) [78]. Even though the
feature-based semi-automated approach demon-
strated a close link between morphological fea-
tures of the retinal vasculature and systematic
diseases, it is possible that a vast amount of
undefined information remains hidden in the
retina. In that respect, increasing attention was
given to automated fundus processing with AI
techniques aiming to detect retinal biomarkers
for cardiovascular risk assessment.

Automated Image Processing with AI
Techniques
To reduce the involvement of the operators and
move from semi-automated to fully automated
image processing, several DL-based algorithms
have emerged [79–81] for either segmenting
biomarkers (veins, fovea) or grading the image
quality [82]. Since most of the information is
supplied by the retinal vessels in oculomics,
automated vessel segmentation was the main
focus of the research community, with most
publications concentrating on this area as com-
pared with other retinal biomarkers (optic disk,
fovea [83, 84]). Most of the recent architectures
are based on the UNet architecture [85] originally
published in 2015, with some clever adaptations
in the network design [86, 87], adding dense
blocks [88], squeeze-and-excitation blocks [89],
spatial attention modules [90], spatial positional
attention modules [91] or specifically designed
losses [92]. Going further, recent architectures are
leveraging the image transformer architectures
[93] to propose a patch convolution attention-
based transformer UNet (PCAT)-UNet) [94].
However, these UNet-like or transformer archi-
tectures are heavier (in terms of parameters),
harder to train and greedy in terms of data, and
the outputs are more complex to interpret.

A good example of automated image pro-
cessing software is the QUARTZ software. It

went from automated retinal vessel morphom-
etry segmentation [95], differentiation of arte-
rioles and venules [96] and retinal geometric
feature quantification [97] to epidemiological
studies [98].

Galtran et al. [99] recently showed, through
a detailed evaluation, that the performance of a
simple downgraded UNet was equal to that of
more complex models (several orders of mag-
nitude in terms of model parameters) for vessel
segmentation on fundus and OCT-A images.
They also highlighted that these systems still
exhibited a decreased performance across data-
bases, leaving room for further improvements
before application in daily clinical routine.

Cheung et al. developed a DL algorithm for
automated measurements of retinal-vessel cali-
bre from retinal photographs (SIVA-DLS) [37].
The ground truth of these models was retinal-
vessel calibre measured with the software SIVA
(named ‘‘SIVA-human’’). Agreement between
SIVA-human and SIVA-DLS regarding retinal-
vessel calibre was high (ICCs ranging from 0.82
to 0.95). The authors validated a large-scale
automated model to replace semi-automatic
software that was previously time consuming
(SIVA-human, approximately 25 min for each
grading fundus image), expensive and not sui-
ted for large datasets.

Finally, the DL approach has been shown to
perform better than the feature-based approach;
however, inherent to the former method are the
difficulties in interpreting its models, known as
‘‘the black box problem’’ [100]. Moreover, these
DL models, like any data-based model, require a
large and representative (multi-vendor, multi-
centric, multi-ethnicity) sample of annotated
data, which also impedes the adoption of these
systems in clinical settings.

CARDIOVASCULAR RISK
ASSESSMENT USING AI-DERIVED
MICROVASCULAR PARAMETERS

Prediction of Cardiovascular Risk Factors

One of the first applications of AI in this area of
research was the prediction of classic
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cardiovascular risk factors based on retinal fun-
dus images alone. Poplin et al. designed a CNN
model to predict multiple cardiovascular risk
factors based on two datasets (UK Biobank and
EyePACS) [36]. The results of the DL algorithm
were relevant notably for the prediction of age
[mean absolute error (MAE), years (95% CI) 3.26
(3.22, 3.31)], gender [area under the curve
(AUC), (95% CI) 0.97 (0.96, 0.97)], smoking
status (current smoker) [AUC, (95% CI) 0.71
(0.70, 0.73)] and systolic blood pressure [MAE,
mmHg (95% CI) 11.35 (11.18, 11.51)]. Kim et al.
also found a highly accurate prediction for age
with the CNN ResNet-152 algorithm based on
24,366 fundus images [MAE, years (95% CI)
3.06 (3.03–3.09)] [101]. Interestingly, the
authors reported that differences between reti-
nal-fundus-predicted age and chronological age
were higher after 60 years of age and in patients
with systemic vascular disease (hypertension
and diabetes mellitus). With a smaller dataset
(1222 fundus photographs), Zhang et al. pro-
duced accurate prediction rates for cardiovas-
cular risk factors. Cheung et al. found
associations of central retinal arteriolar equiva-
lent with age, gender, mean arterial blood
pressure (MABP), body mass index and total
cholesterol as well as associations of central
retinal venular equivalent with gender, MABP,
body mass index, glycated haemoglobin and
current smoking were similar between the
automated model (SIVA-DLS) and the semi-au-
tomatic software (SIVA-human) [37]. Another
strategy was presented by Arnould et al., who
focused not on the raw retinal images but on
quantitative geometric metrics obtained from
the Singapore ‘‘I’’ Vessel Assessment (SIVA) and
Angioplex (version 10; Carl Zeiss Meditec AG)
software [102]. They trained supervised ML
algorithms based on solo and combined (retinal
fundus and OCT-A) vascular quantitative geo-
metric metrics to predict age, diabetes mellitus
history and hypertension history.

Finally, one of the major cardiovascular risk
factors is ageing [103]. Original approach was to
assess physiological age based on retinal fundus.
This new feature (physiological age estimation
based on fundus = RetiAGE) could be used as a
cardiovascular risk factors in future study [104].

Prediction of CVD Biomarkers

For evaluation of the cardiovascular risk profile
of patients, the American College of Cardiol-
ogy/American Heart Association (ACC/AHA)
recommend analysing the Framingham Risk
score 10-year cardiovascular disease calculation
(FRS) [105] and more recently the Pooled
Cohort Equations (PCE) [106]. However, these
calculations may prove to be unreliable in daily
clinical routine in specific ethnic groups and
intermediate-risk profile patients. Hence, new
biomarkers were developed to better stratify
patients, such as the coronary artery calcium
(CAC) score. This score is a preclinical marker of
atherosclerosis, derived from cardiac computed
tomography (CT) measurements [107]. The
CAC score is an additional test recommended
for refining the prediction of cardiovascular
events. Nevertheless, CAC measurements
remain invasive (radiation risk) and expensive;
moreover, access to a cardiac CT system is nee-
ded. To tackle these issues, several research
teams hypothesized that CAC could be esti-
mated with retinal photograph-based DL. Son
et al. presented a DL algorithm to discriminate
patients with high CAC scores (threshold[100
units) from patients with low CAC scores
(CAC = 0) based on retinal fundus photographs
[108]. They showed a moderate AUC of 0.823
with unilateral and 0.832 with bilateral fundus
images. However, discrimination (CAC[100
vs. CAC = 0) was better with the usual cardio-
vascular risk factors. Interestingly, a better per-
formance was achieved with the combination
of retinal fundus images and cardiovascular risk
factors (age, presence of hypertension, gender),
yielding an AUC of 0.886. In that respect, future
algorithms based on retinal images should
integrate clinical characteristics to improve
their performance. Rim et al. [109] described a
DL-based CAC score prediction from fundus
photographs (RetiCAC). They hypothesized
that the RetiCAC score could help in cardio-
vascular risk stratification and also in refining
the stratification of groups of patients with
borderline and intermediate PCE risk. The per-
formance of RetiCAC was comparable to that of
cardiac CT scans in predicting future CVD
events. Furthermore, RetiCAC demonstrated
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interesting performance as an incremental fea-
ture to further stratify intermediate PCE groups.
For example, in the borderline-risk group, Reti-
CAC could further stratify the risk of SCORE
cardiovascular events (HR trend 1.62, 95% CI
1.04–2.54). Another strategy was presented by
Chang et al. with prediction based on retinal
fundus images of abnormal carotid artery
intima-media thickness (CMIT) measured by
means of ultrasonography [110]. In this study,
CMIT was considered as the proxy marker for
atherosclerosis. The authors aimed to predict,
based on retinal fundus images, the DL-fun-
duscopic atherosclerosis score (DL-FAS). The
model was able to predict the ultrasonography-
confirmed carotid artery atherosclerosis with an
AUROC of 0.713. DL-FAS allowed the authors to
refine the FRS calculation. In FRS subgroups of
low or intermediate risk scores, the highest ter-
cile of DL-FAS had significantly higher risk of
cardiovascular mortality compared to the low-
est tercile (HR, 95% CI 4.76, 1.05–21.63; 3.14,
1.04–9.47; respectively). Hence, DL-FAS could
add to conventional risk stratification scores
such as FRS for longitudinal outcomes of car-
diovascular disease. These results supported the
idea that imaging of the retinal vascular net-
work and AI could enhance cardiovascular risk
stratification based on historical risk score cal-
culations (FRS, PCE and CAC score).

Prediction of Major Cardiovascular Events

Cheung et al. demonstrated a significant pre-
diction rate of SIVA-DLS retinal arteriolar cali-
bre for incident cardiovascular events (stroke,
myocardial infarction, cardiovascular death)
[37]. They showed that narrower central retinal
arteriolar equivalent [HR per SD decrease, 1.13
(1.02–1.26)] was independently associated with
incident CVD events, after adjusting for age,
gender, ethnicity, fellow calibre, body mass
index, MABP, glycated haemoglobin level, total
cholesterol level and smoking at baseline.
Poplin et al. trained a model to predict the onset
of major adverse cardiovascular events (MACE)
within 5 years [36]. Their model achieved an
AUC of 0.70 (95% CI 0.65–0.74) from retinal
fundus images. This prediction model alone was

close to the AUC of 0.72 (95% CI 0.67–0.76) for
the composite European SCORE risk calculator
(SCORE risk) in this population [111]. Never-
theless, the association of the retinal fundus
algorithm and SCORE risk calculation did not
significantly improve the prediction of MACE.

Kawasaki et al. explored the explainability of
this approach by developing a two-stage multi-
task DL network to output ten traditional CVD
risk factors in the first stage and then estimate
the 5-year MACE using the same UK Biobank
dataset. By adopting this two-stage approach,
the black box retinal image of the CVD event
prediction model is easily interpreted by
humans. Although the combination of the
measured CVD risk factors and retinal images
yielded the best performance [0.769 (95% CI
0.742–0.795)], this two-stage approach based on
the retinal images alone has a relatively high
accuracy with an AUC of 0.738 (95% CI
0.710–0.766), and it outperformed the SCORE/
SCORE2 and FRS.

Nusinovici et al. developed a retinal fundus
photography-based biological age (termed
‘‘RetiAGE’’) algorithm [104]. This DL algorithm
was trained on retinal fundus images to predict
the likelihood of being[65 years. The RetiAGE
was compared with the patients’ actual
chronological and phenotypic biomarkers
(combination of chronological age and albu-
min, creatinine, glucose, C-reactive protein,
lymphocyte percentage, red cell volume and
distribution, alkaline phosphatase and white
blood cell count) for the prediction of cardio-
vascular mortality and incidence of cardiovas-
cular events. Independently of chronological
age and phenotypic biomarkers, the authors
reported a significant prediction rate for car-
diovascular mortality (comparing the first and
fourth quartile of RetiAGE) with an HR (ad-
justed for phenotypic and chronological age) of
2.42 (95% CI 1.69–3.48). Regarding the predic-
tion of cardiovascular events, the HR (adjusted
for phenotypic age) for the prediction rate was
1.39 (1.14–1.69). Moreover, an incremental
increase in the predictive performance was
found when adding the DL-predicted RetiAGE
score to the risk models (model 1 = chronolog-
ical age and model 3 = phenotypic age). How-
ever, this improvement remained minimal from
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0.08 to 1.8% compared to model 1 and model 3,
respectively. Retinal age prediction based on
fundus photography was also investigated by
Zhu et al., but they did not find any significant
association with cardiovascular-related death
[112]. Chang et al. presented a prediction model
for cardiovascular mortality based on DL-FAS
[110] and compared its performance with the
FRS. Analysis of the relative integrated discrim-
ination improvement (IDI) showed that the
model using FRS risk levels plus DL-FAS had an
IDI of 0.0007 (p = 0.008) and a relative IDI of
20.45% over the model using FRS risk levels
alone for the prediction of cardiovascular mor-
tality. This study found that prediction algo-
rithm could add an incremental value to
conventional risk stratification scores such as
the Framingham Risk Score for major cardio-
vascular event (cardiovascular-related death).
Diaz-Pinto et al. trained a multichannel varia-
tional autoencoder and a deep regressor model
to estimate left ventricular mass and left ven-
tricular end-diastolic volume from retinal fun-
dus photographs [113]. Moreover, they aimed
to predict incident myocardial infarction. To
refine their algorithm, they added the patients’
demographic data to the model. This strategy
could be a standard for future ‘‘oculomics’’
studies.

AI AND OTHER RETINAL IMAGING
PARAMETERS

Currently, AI-based retinal biomarkers to pre-
dict cardiovascular risk profile are mainly rep-
resented by retinal fundus photographs.
Nevertheless, other retinal imaging techniques
could improve the performance of predicting
models. There have been ongoing develop-
ments in OCT-A for a decade, which could
facilitate detailed qualitative and quantitative
descriptions of the retinal microvascular net-
work [7]. OCT-A retinal vascular parameters
were previously reported to have significant
associations with cardiovascular profile [20],
cardiovascular risk factors [22] and systemic

vascular events [114, 115]; moreover, the tech-
nique has been widely adopted in international
ophthalmology departments.

Recent advances in AI have improved the
analysis of OCT-A images and the description of
retinal vascular networks with these devices. For
example, OCT-A-based studies presented their
algorithms for automated disease detection
(single and multiple retinal diseases: e.g., AMD,
diabetic retinopathy, diabetic macular ischae-
mia and rare retinal diseases) [116–119].

To improve cardiovascular risk assessment,
OCT-A-based research should focus on retinal
vascular network analysis. Ma et al. presented
their model, the Retinal OCTA SEgmentation
dataset (ROSE), for automated segmentation of
retinal vessels in OCT-A [120]. The challenge of
distinguishing between arteries and veins on
OCT-A has been solved recently [121], which
could support research hypotheses on the
association with systemic vascular disorders
(more arterial or venous phenotype depending
on which vascular component is affected). Fur-
thermore, potential retinal biomarkers for car-
diovascular assessment with AI such as
automated foveal avascular zone measurement
[122, 123], retinal vessel calibre and tortuosity
measurements [124] have been introduced.
These experimental algorithms could be used in
future studies to investigate microvascular and
macrovascular associations.

There is also growing interest in the use of
ophthalmic adaptive optics (AO) for retinal
vascular biomarkers [125]. A significant associ-
ation of the retinal vascular structure (inner and
outer diameter, parietal thickness) with hyper-
tension has been found [126, 127]. Recently,
Zhang et al. applied automatic segmentation of
microaneurysms from AO with success [128].
Nevertheless, at present, AO remains a time-
consuming, expensive and limited-access tech-
nology, which restricts its application to large
population datasets.

There is no doubt that oculomics will benefit
from retinal vascular parameters automatically
extracted from OCT-A and AO in the near
future.
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LIMITATIONS OF AI APPROACH

Methodological Issues

AI and medical imaging analysis are receiving
increasing attention in all medical fields,
including in ophthalmology and retinal vascu-
lar network imaging [129]. To develop and
implement accurate clinical prediction models
of cardiovascular risk profiles from retinal vas-
cular network analysis, studies have to respect
strict methodological rules. Replicability,
reproducibility and generalizability should be
the aim of each AI prediction model for car-
diovascular risk assessment. Standard require-
ments (i.e., external validation datasets,
opensource algorithms, rigorous independent
labeling of retinal imaging and cardiovascular
profiles) could help produce reliable results in
the field. In that respect, the Equator network
provided scientific guidelines (CONSORT-AI
and SPIRIT-AI) to tackle inadequate reports in
the field [130, 131]. Moreover, Van Smeden
et al. presented 12 critical questions about AI-
based prediction of CVD (i.e., are the data for
prediction model development and testing
representative for the targeted patient popula-
tion and intended use? Is artificial intelligence
needed to solve the targeted medical problem?)
[132]. This checklist should be kept in mind
when investigating AI-based retinal vascular
biomarkers for the prediction of cardiovascular
risk profile. Finally, it may be complicated to
compare results from one study with another,
since the authors have not always presented the
performance of their algorithm with standard-
ized methods and in a specific population
dataset. This has to be improved to upgrade the
quality of publications and the reliability of AI-
based biomarkers. We could also raise ethical
concerns. Fundus photographs could be pre-
sented as a potential future biometric safety
measure. Hence, there may be ethical issues in
the use of large open-source datasets.

Cost-Effectiveness and Availability

In assessing the use of AI-based retinal
biomarkers to predict cardiovascular risk

profiles, retinal imaging (fundus photographs
and OCT-A) is compared with cardiovascular
screening tools. On the one hand, retinal fun-
dus photographs are less expensive, more
widespread and less invasive than cardiac CT
scans. On the other hand, risk evaluation scales
based on clinical parameters such as the FRS and
PCE continue to be inexpensive when measured
during a routine consultation.

AI-based retinal biomarkers could be a cost-
effective strategy in academic research and in
daily clinical routine with general practitioner
settings. It has a potential to expand the scope
of cardiovascular disease assessment based on
the retinal imaging and oculomics to general
health screening programmes outside of the
clinical practice (e.g., general health screening
program for adults in Japan). However, the
healthcare workflow, the proximity between
the retinal imaging device and the cardiovas-
cular unit and the availability of imaging algo-
rithms, trained staff and backup data could
increase costs. AI-based biomarkers promise to
deliver more data, in a faster and cheaper way,
but future studies are needed to focus on these
economic aspects. To our knowledge, these
points have not yet been investigated in the
literature.

Incremental Value of AI-based Retinal
Biomarkers

CVDs remain the leading cause of death glob-
ally: An estimated 17.9 million people died
from CVDs in 2019 [133]. Hence, more sensitive
and earlier biomarkers are needed to improve
cardiovascular risk assessment and to individu-
alize risk score calculation. Nevertheless, it has
not yet been proven that AI-based retinal
biomarkers can improve predictions over exist-
ing prediction models. Poplin et al. presented
their results in predicting 5-year MACE. The
AUC values from their analyses were 0.72, 0.70
and 0.72 for SCORE, an algorithm alone and
SCORE? an algorithm, respectively. Even if the
results are very interesting, the clinical rele-
vance of this difference could be questioned for
future healthcare workflows.

Ophthalmol Ther



Furthermore, in numerous studies the cut-off
values used to train and validate the algorithm
(i.e., CAC[100 versus CAC = 0) are mostly
anecdotal. These extreme cut-off values are far
from patient outcomes and clinical workflow.
Moreover, this method does not surpass pre-
vailing prediction risk models (CAC, ankle-bra-
chial index and family history) that consider
intermediate risk profiles [34]. To confirm the
incremental value of AI-based retinal biomark-
ers for cardiovascular risk prediction, future
studies should be based on an interventional
design. Hence, AI-based retinal biomarkers
could motivate potential modification of
patients’ therapy (statin or antiplatelet treat-
ment). This strategy could be drawn from cur-
rent protocols on referrals for medical retinal
disease (134).

CONCLUSION

AI analysis based mainly on fundus pho-
tographs and OCT-A may strengthen the asso-
ciations between retinal vascular network
features and cardiovascular risk assessment.

Hence, the associations between retinal
microvasculature and systemic macrovascula-
ture can be confirmed. A very high prediction
rate and accuracy in performance were reached
with numerous algorithms. Indeed, cardiovas-
cular risk factors, cardiovascular risk stratifica-
tion and major cardiovascular events could be
predicted with rates up to 80%. Nevertheless, it
remains unclear whether the AI approach out-
performs traditional prediction models. Auto-
mated retinal vascular parameters could offer
incremental value for specific targeted patient
groups in the future (Fig. 1). Finally, these
promising results from oculomics have been
based on epidemiological population datasets,
and they now need to confront real-world
healthcare workflows.

LITERATURE RESEARCH METHODS

This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors. The literature search for
this review was based on combining a set of

Fig. 1 Oculomics and assessment of cardiovascular status
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keywords from the medical field (‘‘ophthalmol-
ogy’’, ‘‘retina’’, ‘‘fundus photographs’’, ‘‘retinal
vascular network’’, ‘‘optical coherence tomog-
raphy–angiography’’, ‘‘adaptive optics’’, ‘‘car-
diovascular risk factors’’, ‘‘cardiovascular
events’’, ‘‘cardiovascular prediction’’, ‘‘cardio-
vascular risk stratification’’, ‘‘oculomics’’) with a
set of keywords from the machine learning field
(‘‘artificial intelligence’’, ‘‘deep learning’’ and
convolutional neural network’’). All terms from
one set were independently combined with all
terms from the other set. The main repository
for the search were PubMed and Medline. Eng-
lish peer-reviewed articles until August 2022
deemed relevant (by inspection of the title and
abstract) were reviewed (LA). The main inclu-
sion criteria were the perceived quality of the
research and the focus on AI, retinal vascular
imaging, oculomics and cardiovascular status
assessment. We acknowledge several limitations
to this review methodology. First, we only
selected perceived quality English peer-reviewed
manuscript, which could have introduced a
selection bias and a restriction of the research
algorithm. Second, PRISMA checklist was not
fully complete as we were not reporting a sys-
tematic review and meta-analyses.
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