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Abstract

Diatoms are one of the largest groups in phytoplankton biodiversity. Understanding

their response to nitrogen variations, present from micromolar to near-zero levels in

oceans and fresh waters, is essential to comprehend their ecological success. Nitrogen

starvation is used in biotechnological processes, to trigger the remodeling of carbon

metabolism in the direction of fatty acids and triacylglycerol synthesis. We evalu-

ated whole proteome changes in Phaeodactylum tricornutum after 7 days of cultivation

with 5.5-mM nitrate (+N) or without any nitrogen source (−N). On a total of 3768

proteins detected in biological replicates, our analysis pointed to 384 differentially

abundant proteins (DAP). Analysis of proteins of lower abundance in −N revealed an

arrest of amino acid and protein syntheses, a remodeling of nitrogen metabolism, and

a decrease of the proteasome abundance suggesting a decline in unselective whole-

proteome decay. Analysis of proteins of higher abundance revealed the setting up of a

general nitrogen scavenging system dependent on deaminases. The increase of a plas-

tid palmitoyl-ACP desaturase appeared as a hallmark of carbonmetabolism rewiring in

the direction of fatty acid and triacylglycerol synthesis. This dataset is also valuable to

select gene candidates for improved biotechnological properties.
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Diatoms are one of the largest groups of phytoplankton biodiver-

sity, dominating oceanic and freshwater ecosystems [1]. They have

attracted attention as a promising resource for multiple biotechno-

logical applications [2–5]. In spite of their ecological importance and

economic potential, efforts are still needed to advance knowledge on

their unique metabolism and powerful acclimation to their changing

environment. A major issue is to comprehend their response to the

availability of nitrogen,which supply can vary fromahigh abundance in

lakes, rivers, or coastal areas (in the micromolar to the lower millimo-

lar range), to complete absence in open ocean or after its exhaustion

by living organisms [6]. This question is of further interest, as nitro-

gen starvation is also used in biotechnological processes as a mean to

trigger a remodeling of carbonmetabolism for lipid production.

The understanding of pennate diatom biology has benefited from

developments on the model species, Phaeodactylum tricornutum, for

which efforts have been made to sequence its genomes [7], and study

transcriptional [8–15] and lipidomic responses [13, 16, 17] to a variety

of environmental conditions. A few whole-cell and purified organelle

proteomic analyses have been achieved [18–23]. Extensive studies of

P. tricornutum response to a lack of nitrogen have been reported from
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transcriptomics to metabolomics and lipidomics [16, 24]. A proteomic

comparison of P. tricornutum acclimated to very high (37.5 mM NO3
−)

and high (21.3 mMNO3
−) nitrate concentrations [25], did not account

for the actual response to natural conditions in oceans, where nitrate

is commonly found in the low micromolar to almost zero levels [6]. A

proteomic study was performed on P. tricornutum grown in presence of

0.88mMNO3
−, and 24 h after removal of nitrate [26], a timeframe too

short to reflect all changes following transcriptomic reprogramming

and protein turnover.

Here we used conditions established previously [16], with P. tricor-

nutum cultivated for seven days in a nitrogen-replete medium called

+N (containing 5.5 mM NO3
−), or a nitrogen-starved medium called

−N (without any nitrogen) (Supplemental Methods). A mass spec-

trometry (MS)-based label-free quantitative proteomic analysis was

conducted on whole-cell protein extracts (Supplemental Methods). To

enhance the proteome coverage, peptides recovered from in-gel diges-

tion were separated into four strong cation exchange (SCX) fractions

before nanoLC-MS/MSdata acquisitions. Identification and quantifica-

tionof proteinswereachievedbyMaxQuant [27]. For identification,we

used a P. tricornutum protein sequence database compiling the nuclear-

encoded sequences (12,178 sequences) downloaded from Ensembl

[28] and organellar-encoded sequences downloaded from NCBI (165

sequences). Four thousand four hundred and seventy-three proteins

were identified (false discovery rates (FDRs)≤1% at peptide-spectrum

match and protein levels). The differential analysis of protein abun-

dances was conducted using ProStaR [29] on the extracted intensity-

based absolute quantification (iBAQ [30]) values. Data filtering was

performed to keep only proteins reproducibly detected in the differ-

ent replicates of one of the two conditions. This produced a set of

3768 proteins (Table S1), out of which 3226 were functionally anno-

tated in the UniprotKB [31] (Table S2). Fourteen percent of proteins

were not functionally annotated (no domain detection or gene ontol-

ogy (GO) assessment, based on the UniprotKB standards), which is

in the range of recent proteomic studies in P. tricornutum [21] (16%).

After normalization of iBAQ values across samples and imputation of

missing values, a statistical analysis was performed using limma. The

differentially abundant proteins (DAP) were sorted out according to

two criteria: fold change (FC) ratio between compared conditions of

at least four (i.e., |Log2FC(N−/N+)| ≥ 2), and a limma p-value inferior

to 0.004 (i.e., Log10(p-value) ≥ 2.4), allowing to reach a false discovery

rate (FDR) below 1% according to the Benjamini–Hochberg estimator.

With these criteria, 384 DAPwere selected, including 142more abun-

dant and242 less abundant proteins in the−Ncondition (Figure S1 and

Table S3).

We analyzed the enrichment in GO and annotation terms using the

DAVID functional annotation tool [32, 33] (Supplemental Methods).

For this purpose, sequences with protein domains and/or GO terms

recorded in UniprotKB [31] were used. Amongst the 142 DAP show-

ing an increase in −N, 125 proteins were annotated with a Uniprot

ID (Table S3). DAVID returned seven clusters with a GO or functional

annotation enrichment compared to P. tricornutum tricornutum CCAP

1055/1 full proteome. Four clusters were returned with an enrich-

ment score higher than 1 (Table 1). 20 protein sequences were not

clustered. This analysis highlighted the increase of enzymes involved

in a remodeling of the nitrogen metabolism, previously shown to be

sensitive to the redox status upon N stress [34]. The increase in glu-

tamate and glutamine synthases and urea transporter (Tables 1 and

S1) argue for an upregulation of the ornithine urea cycle concomi-

tantly with TAG accumulation, consistently with past studies in low

N [35] or high nitric oxide conditions [13]. It also highlighted the

increase of nuclear components and transcription factors, consistently

with our current understanding of P. tricornutum reprogramming under

phosphorus starvation [36].

Among the 242 DAP showing a decrease, 204 proteins could be

annotated with a Uniprot ID. DAVID returned 17 clusters with an

enrichment of GO or functional annotation terms. Eight clusters were

returned with an enrichment score higher than 1 (Table 2). Fifty pro-

tein IDs were not clustered. This analysis highlighted the decrease of

enzymes involved in amino acid, protein, and chlorophyll syntheses,

as expected in a nitrogen-saving context. The abundance of quality

control components (proteasome, autophagy) is decreased, suggest-

ing that the mobilization of nitrogen from proteins does not involve

general degradation systems and is likely highly selective.

We compared the DAP dataset with a study of the differential

expression of mRNA between nitrogen-replete and nitrogen-starved

conditions [24]. This transcriptomic study was performed 2 and 3 days

after nitrogen removal from a medium containing 0.88-mM NO3
−.

Although conditions are different, this early reprogramming of P. tricor-

nutum gene expression is expected to contribute to a remodeling of the

proteome in later stages, such as after 7 days of starvation.

Out of the 78 upregulated transcripts [24], 32 corresponded to

proteins detected in this study. This may be explained by the dif-

ferent conditions in both studies. Most of the detected upregulated

transcripts (59%) may also correspond to low-abundance proteins,

proteins with lower tryptic-peptide yields, or proteins with changes

in abundance lower than the levels retained. Thirty-one were anno-

tated with a Uniprot ID (Table S4). Most of them (26 proteins) showed

no apparent change in abundance, suggesting that the transcriptional

upregulation may be either minor or counterbalanced by a regula-

tion at the translational and/or post-translational levels, rescuing them

from a degradation or rapid turnover. High transcript levels may not

necessarily reflect in high protein levels. Only five upregulated tran-

scripts corresponded to proteins with higher abundance in the present

proteomic analysis:

∙ a committing step of plastid fatty acid synthesis, B7FQK1 (plastid

acyl–acyl carrier protein (ACP) desaturase);

∙ five deamidases; B7FXR0, B7FYS6, and B7G3J7 (three formami-

dases); B7GBV8 (protein with a CMP/dCMP-type deaminasemotif);

and B7GE02 (with a deamidasemotif).

The choreographed transcriptomic and proteomic response to

a depletion of nitrogen seems, therefore, marked by the massive

production of amidases involved in nitrogen scavenging and recycling,

breaking down amides from nitrogen-rich metabolites, and releasing

ammonium (NH4
+). It also highlights the onset of fatty acid synthesis.
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TABLE 1 Analysis of 125 functionally annotated proteins, which abundance was significantly increased in P. tricornutumwhole proteome in
nitrogen-starved conditions

Annotation cluster 1 Enrichment score: 2.83 Count P-value

GO term “cellular component” Nucleus 11 7.0E−6

UP term “cellular component” Nucleus 10 9.3E−5

GO term “molecular function” Transcription factor

activity,sequence-specific DNA binding

8 1.3E−4

INTERPRO Heat shock factor

(HSF)-type,DNA-binding

5 6.2E−3

UP sequence feature DOMAIN:HSF_DOMAIN 5 8.6E−3

GO term “molecular function” Sequence-specific DNA binding 5 1.3E−2

SMART HSF 5 1.6E−2

UP keyword “molecular function” DNA-binding 8 2.3E−2

Annotation cluster 2 Enrichment score: 2.5 Count P-value

GO term “molecular function” Transcription factor

activity,sequence-specific DNA binding

8 1.3E−4

INTERPRO Basic-leucine zipper domain 3 1.5E−2

UP sequence feature DOMAIN:BZIP 3 1.6E−2

Annotation cluster 3 Enrichment score: 1.9 Count P-value

KEGG pathway Nitrogenmetabolism 4 9.3E−4

KEGG pathway Alanine, aspartate, and glutamate

metabolism

4 3.6E−3

KEGG pathway Arginine biosynthesis 3 2.8E−2

KEGG pathway Biosynthesis of amino acids 4 2.7E−1

Annotation cluster 4 Enrichment score: 1.38 Count P-value

UP sequence feature DOMAIN:Fe2OG dioxygenase 4 9.6E−3

INTERPRO Oxoglutarate/iron-

dependentdioxygenase

4 1.5E−2

UP keyword “ligand” Iron 6 5.4E−2

GO term “molecular function” Metal ion binding 9 1.2E−1

UP keyword “ligand” Metal-binding 11 1.3E−1

Analysis was performed using DAVID functional annotation tool [32, 33]. The GO terms and keywords from Uniprot (UP), INTERPRO, COG, and KEGG

databases were clustered and the statistical significance of each cluster was assessed using an Enrichment score (Supplemental Methods). Functional

annotation clusters were considered significant at enrichment score> 1 using the Phaeodactylum tricornutum proteome in UniprotKB as background.

The remarkable upregulation of the transcription (FC = 4.7) and

protein level increase (FC = 5.8) of the plastid acyl-ACP desaturase is

consistent with a recent study showing that the acyl-ACP desaturase

was a controlling point of the flux of fatty acids exported from the

plastid toward the production of triacylglycerol in the cytoplasm of P.

tricornutum [37].

Out of the 248 downregulated genes [24], 176 (>70%) corre-

sponded to proteins detected in our study. Amongst these, 170 were

annotated with a Uniprot ID (Table S5). Most of them (158 pro-

teins) showed no apparent change in abundance at the proteomic

level, suggesting that the transcriptional downregulation was either

minor or that these proteins had a low turnover, escaped proteol-

ysis and were kept intact, in spite of their expression down tuning.

Some chaperones (e.g., HSP20) are upregulated and could help to

stabilize the proteome during the N stress. The downregulation of

12 transcripts led to a significant decrease in the corresponding

proteins:

∙ three components required for the synthesis of proteins, B7GD73

and B7G7B8 (two translation initiation factor), and B7FUC3 (a

Leucyl-Trna synthetase);

∙ an enzyme involved in the synthesis of photosynthetic membrane

lipids, B7G3X5 (plastid monogalactosyldiacylglycerol synthase);

∙ three enzymes involved in chlorophyll synthesis, B7FWY2 (hydrox-

ymethylbilane synthase), B7G0Z0 (plastid uroporphyrinogen decar-

boxylase), and B7GDU9 (plastid protoporphyrinogen oxidase);

∙ a major enzyme of the xanthophyll cycle, B7FYW4 (plastid zeaxan-

thin epoxidase);
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TABLE 2 Analysis of 208 functionally annotated proteins, which abundance was significantly decreased in P. tricornutumwhole proteome in
nitrogen-starved conditions

Annotation cluster 1 Enrichment score: 1.98 Count P-value

UP sequence feature DOMAIN:NAD(P)-bd_dom 5 2.4E−3

INTERPRO NAD(P)-binding domain 5 4.3E−3

COGontology Cell envelope biogenesis,outer

membrane/carbohydrate transport

andmetabolism

3 1.1E−1

Annotation cluster 2 Enrichment score: 1.67 Count P-value

SMART PINT 3 1.4E−2

UP sequence feature DOMAIN:PCI 3 2.3E−2

INTERPRO Proteasome component (PCI)domain 3 3.0E−2

Annotation cluster 3 Enrichment score: 1.6 Count P-value

GO term “molecular function” Enzyme regulator activity 3 4.1E−3

UP keyword “cellular component” Proteasome 4 1.2E−2

GO term “cellular component” Proteasome complex 3 3.2E−2

KEGG pathway Proteasome 4 2.4E−1

Annotation cluster 4 Enrichment score: 1.57 Count P-value

GO term “biological process” Protoporphyrinogen IX biosynthetic

process

4 4.8E−3

KEGG pathway Porphyrinmetabolism 6 5.9E−3

KEGG pathway Biosynthesis of cofactors 5 6.8E−1

Annotation cluster 5 Enrichment score: 1.47 Count P-value

INTERPRO ATP-grasp fold, subdomain 1 3 2.6E−2

INTERPRO Pre-ATP-grasp domain 3 2.6E−2

UP sequence feature DOMAIN:ATP-grasp 3 3.9E−2

INTERPRO ATP-grasp fold 3 5.2E−2

Annotation cluster 6 Enrichment score: 1.41 Count P-value

KEGG pathway Histidinemetabolism 4 4.4E−3

UP keyword “biological process” Histidine biosynthesis 3 7.8E−3

GO term “biological process” Histidine biosynthetic process 3 2.2E−2

UP keyword “biological process” Amino-acid biosynthesis 4 1.4E−1

KEGG pathway Biosynthesis of amino acids 4 8.8E−1

Annotation cluster 7 Enrichment score: 1.27 Count P-value

INTERPRO Aminoacyl-tRNA synthetase,class 1a,

anticodon-binding

4 6.6E−3

INTERPRO Rossmann-like alpha/beta/alpha

sandwich fold

4 1.3E−1

KEGG pathway Aminoacyl-tRNA biosynthesis 4 1.8E−1

Annotation cluster 8 Enrichment score: 1.14 Count P-value

UP keyword “domain” Bromodomain 3 6.1E−2

UP sequence feature DOMAIN:Bromo 3 7.0E−2

INTERPRO Bromodomain 3 9.2E−2

Analysis performed as described in Table 1.
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∙ two peroxisomal enzymes, involved either in breaking down fatty

acids, B7FXZ0 (acyl-coenzyme A oxidase), or fatty acid conversion

into carbohydrates, B7FYT9 (malate synthase);

∙ two proteins of elusive roles, B7FYU5 and B7FU89.

This proteomic dataset allows, therefore, a refined analysis of the

proteome remodeling occurring in diatoms upon nitrogen starvation,

and the sophisticated orchestration allowing the selective recycling of

nitrogen from proteins without irreversibly affecting cell viability. It is

also a resource to identify putative transcription factors, involved in the

response to nitrogen scarcity, and controlling the rewiring of diatoms’

nitrogen and carbonmetabolism. This dataset is also valuable to select

gene candidates for future attempts to genetically engineer diatoms

for improved biotechnological properties.
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