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High B‑value diffusion tensor 
imaging for early detection 
of hippocampal microstructural 
alteration in a mouse model 
of multiple sclerosis
Amandine Crombé1,2,8, Renaud Nicolas3,4,8, Nathalie Richard5,6, Thomas Tourdias1,2,7 & 
Bassem Hiba5,6*

Several studies have highlighted the value of diffusion tensor imaging (DTI) with strong diffusion 
weighting to reveal white matter microstructural lesions, but data in gray matter (GM) remains 
scarce. Herein, the effects of b-values combined with different numbers of diffusion-encoding 
directions (NDIRs) on DTI metrics to capture the normal hippocampal microstructure and its early 
alterations were investigated in a mouse model of multiple sclerosis (experimental autoimmune 
encephalomyelitis [EAE]). Two initial DTI datasets (B2700-43Dir acquired with b = 2700 s.mm−2 and 
NDIR = 43; B1000-22Dir acquired with b = 1000 s.mm−2 and NDIR = 22) were collected from 18 normal 
and 18 EAE mice at 4.7 T. Three additional datasets (B2700-22Dir, B2700-12Dir and B1000-12Dir) 
were extracted from the initial datasets. In healthy mice, we found a significant influence of b-values 
and NDIR on all DTI metrics. Confronting unsupervised hippocampal layers classification to the true 
anatomical classification highlighted the remarkable discrimination of the molecular layer with B2700-
43Dir compared with the other datasets. Only DTI from the B2700 datasets captured the dendritic 
loss occurring in the molecular layer of EAE mice. Our findings stress the needs for both high b-values 
and sufficient NDIR to achieve a GM DTI with more biologically meaningful correlations, though DTI-
metrics should be interpreted with caution in these settings.
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DW	� Diffusion weighted
DWI	� Diffusion weighted imaging
DTI	� Diffusion tensor imaging
EAE	� Experimental autoimmune encephalomyelitis
EPI	� Echo planner imaging
FA	� Fraction of anisotropy
GM	� Gray matter
Kax	� Axial excess kurtosis
KFA	� Kurtosis fractional anisotropy
Kmean	� Mean excess kurtosis
Krad	� Radial excess kurtosis
MKT	� Mean of the kurtosis tensor
ML	� Molecular layer
MD	� Mean diffusivity
MR	� Magnetic resonance
Ms	� Multi-shot
NDIR	� Number of direction
NODDI	� Neurite orientation dispersion and density imaging
SANDI	� Soma and neurite density imaging
SD	� Standard deviation
SI	� Signal intensity
SLM	� Stratum lacunosum moleculare
SNR	� Signal to noise ratio
SR	� Stratum radiatum
SSE	� Sum of square error
RD	� Radial diffusivity
VOI	� Volume of interest
WM	� White matter

Diffusion Magnetic Resonance Imaging (dMRI) refers to Magnetic Resonance Imaging (MRI) acquisition sen-
sitized to the diffusion of water molecules in the tissues of interest1–3. As water molecule random motion is 
influenced by the presence of cellular microstructures, dMRI is a unique technique allowing non-invasive inves-
tigation of the micro-organization of living tissues3.

The characteristics of the microstructure of living tissues, deduced from dMRI data, depends on the param-
eterization of the diffusion encoding of the water molecules (diffusion time, diffusion encoding magnetic field 
gradients intensities and directions) and also on the modeling of the dMRI signal1,3,4. Diffusion tensor imaging 
(DTI) models the diffusivity of water molecules in each voxel as a Gaussian ellipsoid and provides quantitative 
maps of water diffusivity such as fractional anisotropy (FA), axial diffusivity (AD, water diffusivity along tracts), 
radial diffusivity (RD, water diffusivity perpendicular to tracts) and mean diffusivity (MD)2,5. DTI has been 
widely recognized for its ability to characterize in each voxel the oriented diffusivity of water molecules occurring 
within the anisotropic micro-organization of cerebral white matter (WM), for its quick and easy computing, for 
its robustness and for its generalized scientific and medical usage6,7.

dMRI is typically acquired with a diffusion weighting factor b-value of 1000 s.mm−2, but could also be 
achieved with higher sensitivities to the water diffusion process using higher b-values. Several reports have 
highlighted a substantial gain in dMRI ability to investigate a wide panel of brain diseases inducing focal lesions 
when high b-value is used. For example, high b-value dMRI appears useful for detecting stroke8–10, Wallerian 
degenerations and encephalopathies7,11, and for discriminating high-grade and low-grade gliomas9.

Several reports have explored the value of dMRI with high diffusion-weighting to identify non-focal (diffuse) 
lesions of the brain microstructure. For example, Baumann et al. have shown in human that the sensitivity of DTI 
to detect the effects of schizophrenia in pre-frontal lobes white matter was increased with b = 4000 s.mm−2 rather 
than b = 1000 s.mm−212. In animals, dMRI with high b-values could also improve the detectability of the WM 
demyelination process13. The myelination process occurring during brain maturation have also been reported 
to be better detected with DTI obtained with b = 2500 s.mm−2 rather than with b = 1000 s.mm−214. Nevertheless, 
these studies focused on the physiological or pathophysiological conditions that induce relatively important 
changes in brain microstructure, such as myelination or demyelination, and only examined brain WM without 
or with limited consideration of the grey matter (GM). Therefore, little is known about the precise added value of 
strong b-values versus standard b-values to characterize GM microarchitecture and to early detect pathological 
alterations. Furthermore, the impact of the number of diffusion directions (NDIR), combined with high b-values 
to encode the water molecules diffusivity in GM, has been poorly investigated.

Yet, preliminary researches have recently demonstrated that DWI with high b-value could detect precocious 
and subtle pathological processes occurring in GM. Indeed, using the Experimental Autoimmune Encepha-
lomyelitis (EAE) mouse model of multiple sclerosis15, DTI with b = 2700 s.mm−2 and 43 diffusion-encoding 
directions was able to detect significant decreases in axial diffusivity and mean diffusivity in the molecular layer 
of the dentate gyrus, which correlated with an early decrease in dendritic arborization responsible for cognitive 
impairment in the EAE mice16,17.

Importantly, strong diffusion-weighting reduces the Signal-to-Noise Ratio (SNR) of the dMRI and exacer-
bates its sensitivity to various artifacts. Therefore, the achievement of dMRI with a high diffusion weighting, 
with a sufficient spatial-resolution to distinguish the mouse hippocampal layers and with a high enough SNR 
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to accurately reconstruct the diffusion tensor maps becomes a very challenging issue. To obtain these results in 
mouse hippocampus, a 3D multi-shot Echo Planar imaging (3D-msEPI) pulse sequence was used in this study 
as an alternative to the standard 2D signal-shot EPI pulse sequence to collect dMRI data18.

Thus, the aim of this study was to challenge our initial results obtained in vivo in the hippocampus of EAE 
and control mice to know whether high b-value and high NDIR were really mandatory to capture histologically 
proven alterations. To do so, we down-sampled the diffusion encoding schema to reconstruct different DTI data-
sets (b = 2700 s.mm−2 with NDIR = 22; b = 2700 s.mm−2 with NDIR = 12; and b = 1000 s.mm−2 with NDIR = 12) 
in addition to the initial ones (b = 2700 s.mm−2 with NDIR = 43; and b = 1000 s.mm−2 with NDIR = 22), and we 
subsequently investigated their abilities to discriminate the different hippocampal layers, as well as to detect early 
microarchitectural alterations in the molecular layer of EAE mice.

Materials and methods
Animal model.  The raw experimental data used in this study have been differently processed in another 
study from our group, which compared DTI and Neurite Orientation Dispersion and Density Imaging 
(NODDI) models17. Briefly, 7-to-9 week old female C57BL6/J mice (Janvier Labs, Le Genest Saint Isle, France) 
were injected subcutaneously at the base of the tail with 200 μg of Myelin Oligodendrocyte Glycoprotein peptide 
35–55 (MOG35-55, AnaSpec, Fremont, CA, USA) emulsified in 200 μL of Complete Freund’s adjuvant (CFA, 
BD Difco, Franklin Lakes, NJ, USA) containing 6 mg/mL of desiccated Mycobacterium tuberculosis (H37Ra, 
BD Difco). Animals received intraperitoneal injections of Pertussis Toxin (Sigma-Aldrich, St. Louis, MO, USA) 
on the day of immunization and 2 days later (300 ng/injection). Control mice were injected with 200 μL of CFA 
emulsified phosphate-buffer saline. All animals were weighted daily and scored for clinical symptoms using the 
standard grading scale: 0: unaffected, 1: flaccid tail, 2: hind limb weakness and/or ataxia, 3: hind limb paralysis, 
4: paralysis of all four limbs and 5: moribund. A total of 18 control mice and 18 EAE mice were imaged in vivo 
with dMRI 20  days after immunization and prior to sacrifice for histological quantification of neurites and 
glial markers in each hippocampal layer17. All animal care and experiments were conducted in accordance with 
the European Directive (2010/63/EU) and the ‘Animal Research: Reporting of In Vivo Experiments’ (ARRIVE) 
guidelines, and after approval of the Bordeaux University ethical committee (approval number 02046.01)19.

dMRI data.  MRI acquisitions were performed on a 4.7 Tesla MR-system (Biospec 47/20, Bruker BioSpin 
MRI, Ettlingen, Germany), equipped with a high-performance magnetic gradient field system (capable of 680 
mT/maximum strength and 110 μs rise time). A volume coil for radiofrequency pulse transmission and a mouse-
head four-element phased array coil for magnetic-resonance (MR)-signal detection were used. Mice were anes-
thetized with isoflurane in air and, in order to reduce motion artifacts, were carefully placed in a head holder 
with ear bars. Body temperature was kept at 37 °C with a water circulation heating bed. Respiration was moni-
tored throughout the scan.

A 3D-ms-EPI was used in order to perform a 3D sampling of the Fourier-space to increase SNR and reso-
lution. Two sets of dMRI data were collected per mouse. For the first data set (B1000-images), 22 diffusion-
weighted (DW) coronal images were acquired with b = 1000 s.mm−2 applied along 22 non-collinear diffusion 
encoding directions (intensity of the diffusion gradients [G] = 340 mT/m, duration of each diffusion gradient 
pulse [δ]/time interval separating diffusion pulses [Δ] = 3.2/14 ms), while 43 DW coronal images with b = 2700 s.
mm−2 applied along 43 non-collinear diffusion encoding directions were acquired for the second data-set (B2700-
images, G = 559 mT/m, δ/Δ = 3.2/14 ms)20. Two non-DW imaging (i.e., b = 0 s.mm−2, named B0-images) were 
also collected for each dataset.

The other acquisition parameters were: Echo-Time (TE)/Repetition-Time (TR) = 38/2000  ms, 
matrix = 196 × 148 × 32 pixels, spatial resolution = 82 × 81 × 203 μm3 and Field-of-View = 16 × 12 × 6.5 mm3 includ-
ing the whole hippocampus in the rostro-caudal axis. The 3D-msEPI readout module was used with two segments 
in brain superior-inferior orientation (Ky) and with a phase encoding in brain posterior-anterior orientation (Kz). 
The Ky lines were acquired through 2 interleaves, and each interleaf was sampled during one of the EPI shots 
to reduce echo-train length and echo-time. For a given Kz encoding step, all the in-plane (Kx, Ky) interleaves 
were acquired successively before proceeding to next KZ+1 encoding step. A partial scan of k-space was applied 
in Ky to further decrease echo-train length and in Kz to reduce acquisition time. A high order shim procedure 
was performed before the scan to optimize the static magnetic field homogeneity. The total acquisition time was 
1h50 min per mouse.

dMRI pre‑processing.  FSL diffusion tool software (https://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki/​FDT) was used 
to pre-process the dMRI data. First, eddy currents and Ky-distortions effects were corrected using the eddy 
function21. All B0-images, the 22 DW-images acquired with b = 1000 s.mm−2 (B1000-images) and the 43 DW-
images acquired with b = 2700  s.mm−2 (B2700-images) were co-registered with one of the B0-images before 
being divided again into two datasets.

In order to obtain DTI datasets with similar NDIR at b = 2700 s.mm−2 and at b = 1000 s.mm−2, a home-made 
procedure was applied to discard 21 of the 43 B2700-images and to derive a new DTI dataset with 22 B2700-
images. This procedure relied in the following four steps:

	 (i)	 computing the angle values ‘d’ separating each diffusion-vector from all the other vectors of the data-set;
	 (ii)	 counting the number of vectors located in the close neighborhood (d < 30°) of each diffusion-vector;
	 (iii)	 removing the diffusion-vector exhibiting the largest number of close neighbors and its corresponding 

DW-image from the DTI data-set;

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
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	 (iv)	 recursively applying steps (i), (ii) and (iii) to the remaining diffusion-vectors until reaching the desired 
diffusion-direction number.

The same procedure was used to derive a DTI dataset with 12 B2700-images and a DTI dataset with 12 
B1000-images. Supplementary Data S1 lists the b-values and the diffusion directions vectors used in this study.

To summarize, the following datasets were reconstructed and analyzed in this study: (1) b = 2700 s.mm−2 
with NDIR = 43 (B2700-43Dir); (2) b = 2700 s.mm−2 with NDIR = 22 (B2700-22Dir); (3) b = 2700 s.mm−2 with 
NDIR = 12 (B2700-12Dir); (4) b = 1000 s.mm−2 with NDIR = 22 (B1000-22Dir); and (5) b = 1000 s.mm−2 with 
NDIR = 12 (B1000-12Dir).

For each of these five datasets, diffusion tensor maps (the principal eigenvector [V1, V2 and V3], the eigen-
values [λ1, λ2 and λ3], FA, MD, AD and RD) and the fit residue as the sum-of-square error (SSE) were computed 
by using dtifit FSL function.

dMRI data quality control.  A rigorous quality control was carried out by two blinded experts at the differ-
ent stages of the data processing. First, the original images and the eddy-current corrected images were checked 
slice-by-slice to depict any potential effects of eddy currents, EPI ghosting and signal losses. The presence of 
artifacts in the hippocampal region was visually and carefully inspected. Second, another quality control was 
performed on diffusion tensor maps. The residual of the DTI fit was also checked for each dataset.

Data analysis.  The volumes of interest (VOIs) were manually delineated on three consecutive slices of FA 
maps superimposed on color-coded V1 maps from the B2700-43Dir dataset covering the dorsal part of the hip-
pocampus. Three VOIs were delineated for the three main hippocampal layers: (i) the stratum radiatum (SR) 
of cornu ammonis subfield 1 (CA1), (ii) the stratum lacunosum moleculare (SLM) and (iii) the molecular layer 
(ML) of the dentate gyrus. The VOIs were drawn by a neuroradiologist blinded from the groups of animals and 
validated by a second neuroradiologist. Figure 1 shows an example of the anatomical dispositions and segmenta-
tions on the FA parametric map. Additionally, a VOI was drawn on the corpus callosum (CC) on the same three 
consecutive slices in order to estimate the SSE in the WM. After propagating the VOIs on the other parametric 
maps of all coregistered datasets and checking the correct locations, the mean values of each of DTI metrics were 
extracted for each layer and each animal using the fslstats FSL function.

In order to assess the SNR of each of the 5 dMRI datasets, a background VOI was manually delineated for each 
mouse in an artifact-free air region as close as possible to the hippocampus. The SR, CA1, ML and background 
VOIs were propagated on all co-registered images of each dMRI dataset.

The B0-image SNR was computed for each DW-dataset as the ratio between the average signal intensity (SI) 
measured in the SR, CA1 and ML VOIs and the standard deviation (SD) of the noise measured in the B0-image 
background22. The global SNR was then computed for each dMRI dataset as the average of the SNRs of all its 
DW-images, as follows:

Finally, the contrast-to-noise ratio (CNR) maps were automatically computed for each dataset using the 
FSL 6.0 « QUAD (QUality Assessment for DMRI) » tool (https://​git.​fmrib.​ox.​ac.​uk/​matte​ob/​eddy_​qc_​relea​se.​
git)21,23,24. For each dMRI dataset, the CNR map provides a global quantification of the amount of angular con-
trast generated between non-B0 images by applying diffusion vectors with different spatial directions. Note that 
the used script has failed to compute the CNR map for the B1000-12Dir dataset. SR, CA1 and ML VOIs were 
then used to compute the mean CNR values for the hippocampus and for each of the SR, CA1 and ML layers.

Diffusion kurtosis imaging (DKI).  State-of-the-art DKI was performed with the free software Diffusional 
Kurtosis Estimator (https://​www.​nitrc.​org/​dke/ from Medical University of South Carolina, Center for Bio-
medical Imaging)25. Weighted linear least-squares constrained with minimal Kmean = 0 and maximal Kmean = 3, 
as recommended in the study by Tabesh et al., was used26. Image smoothing was not applied. Calculation of 
DKI-related FA, axial diffusivity (Dax), radial diffusivity (Drad), mean diffusivity (Dmean), axial excess kurtosis 
(Kax), radial excess kurtosis (Krad), mean excess kurtosis (Kmean), mean of the kurtosis tensor (MKT) and Kurtosis 
Fractionnal Anisotropy (KFA) were computed with DKE. Average DKI quantitative values were extracted from 
the VOIs using the fslstats program, a part of FSL27. Supplementary Data S2 shows the DKI-related generated 
images.

Statistical analysis.  The statistical analyses were performed with R (v4.1.0, R Foundation for Statistical 
Computing, Vienna, Austria). All tests were two-tailed. A p-value less than 0.05 was deemed significant. P-values 
were adjusted for multiple comparisons in post-hoc comparisons using the Benjamini, Hochberg, and Yekutieli 
procedure (which controls the false discovery rate and the expected proportion of false discoveries amongst the 
rejected hypotheses)28.

Quality control.  The angles separating the diffusion encoding vectors from their closest neighbor (named 
minimum angles) were extracted for each DTI dataset and compared by using one-way analysis of variance 
(ANOVA) with post-hoc unpaired t-test (or non-parametric Kruskal–Wallis test with post-hoc unpaired Wil-

SNRglobal =

∑NDIR
i=1

averageSI(hippocampus,i)
SD(background,i)

NDIR

https://git.fmrib.ox.ac.uk/matteob/eddy_qc_release.git
https://git.fmrib.ox.ac.uk/matteob/eddy_qc_release.git
https://www.nitrc.org/dke/
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coxon test, as appropriate). Post-hoc tests were used to check the comparability of the 12 vectors from B1000-
12Dir and B2700-12Dir, and of the 22 vectors from B1000-22Dir and B2700-22Dir.

The SNR, the CNRs, the SSE in the hippocampus and the SSE in the CC were compared across the five 
datasets by using one-way repeated-measures ANOVA (with Greenhouse–Geisser correction if needed) and 
post-hoc pairwise t-tests, or non-parametric Friedman test and post-hoc pairwise Wilcoxon tests, as appropriate. 
Furthermore, the difference between the SSE in the hippocampus and in the CC was compared for each dataset 
with adjusted pairwise Wilcoxon tests.

Discriminations of the hippocampal layers in healthy mice.  First, for each of the five datasets, we compared the 
mean values of AD, FA, MD and RD extracted from the three hippocampal layers of the control mice by using 
repeated-measures one-way ANOVA (with post-hoc pairwise t-test) or non-parametric repeated-measures 
Friedman test (with post-hoc pairwise Wilcoxon test), as appropriate. The effect size, which represents the total 
variability that is accounted for by the variation of the dependent variable, was estimated for each ANOVA and 
Friedman test, by using general eta squared (η2, categorized as large when > 0.140) and Kendall’s W coefficient 
(categorized as large when > 0.800), respectively29. Second, we evaluated and compared the ability of the com-
binations of b-values and NDIR from the different datasets to discriminate the three hippocampal layers. To do 
so, we developed five unsupervised classifications of the layers relying on the DTI metrics coming from the five 
datasets by using the k-medoid clustering technique and the partition around medoid algorithm (parameters 
were set to k = 3 with the Euclidean distance)30. Then, we compared these five classifications with the true hip-
pocampal anatomy by using the adjusted Rand index (ARI), which measures the similarity between two clas-
sifications of the same objects (herein the hippocampal layers) by the proportions of agreements between the 

Figure 1.   Example of brain fractional anisotropy (FA) parametric maps (A) with a magnification (B) on the 
hippocampus with and without the segmentations of the three volumes of interest corresponding to the three 
main hippocampal layers (i.e., Stratum Radiatum, Stratum Lacunosum Molecular and Molecular Layer).
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two partitions from the “ClusterR” R package31. The ARI ranges from − 1 (independent labeling) to + 1 (perfect 
labeling).

Detections of the GM microstructural alterations induced by EAE in the molecular layer.  Comparison between 
the EAE and the control mice was performed by using unpaired homo- or heteroscedastic t-tests or unpaired 
Wilcoxon tests, as appropriate. This comparison was investigated separately for each dataset and each diffusion 
metric. No P-value adjustment was performed in this part, in agreement with the methods proposed in the study 
by Crombé et al. since the authors validated their findings with biological correlations17. Since it can be argued 
that DTI is not the reference model in high b-value settings and that DKI may be more appropriate, we also 
compared the discriminative performances of DTI metrics from the different datasets to those of DKI metrics.

Results
Quality control—SNR and CNR.  Table 1 summarizes the mean values of the minimal angles separating 
the diffusion-encoding vectors, the SNR and CNRs for the five DTI datasets, with statistical comparisons (more 
post-hoc tests are represented in Supplementary Data S3).

No significant difference was found between the minimal angles separating the diffusion encoding vectors 
from the B1000-22Dir dataset and those of the B2700-22Dir dataset (P = 0.0728). Similarly, the minimal angles 
separating the diffusion encoding vectors of the B1000-12Dir and the B2700-12Dir datasets were not significantly 
different (P = 1).

The quality control revealed EPI ghosts and/or MR-signal dropout in two EAE and three control mice. These 
artifacts were probably due to cardiovascular-pulsations or respiratory movements produced by an insufficient 
immobilization of the mouse head. Therefore, these artifacted data were excluded and only data from 16 EAE 
and 15 control mice were analyzed in the remaining of the study. The high quality/resolution of all the other 
approved DW-images allowed to identify and manually delineate the three main hippocampal layers (Fig. 1).

Qualitatively, decreasing the number of diffusion-encoding directions from 43 to 22 and then to 12 did not 
affect the SNRs of DW-datasets but reduced the overall quality of diffusion-tensor maps, which appeared noisier 
(Fig. 2). Furthermore, b-value increasing from 1000 to 2700 s.mm−2 visually led to darker DTI maps (Fig. 2). 
The map of the SSE demonstrated higher values when the b-value increased suggesting a decrease in the DTI 
model fitting accuracy.

The average SNR assessed in the hippocampus ranged from 24.7 ± 1.9 for B2700-22Dir to 47.2 ± 3.6 for B1000-
22Dir and 47.2 ± 3.7 for B1000-12Dir. As previously reported, we found that the SNR was significantly influenced 
by the diffusion weighting (b-value) of the DTI dataset with a large size effect (P < 0.0001, η2 = 0.961). Post-hoc 
tests showed that the SNR in the hippocampus was significantly lower with B2700-12Dir compared with B1000-
12Dir (P < 0.0001), as well as with B2700-22Dir compared with B1000-22Dir (P < 0.0001).

There was a significant influence of the DTI dataset on the CNR in the ML, but not in the SLM and SR—with 
all size effects remaining weak (P = 0.0340 [η2 = 0.031], 0.2047 [W = 0.049] and 0.4230 [η2 = 0.007], respectively). 
Indeed, the CNR in the ML was the highest in B2700-22Dir dataset (1.9 ± 1 versus 1.5 ± 0.5 in B1000-22Dir, 
P = 0.0110).

For both CC and hippocampus, the DTI dataset had a significant influence on the SSE with a large size effect 
(F = 121.8, W = 0.983, P < 0.0001, and F = 110.6, η2 = 0.892, P < 0.0001, respectively, Fig. 2). In the hippocampus, 
the post-hoc tests indicated that a significant increase in SSE was observed when the b-value increased for the 
same NDIR, as well as when the NDIR increased for a fixed b-value (P < 0.0001 for all post-hoc tests). However, in 

Table 1.   Assessment of the influence of the diffusion tensor imaging (DTI) dataset on measurements of image 
quality, i.e. signal-to-noise (SNR) ratio, contrast-to-noise ratios (CNR) and minimal angles separating the 
diffusion encoding vectors. Measurements in each dataset are expressed as mean ± standard deviation. F-values 
and P-values correspond to one-way repeated measures analysis of variance, except for the minimal angle 
(§) which corresponds to Kruskal–Wallis test (non-parametric, non repeated test). The CNRs for the B1000-
12Dir was incalculable according to the FSL “Eddy” script. *P < 0.05; **P < 0.005; ***P < 0.001. B b-value, Dir 
number of diffusion gradient directions, ML molecular layer, SLM stratum lacunosum moleculare, SR stratum 
radiatum.

Measurements

Datasets

F-value Size effect P-value

Post-hoc tests adjusted 
P-value

B0 B1000-12Dir B1000-22Dir B2700-12Dir B2700-22Dir B2700-43Dir

B1000-12Dir 
vs. B2700-
12Dir

B1000-22Dir 
vs. B2700-
22Dir

Minimum angle 
(°) – 38.4 ± 10.2 29.3 ± 10.1 38.1 ± 5.4 24.5 ± 7.5 20 ± 4.7 58.03§ 0.510  < 0.0001*** 1 0.0728

SNR in hip-
pocampus 79.5 ± 7.7 47.2 ± 3.7 47.2 ± 3.6 25 ± 1.8 24.7 ± 1.9 25.1 ± 1.9 2008.17 0.961  < 0.0001***  < 0.0001***  < 0.0001***

CNR in hip-
pocampus – – 1.4 ± 0.5 1.7 ± 1.2 1.7 ± 0.8 1.6 ± 0.5 2.47 0.021 0.1040 – –

CNR in ML – – 1.5 ± 0.5 1.8 ± 1.3 1.9 ± 1 1.8 ± 0.6 3.78 0.031 0.0340* – 0.0110*

CNR in SLM – – 1.3 ± 0.4 1.7 ± 1.2 1.6 ± 0.8 1.4 ± 0.5 4.59 0.049 0.2047 – –

CNR in SR – – 1.3 ± 0.5 1.5 ± 1 1.4 ± 0.6 1.4 ± 0.5 0.824 0.007 0.4230 – –
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the CC, at b = 1000 s.mm−2, the SSE significantly decreased from 12 to 22 directions (P < 0.0001), whereas the SSE 
gradually and significantly increased while increasing the NDIRs at b = 2700 s.mm−2 (P < 0.0001 for all post-hoc 
tests). Furthermore, the SSE was systematically significantly higher in the CC compared with the hippocampus 
(all P-values < 0.0001) and the highest difference was found in the B2700-43Dir dataset (Supplementary Data S4).

Influence of b‑value and NDIR on the classification of the hippocampal layers in healthy 
mice.  The visual observations translated quantitatively with decreases in the DTI metrics in the three lay-
ers of the hippocampus when increasing the b-values (Table 2). For each layer, the values of the DTI metrics 
were significantly influenced by the DTI dataset with large size effects (all P-values < 0.0001, range of size effect: 
η2 = 0.497 [for FA in the ML] to W = 1 [for AD in the SR], Supplementary Data S5).

Regarding FA, this metrics decreased when increasing the b-value and the differences were all significant 
for 22 directions (P-value range: 0.0003–0.0004). Moreover increasing NDIR for fixed b-values also decreased 
the FA whatever the layers, with significant findings (P-value range: 0.0003–0.012)—except for the comparisons 
between 22 and 43 directions at b = 2700 s.mm−2 in the ML and SR where the FA was similar or increased (Sup-
plementary Data S6).

Table 2 and Fig. 3 show the comparisons of each DTI metrics over the SR, SLM and ML depending on the 
DTI dataset. In all cases, the characteristics of the dataset significantly influenced the DTI metrics in the layers 
(range of P-values: < 0.0001–0.0210). However, the size effects were moderate instead of large for the following 
combinations: AD in the B1000-12Dir dataset (η2 = 0.045), AD in the B1000-22Dir dataset (η2 = 0.067), AD in 
the B2700-12Dir dataset (η2 = 0.095), AD in the B2700-22Dir dataset (W = 0.480), RD in the B1000-12Dir dataset 
(W = 0.693), RD in B1000-22Dir dataset (W = 0.751), MD in the B1000-12Dir dataset (W = 0.693) and MD in the 
B1000-22Dir dataset (W = 0.756). In other words, the influence of the DTI dataset on the metrics values across 
the hippocampal layers was less pronounced for lower b-values and lower NDIRs.

The best discriminations of the hippocampal layers (i.e. all post-hoc tests showing statistical difference with 
adjusted P-values < 0.0001) were found with the MD and the B2700-22Dir (size effect η2 = 0.278, i.e. large) and 
B2700-43Dir datasets (size effect η2 = 0.264, i.e. large). On the contrary, the worst discrimination was obtained 
with the AD with the B1000-12Dir (lowest size effect η2 = 0.045, i.e. moderate effect).

For each DTI dataset, Fig. 4 shows the 3D scatterplots of the 45 VOIs (15 for ML, 15 for SLM and 15 for SR) 
according to FA, MD and RD with a color-encoding either according to their true anatomical location, or to 
the resulting label of the unsupervised k-medoid clustering. Because the AD demonstrated less discrimination 
between the three hippocampal layers according to the previous post-hoc tests, we did not use this metrics for 
the representations.

Whatever the dataset, the points (i.e. VOIs) corresponding to the ML were better distinguished from those 
of the SLM and the SR, particularly with the B2700-43Dir dataset, which perfectly captured this layer. However, 
the points corresponding to the SLM and SR were more mixed whatever the dataset although there were less 

Figure 2.   Coronal views of the four brain parametric maps and sum of square residual (SSR) after applying 
the DTI model, reconstructed using each of the five-diffusion tensor imaging (DTI) datasets in a same control 
mouse at a spatial-resolution of 82 × 81 × 200 µm2. All diffusivity maps (axial, mean and radial diffusivities) are 
presented in µm2/ms. AD axial diffusivity, B b-value, Dir number of diffusion encoding directions, FA fractional 
anisotropy, MD mean diffusivity, RD Radial Diffusivity, SSE sum of square error.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12008  | https://doi.org/10.1038/s41598-022-15511-0

www.nature.com/scientificreports/

misclassifications with the B2700 datasets. Table 3 shows the ARIs for each DTI dataset. This translated into 
similar amount of potential misclassifications with B1000 datasets compared to B2700 datasets when comparing 
the clustering results and the real anatomical classification but higher ARI with B2700-22Dir and B2700-43Dir, 
namely: 15 misclassifications with B1000-12Dir (ARI = 0.356), versus 14 with B1000-22Dir (ARI = 0.366), ver-
sus 14 with B2700-12Dir (ARI = 0.351), versus 13 with B2700-22Dir (ARI = 0.430) versus 14 with B2700-43Dir 
(ARI = 0.480).

Detection of the microstructural alteration induced by EAE in the molecular layer.  Figure 5 
and Supplementary Data S7 display the comparisons of the four DTI metrics for each DTI dataset and the DKI 
metrics between EAE and control mice in the molecular layer. There were trends towards lower AD, MD and 
RD values in EAE mice compared with control mice, but only the following comparisons reached significance: 
AD for the B2700-43Dir dataset (P = 0.0335), MD for the B2700-43Dir, B2700-22Dir and B2700-12Dir datasets 
(P = 0.0462, 0.0267 and 0.0332, respectively) and RD for the B2700-12Dir and B2700-22Dir datasets (P = 0.0180 
and 0.0422, respectively). None of the comparisons involving the B1000 datasets were significant. Regarding 
the DKI computed using the full B1000 and B2700 shells, none of the DKI metrics was significantly different 
between EAE and control mice.

Discussion
The ability to precisely and non-invasively capture the micro-structure of GM, either in cortex or subcortex, 
would be of great interest to better understand the brain’s normal functioning, maturation, and natural diversity, 
as well as the different stages of pathological processes, such as consequences of brain trauma, stroke to neuro-
degenerative and inflammatory diseases.

Paradoxically, the DTI, which was designed to model the anisotropic diffusion of water molecules along 
WM tract, provided very encouraging results in the GM32–37. Recent reports have highlighted the potential of 
DTI achieved at high b-values (> 2000 s.mm−2) to better characterize the GM microstructure38,39. However, the 
limits of fitting dMRI data with a Gaussian water diffusion model increases with high b-values10, which ques-
tions the adequacy of the DTI model in such conditions and necessitates validation of high b-values benefits 
for GM studies.

The investigation of GM using dMRI with strong diffusion-weightings is essentially limited by the relative 
decay of the magnetic-resonance signal with increasing b-value, and sometimes by the low spatial resolution of 
the achievable images. Thanks to the 3D-msEPI used in this study, a SNR of about 25—high enough for reliable 

Table 2.   Assessment in healthy mice of the differences in diffusion tensor imaging (DTI) metrics in the 
three main hippocampal layers depending on the DTI dataset. Metrics are expressed as mean ± standard 
deviation. F-values and P-values correspond to one-way repeated measures analysis of variance, or repeated 
measures Friedman test (§). *P < 0.05; **P < 0.005; ***P < 0.001. Diffusivities are expressed in μm2.ms−1. 
AD axial diffusivity, B b-value, Dir number of diffusion gradient directions, FA fractional anisotropy, MD 
mean diffusivity, ML molecular layer, RD radial diffusivity, SLM stratum lacunosum moleculare, SR stratum 
radiatum.

DTI metrics Dataset F-value Size effect P-value Metrics in SR Metrics in SLM Metrics in ML

Post-hoc tests adjusted P-values

SR versus SLM SR versus ML SLM versus ML

AD

B1000-12Dir 4.5 0.045 0.0210* 0.699 ± 0.036 0.715 ± 0.034 0.716 ± 0.041 0.064 0.043* 1

B1000-22Dir 7.5 0.067 0.0030** 0.662 ± 0.036 0.683 ± 0.028 0.676 ± 0.038 0.011* 0.016* 0.611

B2700-12Dir 9.6 0.095 0.0007*** 0.563 ± 0.033 0.546 ± 0.027 0.568 ± 0.027 0.012* 0.764 0.004**

B2700-22Dir 14.4§ 0.480 0.0007*** 0.521 ± 0.024 0.519 ± 0.022 0.535 ± 0.022 1 0.002** 0.002**

B2700-43Dir 29.9 0.154  < 0.0001*** 0.53 ± 0.025 0.519 ± 0.022 0.542 ± 0.024 0.001** 0.002**  < 0.0001***

RD

B1000-12Dir 20.8§ 0.693  < 0.0001*** 0.528 ± 0.026 0.535 ± 0.032 0.475 ± 0.026 0.173 0.0003*** 0.0003***

B1000-22Dir 22.5§ 0.751  < 0.0001*** 0.517 ± 0.023 0.518 ± 0.029 0.466 ± 0.023 1 0.0002*** 0.0002***

B2700-12Dir 152.7 0.614  < 0.0001*** 0.438 ± 0.018 0.426 ± 0.019 0.391 ± 0.009  < 0.0001***  < 0.0001***  < 0.0001***

B2700-22Dir 143.2 0.555  < 0.0001*** 0.43 ± 0.022 0.417 ± 0.022 0.381 ± 0.012  < 0.0001***  < 0.0001***  < 0.0001***

B2700-43Dir 171.4 0.546  < 0.0001*** 0.432 ± 0.022 0.423 ± 0.022 0.383 ± 0.015 0.0003***  < 0.0001***  < 0.0001***

MD

B1000-12Dir 20.8§ 0.693  < 0.0001*** 0.585 ± 0.028 0.595 ± 0.031 0.555 ± 0.027 0.015* 0.002** 0.000335

B1000-22Dir 22.7§ 0.756  < 0.0001*** 0.565 ± 0.026 0.573 ± 0.028 0.536 ± 0.026 0.044* 0.004** 0.004**

B2700-12Dir 51.5 0.254  < 0.0001*** 0.474 ± 0.022 0.464 ± 0.023 0.446 ± 0.014 0.0002***  < 0.0001*** 0.0002***

B2700-22Dir 76.6 0.278  < 0.0001*** 0.46 ± 0.022 0.451 ± 0.021 0.432 ± 0.014  < 0.0001***  < 0.0001***  < 0.0001***

B2700-43Dir 83.1 0.264  < 0.0001*** 0.465 ± 0.023 0.455 ± 0.022 0.436 ± 0.016  < 0.0001***  < 0.0001***  < 0.0001***

FA

B1000-12Dir 61.3 0.695  < 0.0001*** 0.194 ± 0.019 0.203 ± 0.022 0.267 ± 0.025 0.381  < 0.0001***  < 0.0001***

B1000-22Dir 54.7 0.702  < 0.0001*** 0.173 ± 0.016 0.193 ± 0.021 0.24 ± 0.019 0.01*  < 0.0001*** 0.0002

B2700-12Dir 55.3 0.669  < 0.0001*** 0.187 ± 0.024 0.181 ± 0.016 0.249 ± 0.026 0.711  < 0.0001***  < 0.0001***

B2700-22Dir 28.1§ 0.938  < 0.0001*** 0.133 ± 0.011 0.157 ± 0.019 0.213 ± 0.016 0.0006*** 0.0002*** 0.0002***

B2700-43Dir 164.1 0.837  < 0.0001*** 0.139 ± 0.011 0.144 ± 0.019 0.216 ± 0.017 0.537  < 0.0001***  < 0.0001***
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Figure 3.   Comparisons of diffusion tensor imaging (DTI) metrics in the three main hippocampal layers of 
healthy mice depending on the DTI dataset: (A) axial diffusivity (AD), (B) fractional anisotropy (FA), (C) mean 
diffusivity (MD) and (D) radial diffusivity (RD). AD, MD and RD are expressed in μm2.ms−1. B b-value, Dir 
number of diffusion gradient direction, ML molecular layer, SLM stratum lacunosum moleculare, SR stratum 
radiatum. *P < 0.05; **P < 0.005; ***P < 0.001.
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estimation of diffusion metrics14, was measured in the hippocampus on mouse brain images acquired at high 
in-slice resolution (82 microns) and with strong diffusion-weighting (b = 2700 s.mm−2).

In agreement with the literature, this study demonstrated a consistent decrease in both the mean and direc-
tional diffusivities of the GM as the b-value increases7. That is probably due to the fact that dMRI with a high 
b-value is weighted by a sensitivity to water diffusion restrictions, which may reflect a more intracellular envi-
ronment and is also less sensitive to the contribution of blood and cerebrospinal fluid (CSF) in DW-signal40.

While a few previous studies have reported a relative independence of FA from b-value intensity7,8, this work 
shows a consistent FA decrease in the GM as the b-value increases (Supplementary Data S6)7,8. Furthermore, all 
of the diffusion metrics of the GM were found to be sensitive to the number of diffusion directions encoded for 
each dataset. Such a dependence of DTI parameters on NDIR has been reported for WM 41,42.

In this study, we developed an original iterative process in order to select a desired number of diffusion 
gradient directions, based on the elimination of the vector with the largest number of vectors in the close 

Figure 4.   Comparative views of the unsupervised clustering results and the real anatomical classification for 
each diffusion tensor imaging (DTI) dataset: (A) B1000-12Dir, (B) B1000-22Dir, (C) B2700-12Dir, (D) B2700-
22Dir, and (E) B2700-43Dir. Each point corresponds to one segmentation, characterized by its DTI metrics and 
is plotted with the same three axes: x: fractional anisotropy (FA), y: mean diffusivity (MD), z: radial diffusivity 
(RD). AD, MD and RD are expressed in μm2.ms−1. ML molecular layer, SLM stratum lacunosum moleculare, SR 
stratum radiatum.

Table 3.   Values of the adjusted Rand index evaluating the external quality of the clustering in the five 
diffusion tensor imaging (DTI) datasets.

Dataset Adjusted Rand index

B1000-12Dir 0.356

B1000-22Dir 0.366

B2700-12Dir 0.351

B2700-22Dir 0.430

B2700-43Dir 0.480
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Figure 5.   Comparisons between the diffusion tensor imaging (DTI) metrics from the five datasets in the 
molecular layer of control healthy mice (CTL) versus the mouse model of multiple sclerosis (experimental 
autoimmune encephalomyelitis [EAE]): (A) axial diffusivity, (B) fractional anisotropy, (C) mean diffusivity, (D) 
radial diffusivity. Diffusivities are expressed in μm2.ms−1. *P < 0.05. B b-value, Dir number of diffusion gradient 
directions.
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neighborhood. This process was relatively easy to implement and provided coherent results during the visual 
and the quantitative quality controls. The minimum inter-vectors angles found after downsampling were not 
significantly different from those measured across the initial diffusion-encoding vectors. The average SNRs in 
the hippocampus were similar for datasets with the same b-value, and logically, decreased from the B0 image 
to the B1000 images (≈− 40%) and from the B1000 to the B2700 images (≈− 47%). Our initial MRI acquisition 
lasted 1 h and 50 min and artifacts, related to motion of the mice, led to the exclusion of 5/36 (14%) of the eligible 
population. Adding three other shells on the same MR-system would lead to protocol of 4h - 4h30 with high 
risk of poor quality data and additional exclusions. For this same reason, the number of diffusion directions was 
limited to 43 for b = 2700 s.mm−2 and to 22 for b = 1000 s.mm−2.

We also proposed an original method confronting five unsupervised classifications of the VOIs based on the 
DTI metrics coming from each DTI dataset, to their true anatomical label. We found advantage of using the 
highest available b-value and NDIR. The highest ARI was obtained with B2700-43Dir, which was the only dataset 
to perfectly capture the ML. Intermediate performances were obtained with the other B2700-22Dir datasets, 
while the lowest performances were obtained with the B1000 datasets and the B2700-12Dir. However, it should 
be noted that the SLM and SR layers were never perfectly distinguished, probably because of the similarity and 
low value of their isotropy.

Furthermore, we re-performed the comparisons between the DTI metrics of EAE versus control mice in the 
layer that is histologically affected at this stage of the EAE model, as in our seminal study17, but for each DTI 
dataset instead of only B2700-43Dir. Previously, decreases in MD and AD were correlated with the decrease 
in lengths and dendritic intersections, specifically in the ML of EAE mice as confirmed by histopathological 
analyses17. Importantly, the present study pointed out that the B2700-43Dir dataset was able to provide DTI 
metrics reflecting histopathological findings (i.e. significant decreases in MD and AD in the ML). Partial cor-
relations were also found between the mouse groups and the diffusion metrics computed in the ML using the 
B2700-22Dir and B2700-12Dir datasets (significant decrease in MD with a clear downward trend of AD), as 
well as additional correlations (significant decrease in RD). In other words, the construction of reduced sets with 
fixed b-value led to a loss of sensibility of AD but not of MD for the detection of EAE effects. Hence, the MD in 
GM appeared more robust to the variation of NDIR. Complementary experiments (not shown) performed with 
a drastic reduction of the b = 2700 s.mm−2 sets to two sets of 6 diffusion encoding directions showed that the 
sensitivity to EAE was lost by the excessive removal of diffusion encoding directions. Finally, none of the B1000 
datasets enabled to identify realistic hippocampal alterations.

In particular, the MD at b = 2700 s.mm−2 was the most sensitive DTI metrics to early decrease in dendritic 
length and their number of intersections in EAE mice in our study, which is in line with the strong correlation 
found between 1/MD and neurite density from the NODDI model in the human cortex at high b-values37,38. A 
first reason to explain the better performances, of B2700 datasets to capture hippocampal microstructure changes, 
could be the higher CNR found in the ML of B2700 datasets compared with B1000 datasets.

Although DTI are mostly acquired with low b-value (b ≤ 1000 s.mm−2), these parameters have not been shown 
to be specific to underlying microstructural features of neurites and are often related to water diffusion in tissue 
compartments other than neurites. Indeed, several studies have highlighted the increasing sensitivity of higher 
b-value DTI to neurites physiological and pathological changes because it could better capture the diffusion of 
slow-motion water molecule hindered between densely packed neurites and inside neurites and soma43.

Hui et al. demonstrated that the DTI sensitivity generally increases with high b-values for metrics measuring 
slow water molecule diffusivity (RD), and decreases for metrics measuring fast diffusivity (AD)7. In agreement 
with the findings by Hui et al., this study reveals that the sensitivity for monitoring GM microstructure changes 
of MD, AD, and RD, whose values in GM are significantly lower than that of AD measured in WM, is shown to 
be improved as b-value increases from 1000 to 2700 s.mm−2.

The increase in the DTI fit residue (SSE), which was driven in the hippocampus by increasing the b-value 
from 1000 to 2700 s.mm−2, is inferior to that observed in the WM of Corpus-Callosum (Supplemental Data S4). 
This could be an argument for using DTI with high b-values to explore gray matter. In the other hand, Kurtosis 
modeling was applied to dMRI data to assess the ability of a non-Gaussian component of the dMRI signal to 
detect the decrease in dendritic length and number of intersections in ML EAE mice. None of the DKI measures 
were significantly different between EAE and control hippocampus.

On a clinical and practical perspective, our results together with those of our initial study suggest that inves-
tigating subtle micro-structural changes in the cortex and the subcortex in neuroinflammatory diseases should 
attempt to maximize the b-value and to encode at least a moderate number (n = 22) of diffusion directions in 
one shell for DTI. Indeed, the acquisition protocol must last an acceptable duration for patients without omitting 
complementary sequences exploring inflammation, cytoarchitecture, myeloarchitecture and metabolism17,38. In 
addition, this statement can be refined according to the study by Fukutomi et al., which showed that DTI and 
NODDI provide redundant information in the GM but that DTI in GM should be acquired at high b-values 
because low b-values DTI is biased by heterogeneity and partial volume effect of cerebrospinal fluid. Conversely, 
DTI does not require exceedingly high NDIRs compared to NODDI (namely 30 directions are recommended 
versus 90 for NODDI)38.

Our study has limitations. First, the DTI datasets were reconstructed a posteriori from the initial B2700-43Dir 
and B1000-22Dir datasets. Thus, we did not prospectively investigate other NDIR and other b-values. Second, 
even if non-significant differences in the minimal angles were found between the initial and the sub-sampled 
22 vectors and between the 12 vectors sub-sampled from the 43 and from the 22 initial vectors, the diffusion-
encoding vectors used in this study were not strictly equivalent between B1000 and B2700 datasets. Indeed, the 
two shells were initially built to provide a uniform coverage on each shell as well as a global uniform coverage 
by using electrostatic repulsion20,44. Third, the thickness of the ROIs could be of one voxel only on some slice, 
which could have lead to partial volume effect and bias in the measurements—although we tried to minimize 
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this bias by segmenting 3 contiguous slices for each ROI, and by double-checking all the ROIs. Fourth, the 
compromise established in this study between spatial and angular resolution, SNR, and acquisition time led to 
the coding of 43 diffusion directions. Although this number is lower than those achieved in some recent human 
dMRI studies45, it nevertheless remains sufficient for an accurate ROIs-based estimation of diffusion metrics42. 
Fifth, the spatial resolution was not isotropic (0.08 × 0.08 × 0.2 mm3) because we needed high-resolution coronal 
scanning (due to natural cylindrical shape of the mouse brain), and thicker slice covering the whole brain for 
successful co-registration and comparison with histology. However, this could have bias directionality-dependent 
metrics such as AD, RD and FA. Finally, The use of acceleration techniques, such as Simultaneous Multi-Slice 
acquisition, which is not currently available on scanners dedicated to small animals, would allow to reduce the 
total acquisition time of high b-value dMRI and/or increase the NDIR.

In summary, our study highlights that DTI performed with b = 2700 s.mm−2 appeared more sensitive than 
that collected with a standard b = 1000 s.mm−2 in distinguishing microarchitectures in each of the three layers of 
the hippocampus in healthy mice. Furthermore, only DTI with a high b-value was able to reveal the microstruc-
tural alterations, previously identified by histopathological analysis in the molecular layer of the hippocampus 
of EAE mice. At b = 2700 s.mm−2, the MD was found to be the most sensitive DTI metric to the early decreases 
in dendritic length and number of intersections occurring in the hippocampal molecular layer of EAE mice. 
Interestingly, axial and radial diffusivities were also able to reveal these microstructural alterations despite their 
greater sensitivity to NDIR. In contrast, FA and DKI metrics were totally unable to detect these microstructural 
changes. This study stresses the critical importance of the choice of b-value and NDIR to optimize the ability 
of DTI to capture brain microstructure as a function of the specific tissue type and targeted pathologies. It also 
highlights the caution needed in interpreting DTI indices.

Data availability
The datasets and the statistical analysis can be made available from the corresponding author on reasonable 
request.
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