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Abstract (150 words) 18 

 Over the last decade, increasing proliferations of Atlantic Sargassum populations have 19 

led to massive beaching with disastrous environmental consequences. This study is a 20 

preliminary assessment of open ocean Sargassum spp. element concentration to assess their 21 

potential contribution on coastal ecosystems. Sargassum spp. samples from seven sites, 22 

collected along a transect from the center of the Atlantic Ocean to near the coast of 23 

Martinique (French West Indies), were analyzed to determine their potential metal and 24 

metalloid contamination. Mean element concentrations from the Sargassum spp. samples 25 

were ranked in the following descending order: As > Fe > Mn > Al > Zn > V > Ni > Cu > Cr 26 

> Cd > Hg. Element concentrations are relatively low compared to previous results of 27 

beached Sargassum spp. except for As that need to be carefully considered before reusing 28 

Sargassum spp.  29 
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 36 

I. Introduction  37 

 38 

 The brown algae Sargassum is one of the most diverse marine macro-algae genera 39 

with 362 taxonomically accepted species with only two pelagic species: Sargassum fluitans 40 

and natans. These two planktonic species form dense population rafts on the ocean surface, 41 

mainly of the Atlantic, and play a crucial role in the wider ecosystem. Sargassum spp. are 42 

home to a wide range of species (many of which are endemic), provide nurseries and cover 43 

habitat for species going from invertebrates to fishes (including commercially important fish 44 

species), and endangered turtles (Casazza and Ross, 2008; Witherington et al., 2012).  45 

 The presence of free floating Sargassum in the Northern Atlantic Ocean is not a new 46 

finding; Christopher Columbus reported seeing Sargassum spp. as far back as the 15th 47 

century. Since 2011, however, proliferation of Sargassum spp. populations have been 48 

observed in Africa (Oyesiku and Egunyomi, 2014; Addico and Atta deGraft-Johnson, 2016) 49 

and in the Wider Caribbean Region (WCR), including locations where they were so far absent 50 

or extremely rare (Hu et al., 2016; Sissini et al., 2017). Massive Sargassum spp. landings (i.e. 51 

arrival of massive amounts of Sargassum on beaches) in the Caribbean area, such as the 2011 52 

and the even stronger 2014-2015 events, lead to disastrous consequences with major impacts 53 

on public health (Anderson, 2007), fisheries (Solarin et al., 2014), coastal ecosystems 54 

(Rodríguez-Martínez et al., 2019), and tourism (Louime, et al., 2017).  55 

 Despite their harmful consequences, few studies have been carried out on open ocean 56 

pelagic Sargassum spp. and especially, to our knowledge, none have been done on their 57 

potential role as a carrier of metal pollutants. Brown algae, such as Sargassum spp., 58 

accumulate heavy metals from the surrounding environment and the concentration in their cell 59 

walls may be 20,000 to 40,000 times higher than in the surrounding water (Sudharsan et al., 60 

2012;                  2014). The biosorption capability of Sargassum spp., or more generally 61 

of brown seaweed, have made them flawless biological indicators of heavy metal pollutions 62 

(Haug et al., 1974; Butler et al., 1983; Philips, 1990; Khristoforova and Kozhenkova, 2002; 63 

Chernova and Sergeeva, 2008; Thangaradjou et al., 2010). Heavy metal concentration in 64 

brown algae is proportional to the quantity of bioavailable forms of metals in sea water during 65 

the period of algal vegetation (Karthick et al., 2013). Floating Sargassum spp. landing in 66 

Caribbean coasts are particularly contaminated by As (Devault et al., 2021). Sargassum spp. 67 

with high levels of metal and metalloid contamination might impact the organisms that feed 68 



on them and could also result in the transport of contamination from the open ocean to coastal 69 

sites via beaching. 70 

 Metals and metalloids are naturally occurring elements foun    rou  ou        r  ’s 71 

crust. Their oceanic distributions are not homogenous, there is areas of higher metal contents 72 

such as region under volcanic activities (Kamenev et al., 2004) and upwelling (Bruland, 1980; 73 

Yeats and Campeell, 1983). Anthropogenic activities have however released a large number 74 

of heavy metals in the environment leading to large contaminations in coastal and marine 75 

environments. Metal pollution can dramatically impact human health, aquatic organisms, and 76 

natural ecosystems because of their toxicity, persistence, and bioaccumulation characteristics 77 

(DeForest et al., 2007; Karthick et al., 2012).  As Sargassum spp. continues to be beached in 78 

large quantities, we must understand their impacts and how to safely reuse them. Various 79 

sargassum valorization exists such as fertilizer for agricultural crops, bioenergy or beauty care 80 

products (Chávez et al., 2020).  Sargassum spp. that reach coastal areas and are finally 81 

beached may introduce metal and metalloid contamination; it is consequently crucial to 82 

determine their toxicity before their valorization. Depending on their origins and their 83 

journey, open ocean free floating Sargassum spp. might present different level of metal and 84 

metalloid contamination. Therefore, this present study tackles the issue of estimating metal 85 

and metalloid concentrations in open ocean pelagic Sargassum spp. before their arrival in the 86 

Caribbean region. To accomplish these measurements, pelagic Sargassum spp. were collected 87 

in various locations along a transect from the center of the Atlantic Ocean to near the coast of 88 

Martinique (French West Indies). We then make comparisons to previously reported values 89 

on metal concentrations on both benthic and planktonic Sargassum spp. as well as to open 90 

ocean metal concentrations. The ultimate goal of this study is to present a preliminary 91 

assessment of open ocean pelagic Sargassum spp. metal and metalloid contamination before 92 

their arrival in the Caribbean Sea.  93 

 94 

 95 

II. Material and methods 96 

 97 

 I.I.  Samples collection and preparation 98 

 In November 2018, as part of a science participative initiative, a volunteer sailor 99 

collected pelagic Sargassum spp. samples during a transatlantic sailing cruise. Every time the 100 

boat encountered Sargassum spp. rafts, a sample of Sargassum spp. was collected by hand 101 

and the geolocation of the ship position was recorded via Global Positioning System (GPS); 102 



seven sites were sampled following this method (Figure 1 and Table S1).  Once collected, 103 

Sargassum spp. were rinsed with seawater, dried on the ship hull, and stored in plastic bags to 104 

avoid potential metal and metalloid contamination from other sources.  105 

 In the laboratory, samples were rinsed five times with deionized water and oven-dried 106 

at 40°C for 48 hours. There are three main morphotypes of pelagic Sargassum: Sargassum 107 

fluitans III and Sargassum natans I and VIII. Visual identification of the species was 108 

established using criteria described in Oyesiku and Egunyomi (2014) and in Fernandez et al. 109 

(2017).  Sargassum spp. in our samples were a mix of the three morphotypes. We did not 110 

have enough material, neither enough sites, to be able to discriminate data by morphotype. 111 

Our samples are therefore a mixture of the three morphotypes and no distinction in regard of 112 

the morphotype will therefore be done and for the remaining of the manuscript, we will only 113 

refer as Sargassum spp.  114 

  115 

 I.2. Element analyses 116 

 Sargassum spp. samples were ground using an agate mortar into a finely homogenized 117 

powder following previously published protocols (e.g. Zou et al., 2015; Kaviarasan et al., 118 

2018; Pan et al., 2018). Powdered samples (100 mg) were weighed and digested with 3 mL of 119 

pure nitric acid (67 %). Mineralization was done by heating up the samples at 100 °C for three 120 

hours (hot block CAL 3300, Environmental Express,USA), in closed mineralization tubes. 121 

After the mineralization, 15 mL of ultra-pure water (Milli-Q,Bedford, MA, USA) was added 122 

to each sample. For each site, three aliquots were analyzed except for sites 2 and 4 for which 123 

only two aliquots were performed because of the small quantity of Sargassum spp. collected 124 

(less than 300 mg). 125 

 A series of 14 elements were analyzed simultaneously by Inductively Coupled Plasma 126 

Optical Emission Spectrometer (700 Series ICP-OES, Agilent): Silver (Ag), Aluminum (Al), 127 

Arsenic (As), Cadmium (Cd), Cobalt (Co), Chrome (Cr), Copper (Cu), Iron (Fe), Manganese 128 

(Mn), Nickel (Ni), Lead (Pb), Selenium (Se), Vanadium (V), and Zinc (Zn). Certified 129 

reference materials DOLT-5 (dogfish (Squalus acanthias) liver), TORT-3 (Lobster 130 

Hepatopancreas), IAEA-413 (Algae) were analyzed using the same methodology as the 131 

Sargassum spp. samples; their recovery rates vary between 84.58 and 107.59 % (Table S2). 132 

Element concentrations in Sargassum spp. samples are  xpr ss    n μ   
−1

 dry weight (dw). 133 

For values below the instrument detection limit, theoretical minimum concentration values are 134 

calculated (the detection limit of the instrument (in g.g
-1

) multiplied by the volume of the 135 

sample (in L) divided by the sample Sargassum weight (in g)).  136 



 To determine Hg concentrations in Sargassum spp. samples, aliquots of ~15 mg of 137 

powdered Sargassum spp. were analyzed by flameless atomic absorption spectrometry (AMA 138 

254, SYMALAB, France). The validity of the analytical method was verified against a 139 

biologic reference material IAEA-407 (fish tissue). Sargassum spp. Hg concentration and 140 

recovery rates of the reference material are presented in Table S2. There are no Hg values 141 

from Site # 2 because there was not enough sample left to perform the analysis. 142 

 143 

 I.3. Statistical analyses 144 

 Differences in mean element concentrations were tested via a student’s t-test after a 145 

Box-Cox transformation (Peltier et al., 1998).  The normality of the variance and 146 

homogeneity were v         by      p ro’s  n    L v n ’s test, respectively. For data that 147 

yielded neither normal variance nor homogeneity, the difference of the mean significance was 148 

determined using a Mann-Whitney u-test. Principal component analyses (PCA) were obtained 149 

using the R Cran software (FactoMineR and factoextra packages). The Kaiser criterion was 150 

used to select which dimension could be used for interpretation. Pearson product moment 151 

correlation coefficients (referred to as correlation) were used to determine the significance of 152 

relationships between elements and the three PCA dimensions as well as the relationship 153 

between the different Sargassum spp. element concentrations. If not specified, the 154 

significance was calculated at the 95 % confidence level. For box plot, clusters with the same 155 

letter code are not significantly different at the 95% confidence level (t-test or U-test). 156 

Horizontal black lines within the boxes mark the median.  157 

 158 

 159 

III. Results 160 

 161 

 The element concentrations (and respective standard errors) measured from 162 

Sargassum spp. collected at the seven sites sampled in this study are presented in Table S2. 163 

The three aliquots for Sites 1, 3, 5, 6, and 7 and the two aliquots for sites 2 and 4 yield good 164 

reproducibility between replicated with values of relative standard deviation being on average 165 

less than 10 % (values not presented here). The quantity of Sargassum spp. collected did not 166 

permit analysis of more than three aliquots per site but the established reproducibility between 167 

them indicates that site-specific Sargassum spp. element concentrations are homogeneous and 168 

therefore representative of the element concentrations of their Sargassum spp. raft source. Out 169 

of the 14 elements analyzed, 11 were above detection limits: Al, As, Cd, Cr, Cu, Fe, Mn, Ni, 170 



V, Zn, and Hg (Table S2). Sargassum spp. Ag, Co, Pb, and Se concentrations are below the 171 

detection limits; mean theoretical minimum concentration values and 1 standard deviation 172 

are: 0.0189 ± 0.0021for Ag, 0.0144 ± 0.0016 for Co, 0.0931± 0.0102 for Pb, and 0.1054 ± 173 

0.0116 for Se. Mean elemental concentrations can be sequenced in the following descending 174 

order: As > Fe > Mn > Al > Zn > V > Ni > Cu > Cr > Cd > Hg.  175 

 To be able to elucidate the role of spatial variability (i.e. location) on the concentration 176 

of each element, Principal Component Analyses were performed (Figure 2 A et B). The first 177 

three dimensions are conserved for interpretation as they passed the Kaiser criterion (the 178 

cumulative variance of the first three dimensions explain 90% of the total variance). 179 

Correlations between the element concentrations and the three dimensions are presented in 180 

Figure 2 C. The dimension 1 explains about 50 % of the total variance (Figure 2.A.). 181 

Dimension 1 permits discrimination between Site 1 from Sites 5 and 7. Site 1 is influenced by 182 

(and therefore more enriched in) Cr, Fe, As, V, and Al; Sites 5 and 7 are, however, influenced 183 

by Cd and Cu. Dimension 2 (Figure 2 A) explains about 22 % of the total variance. Three 184 

variables (Mn, Zn, Cu) permit discrimination between Site 6 from Sites 2 and 4; Sargassum 185 

spp. element concentrations from Site 1 present higher Cu, Mn, and Zn values than Sites 2 186 

and 4. Dimension 3 (Figure 2 B) explains about 15 % of the total variance. The variable Ni, 187 

which is only associated with this dimension, permits to oppose Sites 2 and 3 from Site 7 as 188 

the site largely affected by Ni.  189 

 To visualize the results generated from this study site-specific elemental 190 

concentrations, site-specific box plots of Sargassum spp. element concentrations were created 191 

(Figure 3). For sites for which it was possible to analyze three aliquots (Sites 1, 3, 5, 6, and 7) 192 

significant differences between sites are represented by letters. Sargassum spp. from the seven 193 

sites present different levels of element concentrations and the element repartition is not 194 

homogenous between sites. Four different accumulation profiles are observed: i) a significant 195 

(at the 95 % significance level; Table S4) decreasing concentration gradient from Site 1 to 196 

Site 7 for Al, As, Fe, V, Hg and into a lesser extend Cr, ii) an asymmetric u-shaped profile for 197 

Ni with Site 5 presenting the lowest concentration and Site 7 the highest (1.5-times higher 198 

than Site 1), each site presents significantly different values, iii) a two sided profile for Cu 199 

with low concentrations for Sites 1 to 4 and significantly higher concentrations for Sites 5 to 200 

7, and iv) a random profile for Cd, Mn, and Zn, with Mn and Zn profiles significatively 201 

correlated at the 95% significance level (Table S4). 202 

 To put these results into perspective, we compared them to a review of previously 203 

published Sargassum spp. metal(loid) concentrations. First, we compare our open ocean 204 



pelagic Sargassum spp. element concentrations to concentrations from coastal benthic 205 

Sargassum spp, coming from a large review of already published data (Table S3 and Figure 206 

3). When looking at the range of variability, our open ocean pelagic Sargassum spp. Cd, Cu, 207 

Fe, Ni, and Hg values are significantly lower (at the 95 % significance level) while Cr, Mn 208 

and Zn values are on the lower range of coastal benthic Sargassum spp     r  ur ’s v  u s. 209 

When examining the median element concentrations, the previously published coastal benthic 210 

Sargassum spp. studies yielded values that are higher than those generated from our open 211 

ocean pelagic Sargassum spp. samples, ranging from 1.2-times for Zn to 10-times for Fe. 212 

Secondly, we looked at three recently published studies that have analyzed coastal planktonic 213 

Sargassum spp. (Table 1; values not plotted on Figure 3); on  from     Dom n c n R pub  c’s 214 

beaches (Fernández et al., 2017), one from the coast of Ghana (Addico and Atta deGraft-215 

Johnson, 2016), and one from the Mexican Caribbean coast (Rodríguez-Martínez et al., 216 

2020). Compared to our open ocean pelagic Sargassum spp. element concentrations, 217 

planktonic Sargassum spp. from the coast of Ghana (Addico and Atta deGraft-Johnson, 2016) 218 

yielded concentrations significantly higher (95 % significance level) for Cd, Cu, Fe, Zn, and 219 

Hg and significantly lower for As. Sargassum spp. from the Dominican Republic (Fernández 220 

et al., 2017; Table 1), also yielded concentration values significantly higher (95 % 221 

significance level) for Al, Cr, and Hg, in the same range for Cu, Fe, Mn, Ni, V, and Zn and 222 

significantly lower for As and Cd. Finally, Sargassum spp. from the Mexican Caribbean coast 223 

(Rodríguez-Martínez et al., 2020; Table 1) yielded concentration values significantly higher 224 

(95 % significance level) for Al, in the same range for As and Cu, and significantly lower for 225 

Fe, Mn, V, and Hg.  226 

 227 

 228 

IV. Discussion 229 

 Mean elemental concentrations are sequenced in the following descending order: As > 230 

Fe > Mn > Al > Zn > V > Ni > Cu > Cr > Cd > Hg. Levels of essential elements (de Boer et 231 

al., 1986; Allan, 1997; Rodrigues Silva et al., 2009; Tamilselvan et al., 2012; Rehder, 2015) 232 

like Fe, Mn, Zn, V, and Cu are on average higher than levels of non-essential elements 233 

(Rodrigues Silva et al., 2009; Yusuf et al., 2011) like Ni and Cr. The non-essential and mainly 234 

toxic elements such as Hg and Cd (Allan, 1997; Tamilselvan et al., 2012; Costa et al., 2017), 235 

despite not being highly concentrated, are present in Sargassum spp. Both Al and As, in spite 236 

of being non-essential elements (Rybak et al., 2017; Al Mamum et al., 2019; Ameri et al., 237 



2020), are present in higher concentrations than most of the essential ones, a distinctive 238 

feature already observed in other studies (see Maret, 2016 for a review).  239 

 Open ocean pelagic Sargassum spp. from this study were collected in November 2018; 240 

during that year, the month with the highest coverage (i.e. surface area) of oceanic Sargassum 241 

spp. near the Mexican Caribbean coastline was recorded in September with 22,900 ha 242 

(Chávez et al., 2020). Despite this clear Sargassum spp. peak, surface area varied 243 

considerably without any clear pattern throughout the rest of the year (Chávez et al., 2020). 244 

This variability could explain the relatively low quantity of Sargassum spp. rafts encountered 245 

and collected during our November cruise compared to the other months.  246 

 Results from this study also reveal heterogeneous element repartition in regard to 247 

spatial variation. The four distinct accumulation profiles indicate the absence of a clear 248 

longitudinal concentration gradient between sites. Element concentrations in Sargassum spp. 249 

reflect the presence of these elements in ocean water in dissolved forms. The relative 250 

concentration of one element versus another as recorded by Sargassum spp., however, is not 251 

representative of the ratio in seawater. This is because Sargassum spp. does not 252 

bioaccumulate each element in an identical manner (e.g. Abirhire and Kadiri, 2011; Sadeghi 253 

et al., 2014; Chen et al., 2018). Various factors can influence the presence, distribution, and 254 

variability of elements in open ocean.  Among the natural factors, a potential source of 255 

metal and metalloid concentration heterogeneity could be the proximity to upwelling as they 256 

are the principal source of surface nutrients and therefore trace metals from the deep ocean 257 

(Valdés et al., 2008). Higher concentration of dissolved Zn, Ni, Co and Cd were found in 258 

upwelling surface and sub-surface waters (Bruland, 1980; Yeats and Campeell, 1983; Valdés 259 

et al., 2008; Kavun and Podgurskaya, 2009; Ahlgren et al. (2014 ). Sargassum sp. from this 260 

study do not present specific enrichment in those metal, leading to believe that they might not 261 

originated from nor crossed upwelling areas.  262 

 The variability of metal and metalloid concentrations in seawater may also be 263 

impacted by seasonality and time of day (Philips, 1977). Algae chemical compositions are 264 

sensitive to the soluble-trace metal content of their ambient surroundings. However, they do 265 

not represent the total metal loads in seawater, as they cannot incorporate metals associated 266 

with organic or inorganic particulate matter (Philips, 1977). Moreover, variability in short-267 

term oceanic metal concentrations cannot be responsible for inter-site variability in 268 

Sargassum spp. since the algae integrate contaminants over their entire life span.  269 

 The program GEOTRACES (https://www.geotraces.org/) surveys critical regions of 270 

    wor  ’s oc  ns measuring trace elements and their isotopes that are known indicators of 271 



important biogeochemical and physical processes. Seawater metal concentrations data from 272 

the GEOTRACES dissolved elements database, separated into 5 boxes to represent the 273 

position of this present s u y’s s   s, are presented in Table 2. The significance of the 274 

difference between the different GEOTRACES boxes cannot be established as the number of 275 

values per box are less than three. However, a comparison between GEOTRACES and our 276 

Sargassum spp. data do not reveal a similar pattern. For example, high Sargassum spp. values 277 

of Fe and Al that discriminate Site 1 from Sites 5, 6, and 7 do not present a similar pattern in 278 

GEOTRACES data; boxes representatives of Sites 5, 6, and 7 present similar or higher values 279 

of Fe and Al compared to the box representative of Site 1. The absence of a perfect match 280 

between Sargassum spp. and GEOTRACES metal concentrations is not surprising as 281 

GEOTRACES data are from samples taken at a discrete moment in time and space while the 282 

Sargassum spp. data, as said previously, integrate metal concentrations over their entire life 283 

span.  284 

 A potential external source of metals and metalloids into the ocean is fluvial inputs via 285 

river runoff. Various studies have described a decrease in metal concentrations along transects 286 

from coastal waters to the open ocean; only a fraction of metals leave the coastal zone and are 287 

transported to the open ocean by advection-diffusion processes (Schaule and Patterson, 1981; 288 

Symes and Kester, 1985; Landing and Bruland, 1987; Martin and Gordon, 1988). Metals can 289 

also enter the ocean by atmospheric inputs; it is well established that the Pb found in the 290 

Atlantic Ocean results from the atmospheric input dispersed from the North American 291 

continent via the westerly winds (Mart et al., 1982). Atmospheric deposition of mercury from 292 

continental origin contributes significantly to the variability of surface ocean mixed layer 293 

(Zhang et al., 2016). If Sargassum spp. element concentrations were influenced by fluvial 294 

and/or atmospheric inputs, sites closer to the coast should present higher elemental 295 

concentrations. Site 1, the farthest away from the coast, however, yields the highest 296 

concentrations in Al, As, Cr, Fe, V, and Hg, which dismantles this hypothesis. This 297 

hypothesis is further disproven as all seven sites are relatively far away from any continental 298 

inputs, with the closest site (Site 7) located ~200 km away from the nearest coast.  299 

 Previous studies have determined that Sargassum spp. metal concentrations vary on 300 

both spatial and temporal scales (Soerensen et al., 2014; Rodríguez-Martínez et al., 2020). 301 

Therefore, the heterogeneity in metal(loid) concentrations observed between this study’s 302 

seven sites’ might be linked to the origin of the Sargassum spp. and their journey along 303 

different oceanic currents and/or to regions with varied proximities to coastal contaminated 304 

areas. In 2018, the year of this study, high densities of Sargassum spp. were observed in the 305 



Great Atlantic Sargassum belt (Wang et al., 2019). Following the modeling study of Wang et 306 

al. (2019), Sargassum spp. located in the central Atlantic, like the ones in our study, likely 307 

developed locally rather than from seed populations in the Sargasso Sea as proposed by 308 

Fernández et al. (2017).  It is possible that some of the Sargassum spp. may have come from 309 

West Africa and bloomed in the central Atlantic, validating the role of the North Equatorial 310 

Recirculation Region as a potential source region as proposed by Frank et al. (2016). This 311 

hypothesis would suggest the non-influence of previous coastal contamination on the 312 

Sargassum spp. in our study and would imply relatively low metal(loid) contamination. From 313 

their sampling location, Sargassum spp. rafts probably traveled along the Loop Current and 314 

Gulf Stream to finally enter the North Atlantic Ocean. Some Sargassum spp. might have been 315 

transported directly into the North Atlantic following the Antilles Current (Wang et al., 2019) 316 

while other rafts may have entered the Caribbean Sea (Putman et al., 2019). The Equatorial 317 

A   n  c’s oc  n c rcu    on  yn m cs p  y   c n r   ro    n      r nspor  of Sargassum spp. 318 

into the Caribbean Sea. Once there, trade-winds are responsible for their beaching by 319 

transporting the superficial waters towards the shore, therefore pushing Sargassum spp. rafts 320 

towards the coast.  321 

 Despite the significant differences between site-specific Sargassum spp. elemental 322 

concentrations, this present study concentrations can still be considered low. As such, these 323 

sites are relatively homogenous compared to the large variability observed in the literature 324 

review from coastal benthic Sargassum spp. (Table S3 and Figure 3). Indeed, most of the 325 

coastal benthic Sargassum spp. metal concentrations (Cd, Cu, Fe, Ni, and Hg) are 326 

significantly higher than values measured in our study. We have to take into consideration 327 

that most of the sampling sites from the reviewed coastal benthic Sargassum spp. studies are 328 

also from highly industrialized coastal areas. As presented above, external inputs that supply 329 

trace metal(loid)s to oceanic surface waters, such as river runoff, have a strong effect on 330 

coastal waters and therefore on the coastal Sargassum spp. metal contaminations.  331 

 The comparison between    s s u y’s open ocean planktonic Sargassum spp. element 332 

concentrations to previously published coastal planktonic Sargassum spp. metal 333 

concentrations show contrasting results (Table 1). Most Sargassum spp. metal concentrations 334 

(Cd, Cu, Fe, Zn, and Hg) from the coast of Ghana’s (Addico and Atta deGraft-Johnson, 2006) 335 

present levels significantly higher (up to a factor of one hundred) than values from our study; 336 

arsenic concentration are however significantly lower, by a factor of five. According to 337 

Addico and Atta deGraft-Johnson (2006), their Sargassum spp. samples come from areas 338 

associated with intensive mining and industrial activities that might explain the observed high 339 



element concentrations. Compared to the results generated in this present study, metal and 340 

metalloid concentrations from the Dominican Republic region (Fernández et al., 2017) are in 341 

a similar range for Cd, Cu, Mn, Ni, V, and Zn; significantly higher by a factor of 20, 50, and 342 

100 for Cr, Hg, and Al, respectively; and significantly lower by a factor of five for As.  The 343 

origin of the Sargassum spp. samples from the Dominican Republic seem to be more closely 344 

linked to sources in the southern latitudes. There they might have proliferated near the mouth 345 

of large rivers exposed to coastal contaminations that could explain their high metal and 346 

metalloid concentrations (Fernández et al., 2017). The most recent study from Rodríguez-347 

Martínez et al. (2020) present Sargassum spp. element concentrations from the Mexican 348 

Caribbean coast. Most of their metal and metalloid concentrations are in the same range as 349 

presented in our study, even for As. The comparison to these recent studies leads one to 350 

conclude that our new assessment of pelagic open ocean Sargassum spp. element 351 

concentrations are on average in the same range or below already published planktonic 352 

Sargassum spp. values from non-beached Sargassum spp. This validates the hypothesis that 353 

pelagic Sargassum spp. from this study bloomed in the open ocean and have not yet 354 

encountered potential contaminated coastal areas.  355 

 Regarding As, it is a metalloid naturally present in the ocean, in concentrations 356 

between 15 and 25 nM for hydrogen arsenate (Millero, 2006). Various studies have concluded 357 

that brown macro algae rapidly and greatly accumulate dissolved As (e.g. Penrose, 1974; Neff 358 

et al., 1997, Devault et al.,2020). Both this present study with samples from the open ocean 359 

and studies on the Mexican coast yield similar levels of As concentration, both higher than the 360 

ones from the more contaminated coastal areas of Ghana (Addico and Atta deGraft-Johnson, 361 

2006) and Dominican Republic (Fernández et al., 2017). In contaminated areas, heavy metals 362 

are highly abundant and could consequently saturate fixation sites of Sargassum spp. This 363 

competition for binding sites could reduce the number of available sites for As and would 364 

explain the low As concentration recorded in Sargassum spp. from contaminated areas 365 

compared to the open ocean. 366 

 A recent study tackling the ecotoxicology effect of nano-plastics on marine organisms 367 

analyzed metal contamination in North Atlantic gyre micro-plastics (Baudrimont et al., 2020). 368 

Metal contamination in micro-plastics (26.155 g.g
-1

 for Fe; 3.364g.g
-1

 for Cu; 16.633g.g
-

369 

1
  for Zn; 2.051g.g

-1
  for Ni; and 0.552g.g

-1
  for Cd) is within the same range yielded by 370 

samples presented in this s u y’s Sargassum spp. samples. This could indicate that Sargassum 371 

spp. can adsorb metals in a manner similar to micro-plastics, or that the metal contamination 372 

recorded in Sargassum spp. can be due to the presence of nano-plastics attached to them. A 373 



more thorough study exploring these mechanisms would be interesting and necessary to 374 

validate or refute these hypotheses.  375 

 Element concentrations in Sargassum spp. presented in this study are well below trace 376 

elements limits of the French norm for the enrichment of organic soil product (NFU 44-051- 377 

ISSN 0335-3931) for Cd, Cr, Hg, Ni, Pb, Se, Cu, and Zn. Only the concentration of As in 378 

Sargassum spp. is above the acceptable value of 18 g.g
-1

. This is not surprising as various 379 

studies have concluded that brown macro algae rapidly and greatly accumulate dissolved As 380 

(e.g. Penrose, 1974; Neff et al., 1997). However, our Sargassum spp. samples yielded a mean 381 

As concentration (145.62g.g
-1

) that falls well within the worldwide range of 0.1 - 382 g.g
-1

 382 

for marine algal samples (Neff et al., 1997). That being said, the level of As enrichment might 383 

become a concern for the use of Sargassum spp. in the industry as it may pose potential health 384 

risks. The mean As concentration represents total As in Sargassum spp., however, it is already 385 

known that only certain forms of As are toxic (e.g. Neff, 1997). Further study would be 386 

needed to explore differences in the concentrations of the various forms of As that can be 387 

found in Sargassum spp. in order to determine the true level of toxicity.  388 

 Open ocean Sargassum spp., such as the ones analyzed in this study, can therefore be 389 

considered as relatively pristine as they did not yield high metal concentrations, aside from 390 

the metalloid As. Concentrations from this study can be used as a first assessment for future 391 

Sargassum spp. contamination studies that endeavor to tackle the issue of estimating coastal 392 

contamination. For example, the element concentrations found in the Caribbean beaching 393 

Sargassum spp. can be studied in the context of our open ocean Sargassum spp. samples. 394 

While we acknowledge the fact that seven sites are not enough to have a comprehensive 395 

understanding of all open ocean Sargassum spp. metal and metalloid concentrations, this 396 

study still gives a meaningful first assessment. We also recognize the limitation of using a 397 

mixture of two or three macroalgae species which can accumulate metal(loids) differently as 398 

already pointed out by Milledge et al., (2000). Follow up studies with improved spatial and 399 

temporal coverage as well as sample size will be necessary to obtain more detailed 400 

calculations as previously developed for algae (Garca-Seoane et al., 2018) and bivalves (Lu et 401 

al., 2019), to determine baseline open ocean metal(loid) loads.  402 

  403 

 404 

V. Conclusions  405 

  406 



 This study revealed that Atlantic open ocean Sargassum spp. do not transport 407 

significant metal(loid) loads and could be considered as pristine before reaching the 408 

Caribbean Sea, with As as a potential exception that needs to be further explored. These 409 

results are reassuring since free floating Sargassum spp. provide a habitat for many 410 

organisms, including commercially relevant fish that could have been impacted by metal(loid) 411 

enrichment. Although the seven sites present statistically significant site-specific differences, 412 

the spatial sampling is not sufficient to determine the cause of this variability or to set 413 

baseline metal(loid) concentrations representative of all open ocean Sargassum spp. 414 

populations. Since Sargassum spp. present in the western Equatorial Atlantic have a high 415 

prob b    y of  n  r n      C r bb  n     w    n   y  r’s   m  (Pu m n         2019) our 416 

studied Sargassum spp. rafts might have been transported to the Caribbean region, resulting in 417 

massive beaching events. Despite the massive arrival of Sargassum spp., the upside is that it 418 

is unlikely that these algae would transport any preexisting metal(loids) contamination. These 419 

elemental concentrations recorded in the Sargassum spp. samples presented in this study can 420 

be considered reference values for future work that focuses on Sargassum spp. from coastal 421 

areas. Additionally, replication studies might be of high interest to further validate our first 422 

assessment of open ocean element concentrations and sample sites in closer proximity to the 423 

coast may elucidate a potential element enrichment in the Sargassum spp. sampled in sites 424 

closer to the coast.  425 

 426 
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