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ABSTRACT

BACKGROUND AND PURPOSE: Accurate quantification of WM lesion load is essential for the care of patients with multiple sclero-
sis. We tested whether the combination of accelerated 3D-FLAIR and denoising using deep learning–based reconstruction could
provide a relevant strategy while shortening the imaging examination.

MATERIALS AND METHODS: Twenty-eight patients with multiple sclerosis were prospectively examined using 4 implementations of
3D-FLAIR with decreasing scan times (4 minutes 54 seconds, 2 minutes 35 seconds, 1 minute 40 seconds, and 1 minute 15 seconds).
Each FLAIR sequence was reconstructed without and with denoising using deep learning–based reconstruction, resulting in 8 FLAIR
sequences per patient. Image quality was assessed with the Likert scale, apparent SNR, and contrast-to-noise ratio. Manual and
automatic lesion segmentations, performed randomly and blindly, were quantitatively evaluated against ground truth using the
absolute volume difference, true-positive rate, positive predictive value, Dice similarity coefficient, Hausdorff distance, and F1 score
based on the lesion count. The Wilcoxon signed-rank test and 2-way ANOVA were performed.

RESULTS: Both image-quality evaluation and the various metrics showed deterioration when the FLAIR scan time was accelerated.
However, denoising using deep learning–based reconstruction significantly improved subjective image quality and quantitative per-
formance metrics, particularly for manual segmentation. Overall, denoising using deep learning–based reconstruction helped to
recover contours closer to those from the criterion standard and to capture individual lesions otherwise overlooked. The Dice
similarity coefficient was equivalent between the 2-minutes-35-seconds-long FLAIR with denoising using deep learning–based recon-
struction and the 4-minutes-54-seconds-long reference FLAIR sequence.

CONCLUSIONS: Denoising using deep learning–based reconstruction helps to recognize multiple sclerosis lesions buried in the
noise of accelerated FLAIR acquisitions, a possibly useful strategy to efficiently shorten the scan time in clinical practice.

ABBREVIATIONS: AVD ¼ absolute volume difference; dDLR ¼ denoising using deep learning–based reconstruction; DSC ¼ Dice similarity coefficient; HD ¼
Hausdorff distance; MS ¼ multiple sclerosis; PPV ¼ positive predictive value; TPR ¼ true-positive rate

Multiple sclerosis (MS) is the most common inflammatory dis-
ease of the central nervous system affecting young patients,1

in which demyelination mediated by autoimmune mechanisms is

spatially and temporally disseminated. MR imaging plays an essen-
tial role not only in the initial diagnosis of MS2 but also in regular
monitoring as a sensitive marker of disease activity for promptly
switching therapy if progression is observed.3 Life-long imaging fol-
low-up is, therefore, required for most patients with MS. A short
examination time is necessary to improve the patient’s comfort and
to cope with the high number of demands in imaging centers.

Received December 20, 2021; accepted after revision June 13, 2022.

From the Institut de Bio-imagerie (T.Y., H.F., L.D., V.D., T.T.), University Bordeaux,
Bordeaux, France; Neuroimagerie Diagnostique et Thérapeutique (C.L., V.D., T.T.) and
Service de Neurologie (A.R.), Centre Hospitalier Universitaire de Bordeaux, Bordeaux,
France; Laboratoire Bordelais de Recherche en Informatique (R.A.K., P.C.), University
Bordeaux, Le Centre National de la Recherche Scientifique, Bordeaux Institut
National Polytechnique, Talence, France; Canon Medical Systems Europe (B.Z.),
Zoetermeer, the Netherlands; Canon Medical Systems (V.P., B.T.), Tochigi, Japan;
Canon Medical Systems China (L.Z.), Beijing, China; and Neurocentre Magendie (V.D.,
T.T.), University of Bordeaux, L'Institut National de la Santé et de la Recherche
Médicale, Bordeaux, France.

T. Yamamoto and C. Lacheret are co-first authors and have contributed equally to
this study.

This study was supported by Roche Laboratory and the public grant from the French
Agence Nationale de la Recherche within the context of the investments for the future
program referenced ANR-10-LABX-57 and named TRAIL. The work was also supported
by the fondation pour l’aide à la recherche sur la sclérose en plaques foundation.

The sponsors did not participate in any aspect of the design or performance of
the study, including data collection, management, analysis and the interpretation
or preparation, review, and approval of the manuscript.

Please address correspondence to Thomas Tourdias MD, PhD, Centre Hospitalier
Universitaire de Bordeaux, Neuroimagerie Diagnostique et Thérapeutique, Place
Amélie Raba Léon, 33300 Bordeaux, France; e-mail: thomas.tourdias@chu-bordeaux.fr

Indicates open access to non-subscribers at www.ajnr.org

Indicates article with online supplemental data.

http://dx.doi.org/10.3174/ajnr.A7589

AJNR Am J Neuroradiol 43:1099–1106 Aug 2022 www.ajnr.org 1099

https://orcid.org/0000-0003-0306-3691
https://orcid.org/0000-0001-9513-5060
https://orcid.org/0000-0003-4262-3890
https://orcid.org/0000-0002-6603-3302
https://orcid.org/0000-0001-9627-920X
https://orcid.org/0000-0001-8113-3988
https://orcid.org/0000-0002-6162-6942
https://orcid.org/0000-0003-0665-2440
https://orcid.org/0000-0002-0020-8739
https://orcid.org/0000-0002-0462-705X
https://orcid.org/0000-0003-0427-3236
https://orcid.org/0000-0003-2709-3350
https://orcid.org/0000-0002-7151-6325
mailto:thomas.tourdias@chu-bordeaux.fr
http://dx.doi.org/10.3174/ajnr.A7589


3D-FLAIR imaging is considered the core sequence for di-
agnosis and monitoring of MS and has been shown to provide
better diagnostic performance than 2D sequences,4 explaining
why 3D acquisitions are now recommended by international
guidelines.5,6 In return for its high sensitivity, 3D acquisition
comes at the expense of a longer scan time, which can be miti-
gated by acceleration techniques, such as the partial Fourier
technique,7 parallel imaging,8 simultaneous multislice imag-
ing,9 or, more recently, compressed sensing.10 These techni-
ques are still being improved; however, the image quality
inevitably decreases due to reduced k-space sampling. As the
images become noisy, the accuracy of lesion detection could
be affected. Therefore, one of the central objectives was to
remove noise associated with image-acquisition acceleration
to maintain high image quality for accurate lesion identifica-
tion. Although several denoising methods take the complexity
of MR imaging artifacts into account, 1 critical drawback of
these sophisticated denoising methods is the processing time,
which makes them not easily applicable in routine clinical
practice.

Artificial intelligence is now providing new solutions with
denoising algorithms based on deep learning, enabling instant
execution.11 New generations of MR imaging with the denoising
using deep learning–based reconstruction (dDLR) are now
becoming available on commercial magnets,12-15 with the goal
of accurately removing the noise associated with higher-resolu-
tion acquisitions or with significantly shorter scan times. Such
dDLR is rapidly growing, but at the same time, its validity in
clinical settings has not yet been well-investigated, and how
these methods could impact the detectability of lesions for radi-
ologists is unknown. Before adoption, it is mandatory to vali-
date such effects on pathologic lesion detection and to quantify
possible false-positives or negatives. Therefore, in this research
study, we tested whether the combination of accelerated
3D-FLAIR and dDLR could provide a relevant strategy to moni-
tor the WM lesion load of patients with MS with shorter
examinations.

MATERIALS AND METHODS
Study Population
The study prospectively recruited 31 participants with MS who
were followed at Centre Hospitalier Universitaire de Bordeaux in
2020 and 2021. The inclusion criterion was to have a confirmed
relapsing-remitting form of MS according to the 2017 McDonald
criteria.2 The exclusion criteria were MR imaging examination
contraindications and other concomitant neurologic disorders.
One patient with a low lesion load had no more visible brain
lesions under treatment, and 2 patients did not properly complete
the MR imaging; thus, we evaluated 28 participants in this analy-
sis. The institutional ethics committee approved the protocol,
and all participants provided written informed consent.

Image Acquisition
Imaging examinations were performed on a 3T scanner (Vantage
Galan 3T/ZGO; Canon Medical Systems) with a 32-channel
phased array head coil. The acquired sequences included a 3D
T1WI and 4 implementations of 3D variable flip angle FLAIR
sequences with decreasing scan times that we will call “standard
FLAIR” (4 minutes 54 seconds), “fast FLAIR” (2 minutes 35 sec-
onds), “ultrafast FLAIR” (1 minute 40 seconds), and “shortest
FLAIR” (1 minute 15 seconds). Acceleration was obtained with
parallel imaging and with a progressive decrease in the TR along
the 4 different implementations. The corresponding TI values
were adjusted accordingly to maintain CSF nulling based on sim-
ulations of the magnetization of 3D-FLAIR that we conducted in
Matlab (MathWorks) using T1/T2 values of CSF from the litera-
ture.16,17 Spatial resolution was identical for the 4 FLAIR sequen-
ces (see the Table for details of scan parameters).

dDLR was directly available in the scanner as a product called
advanced intelligent clear-IQ engine (AiCE) and developed by
Canon. The dDLR method has been described in detail by Kidoh
et al14 and is based on a “plain” convolutional neural network
(CNN) that performs denoising by learning noise thresholds in
the high-frequency components extracted from images by a dis-
crete cosine transform. The algorithm has been originally trained

Parameters of MR imaging acquisitions

3D FLAIR

MPRAGEStandard Fast Ultrafast Shortest
TR (ms) 7000 5000 4000 3000 6.3
TE (ms)/effective TE (ms) 445.5/145.0 445.5/145.0 445.5/145.0 445.5/145.0 2.8
TI (ms) 2070 1580 1270 910 950
BW (Hz) 558 558 558 558 279
Echo space (ms) 4.5 4.5 4.5 4.5
FOV (mm) 230� 230 230� 230 230� 230 230� 230 230� 230
Matrix 224� 224 224� 224 224� 224 224� 224 224� 224
Thickness (mm) 1 1 1 1 1
Parallel imaging 2.0� 3.0 2.0� 3.0 2.0� 3.0 2.0� 3.0 1.8� 1.5
Frequency oversampling 1.4 1.2 1.2 1.2 1.2
Half Fourier 85% 70% 70%
Flip angle 90° 90° 90° 90° 9°
Refocus angle VFA VFA VFA VFA
Shot interval (ms) 2500
Recovery time (ms) 744
Scan time (minute : second) 4:54 2:35 1:40 1:15 6:18

Note:—VFA indicates variable flip angle; BW, Bandwidth.
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on pairs of high SNR ground truth images collected on healthy
subjects (10 average repetitions) and noisy input images (gener-
ated by adding various amounts of noise on the ground truth).
After data augmentation, 32,400 image pairs were used for the
training of the dDLR. In our study, each FLAIR sequence was
processed once with dDLR (,1minute of reconstruction time)
and another time with conventional reconstruction, which will be
referred to as “with or without dDLR.” Therefore, 8 FLAIR
sequences were available per patient, corresponding to a total of
224 FLAIR sequences for the 28 patients.

Image Analyses
To create the ground truth segmentation of MS lesions, 2 senior
neuroradiologists (with 14 and 12 years of experience) manually
delineated MS lesions in collaboration on the standard FLAIR
sequence using 3D Slicer software (www.slicer.org).18 Each seg-
mentation was first performed by 1 of these 2 experienced readers
and carefully and independently checked by the second, who
could correct any missing lesions. We considered this segmenta-
tion the criterion standard against which the other segmentations
were evaluated.

To evaluate the impact of combining “image acceleration 1

dDLR” on the radiologist, the 2 neuroradiologists and another
reader (a radiology resident with 5 years of experience and exper-
tise in neuroimaging) blindly evaluated the overall image quality
of the 224 FLAIR sequences. The sequences were presented in
random order to limit possible bias, especially between images
processed with or without dDLR. Qualitative aspects of the
sequences were assessed using a 5-point Likert-type scale: 11,
1, 0, �, ��, where 0 stands for the image quality that can be
used for diagnostic purpose in clinical settings, while 1 and �
stand for higher and lower quality, respectively.

Then, MS lesions of the 224 FLAIR sequences were manually
and section-by-section delineated by the third reader during ran-
dom presentation under 3D Slicer. Automatic segmentation was
also conducted independently using the lesionBrain module,19

which is freely available on the volBrain platform20 (https://www.
volbrain.upv.es).

Performance Metrics for Evaluation
Several metrics are usually evaluated to assess the performances
of segmentation methods, such as the index of similarity, voxel-
wise metrics, and lesion-wise metrics.21

Therefore, we first computed the relative absolute volume dif-
ference (AVD):

AVD ¼ abs jAj � jGSjð Þ
jGSj ;

where jAj represents the volume of MS lesions from the sequence
under evaluation, GS is the volume of MS lesions from the crite-
rion standard, and absmeans the absolute value.

Second, we computed the following overlap metrics (voxel-
wise metrics) to quantify the contour similarity between 1 seg-
mentation and the criterion standard: positive predictive value
(PPV), true-positive rate (TPR), Dice similarity coefficient
(DSC), and the 95th percentile of Hausdorff distance (HD).
These metrics are defined as follows:

PPV ¼ jTPj
jTPj þ jFPj

TPR ¼ jTPj
jTPj þ jFNj

DSC ¼ 2� jTPj
jGSj þ jAj

HD ¼ max
a2A

�
min
gs2GS

fdist ða; gs��
�
;

where TP, FP, FN represent the numbers of voxels that are true-
positive, false-positive, and false-negative, respectively. Dist refers
to Euclidean distance.

Finally, to understand whether all the MS lesions were
detected, independent of the delineating precision, we computed
the connected components of GS and A (lesion-wise metrics).
We adopted the F1 score (F1) as follows:

SeL ¼ count TPGSð Þ
count GSð Þ

PL ¼ count TPAð Þ
count Að Þ

F1 ¼ 2� SeL � PL
SeL þ PL

;

where TPGS is lesions of A among the lesions in GS that are
correctly detected by A, TPA is—vice versa—overlapped
lesions of GS among the lesions of A, SeL is lesion sensitivity,
and PL is the lesion positive predictive value for individual
lesions. Lesion counting and labeling were performed using
the multidimensional image processing (ndimage) submodule
in the sciPy library (Version 1.7.0, www.scipy.org). Then, the
overlapping labels between GS and A were counted to compute
TPGS and TPA.

Before computing these metrics, all FLAIR images were core-
gistered to the individual 3D-T1WI sequences using the FMRIB
Linear Image Registration Tool (FLIRT; http://www.fmrib.ox.ac.
uk/fsl/fslwiki/FLIRT) program to minimize the positional dis-
placement during the scan.

Statistical Analyses
All statistical analyses were performed with R software (Version
4.1.0; www.r-project.org). First, the interreader agreement among
the 3 readers for image quality was analyzed by the Kendall
Concordance Coefficient W. Then, we considered 2 factors: the
type of FLAIR sequence (standard, fast, ultrafast, shortest) and the
type of reconstruction (without or with dDLR). For the Likert
scale, which is a categoric metric, the effects of the type of recon-
struction were tested with the Wilcoxon signed-rank test. For
AVD, TPR, PPV, DSC, HD, and F1 scores, we used nonparametric
repeat 2-way ANOVA with the aligned rank transform procedure
from the package ARTool (Version 2.1.0; https://depts.washington.
edu/acelab/proj/art/).22 Post hoc tests were conducted with a
Wilcoxon signed-rank test, especially to evaluate the impact of
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dDLR. Finally, to confirm the similarity of metrics between the
standard FLAIR and accelerated FLAIR with dDLR, we used a
nonparametric version of the equivalence test implemented in the
package “EQUIVNONINF” (Version 1.0; https://cran.r-project.
org/package=EQUIVNONINF). P value corrections were always
performed with the Holmmethod.

RESULTS
Demographics of Participants
The participants ranged from young to middle-aged (mean,
41 years of age; range, 24–56 years) and had a median disease du-
ration of .10 years. Most patients (96.4%) underwent second-
line natalizumab disease-modifying treatment and were recruited
during one of the monthly perfusions. None of them had experi-
enced any recent relapse, and the median Expanded Disability
Status Scale score was 2.0. The characteristics are summarized in
the Online Supplemental Data.

Visual Assessment of Image Quality
The agreement among the 3 readers for image quality with the
5-point Likert scale was substantial (Kendall W ¼ .82). We
observed a deterioration in image quality by reducing the scan
time (P, .001, P, .001, and P, .001 for standard versus fast,
fast versus ultrafast, ultrafast versus shortest FLAIR, respectively)
(Fig 1A). Notably, rapid sequences (fast, ultrafast, and shortest
FLAIR) scored lower than the acceptable quality without dDLR
but significantly improved their appearance with dDLR
(P, .001, P, .001, P, .001, P, .001 for standard, fast, ultrafast,
and shortest FLAIR, respectively). The visual quality of fast and
ultrafast FLAIR with dDLR even recovered up to more than the
acceptable quality. The shortest FLAIR with dDLR was still infe-
rior to the acceptable quality, but some ultrafast images improved
to a score of 0 or 11. Compared with standard FLAIR without
dDLR, fast FLAIR with dDLR was better (P, .01).

Quantitative Results
Regarding manual delineation of the MS lesions, the 2-way
ANOVA showed that both the type of FLAIR sequence and the
type of reconstruction significantly affected the segmentations
(P, .001 in all the cases) but without any significant interaction
(Fig 2 and Online Supplemental Data). PPV was the only metric
not significantly affected by the type of FLAIR sequence.

The differences in terms of segmentation volumes compared
with the criterion standard progressively increased with the
shorter FLAIR sequences. Nevertheless, dDLR significantly
reduced such differences in all cases (P ¼ .038, P ¼ .022, P, .01,
P, .001 for standard, fast, ultrafast, and shortest FLAIR, respec-
tively; Fig 2A). Such lower volume differences compared with the
criterion standard were mainly driven by a reduction in false-neg-
ative voxels, as indicated by a significant improvement in TPR in
all cases (P, .001, P, .001, P, .001, P, .001 for standard, fast,
ultrafast, and shortest FLAIR, respectively; Fig 2B). There were
also more voxels considered false-positives with dDLR for the
standard and fast FLAIR as indicated by a significant reduction in
the PPV (P, .001 and P= .047 for standard and fast FLAIR,
respectively; Fig 2C), but this effect was less pronounced than
that on TPR. The DSC was essential to analyze because it is a
composite metric attempting to summarize all such influences
onto a single scalar measure. The DSC progressively decreased
with shorter FLAIR sequences, but dDLR significantly improved
the DSCs in all cases (P, .001, P, .001, P, .001 for fast, ultra-
fast, and shortest FLAIR, respectively; Fig 2D), also in line with
shorter HD (Fig 2E). The dark arrows in Fig 3 and the Online
Supplemental Data show a few examples of manual segmenta-
tions (blue) becoming indeed closer to the criterion standard
(red) after applying dDLR on an ultrafast FLAIR sequence (which
would translate into lower AVD, higher TPR, higher DSC, and
lower HD).

To understand whether dDLR could also help to correctly
capture more individual MS lesions, even more clinically relevant
than the accuracy of the segmentation contours, we also com-
puted SeL, PL, and F1 score. The details of SeL and PL are shown
in the Online Supplemental Data. The resulting F1 score progres-
sively decreased with shorter FLAIR sequences, but most interest-
ing, dDLR improved this metric, especially when used on the

FIG 1. A, Boxplots of image-quality evaluation. The median values are
connected with dotted lines. dDLR generally improved the image
quality. Even images of inferior quality were retrieved to moderate
quality. B, Representative reconstructed axial slices of the different
FLAIR acquisitions without (upper row) and with dDLR (lower row).
The amount of noise and the progressive shadowing of lesions when
the scan time decreased can be appreciated. One, 2, and 3 asterisks
indicate P, .05, P, .01, and P, .001, respectively.
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shortest sequences (P, .001 for shortest FLAIR; Fig 2F and the
Online Supplemental Data). The white arrows in Fig 3 and
the Online Supplemental Data illustrate a few lesions that were
missed on an ultrafast FLAIR sequence without dDLR but were
correctly captured after denoising (blue) according to the crite-
rion standard (red).

We used equivalence tests to understand whether 1 acceler-
ated strategy could replace the current standard FLAIR. Fast
FLAIR with dDLR showed equivalency to standard FLAIR with-
out dDLR in regard to DSC and AVD, and ultrafast FLAIR with
dDLR also showed equivalency to standard FLAIR without dDLR
in regard to DSC and TPR.

To evaluate whether dDLR would still be beneficial for auto-
matic detection of MS lesions by software, we computed the same
metrics after running the lesionBrain module. We observed the
same profiles as those for the effects on the manual delineations
even though the impact of dDLR was less pronounced (Figs 2
and 3 and Online Supplemental Data).

DISCUSSION
In this article, we provided qualitative and quantitative evidence
for combining accelerated FLAIR sequences with a denoising
approach using deep learning–based reconstruction to maintain
accurate lesion-load quantification in patients with MS while
reducing the scan time. We expect that this strategy promoting
short MR imaging examinations could improve comfort and help
scan more patients.23

The SNR, spatial resolution, and scan time are closely related;
if one of them is prioritized, the others will inevitably degrade.
Denoising is one of the strategies that can break this close link.
Several denoising methods have been reported for many years
and are traditionally classified into 3 categories:24 filtering, trans-
form domain, and statistical approaches. All of them can have
problems achieving a high accuracy of denoising, which has
stimulated the development of adaptive approaches and their
combinations.25 In this context, recent studies have shown the
flexibility of machine learning approaches, especially deep

FIG 2. Boxplots of quantitative metrics to evaluate the manual and automatic segmentation. The median values are connected with dotted
lines. One, 2, and 3 asterisks indicate P, .05, P, .01, and P, .001, respectively, for post hoc paired comparisons with Wilcoxon signed-rank test
after 2-way ANOVA with the aligned rank transform procedure. † indicates voxelwise metric; §, lesion-wise metric.
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learning techniques and their robustness for any type of
noise.26,27 Most important, the reconstruction speed of the deep
learning–based approach outperforms conventional methods.28

The objective of this study was not to compare denoising per-
formances of different approaches but rather to take advantage of
1 solution that is clinically viable, due to almost instantaneous
results, and to investigate its clinical validation. Indeed, new deep
learning–based denoising algorithms have become accessible in
clinical practice recently, but only the first few articles have dem-
onstrated their benefits in some clinical situations.29-31 However,
possible interest in the context of MS, for which lesion detectabil-
ity is crucial, has never been explored before. Validation inevita-
bly requires tedious manual delineation or lesion counting by
expert readers, which we report here.

We found a clear benefit of dDLR in improving image quality
due to a higher apparent SNR as measured in vivo and in a phan-
tom (Online Supplemental Data). Our results showed that the
major impact of dDLR is on the lesion edge with improved iden-
tification of the voxels at the transition between the lesion “core”
and the normal-appearing parenchyma. This finding was
expected, considering the concentric model of MS plaques32 with

an inflammatory attack that starts around a central vein and pro-
gresses centrifugally. In this model, histologic modifications are
less pronounced at the periphery, and we can expect that this fea-
ture translates into voxels with intermediate gray levels on
FLAIR, which can be missed if confounded with noise. The
improvement of lesion-contour detection can be particularly rele-
vant in the clinic to facilitate the monitoring of a subtype known
as a slowly expanding lesion.33,34 Furthermore, the detection of
additional lesions is also very important because it will impact
whether the objectives of no evidence of disease activity are
reached.35 The effect of dDLR on lesion detectability was more
challenging to demonstrate, but we identified several examples of
“difficult-to-recognize lesions” that were small, with low signal,
and in locations where the noise was higher (central location
around the deep nuclei or posterior fossa) that were overlooked
without dDLR. This finding translated into an improvement of
the F1 score that reached statistical significance for the shortest
FLAIR sequences. It is likely that 2 individual-but-close lesions
could finally be considered as 1 confluent lesion after dDLR by
the lesion-counting algorithm, possibly obscuring part of the pos-
itive effect on lesion counting.

The results of automatic segmentation followed the same
trend as for manual segmentation but with a lower effect. A
denoising process was already implemented inside volBrain;36 in
other words, the denoising effect was duplicated. Nonetheless,
dDLR still showed beneficial consequences because the dDLR
algorithm is fundamentally different from the conventional
denoising technique and works complementarily. T1WI is used
for such automatic segmentation, and we always used the same
nonaccelerated and nondenoised sequence in this study, which
could also contribute to these results.

The progressive loss of lesion detectability from standard-
to-ultrafast FLAIR sequences likely resulted from the combined
effects of lower apparent SNR and a lower contrast-to-noise ratio.
The denoising procedure positively influenced both the apparent
SNR and the contrast-to-noise ratio (Online Supplemental Data).
However, dDLR could not compensate for all the effects of this
acceleration strategy. The dDLR applied to the ultrafast or shortest
FLAIR sequences did not allow to recover the same performances
as standard FLAIR. Clinical use of such extreme accelerations may
pose a concern. However, the fast FLAIR combined with dDLR,
which already cuts scan time by a factor of close to 2, caught up to
the standard FLAIR in image quality and provided equivalent
DSC performances for manual segmentation. In the future, we
could test the benefit of dDLR with other acceleration strategies.

This study has limitations. First, the number of participants
was small. However, we conducted sequence-wise and lesion-
wise analyses, which already provided a reasonable amount of
data (total of 224 FLAIR sequences). Second, our results came
from a specific population of patients with MS monitored under
second-line therapy. How this would translate at an earlier stage
(clinically isolated syndrome) and for MS diagnosis performances
is unknown. Similarly, generalization to other sequences and
other magnets has not been tested in this single-center and sin-
gle-scanner study. Third, only 1 reader manually segmented
lesions, and a few segmentation errors cannot be excluded even
though they should not have favored 1 type of sequence. Fourth,

FIG 3. Illustrative axial slices of ultrafast FLAIR without and with
dDLR. Standard FLAIR without dDLR is also shown for reference. The
red mask represents the criterion standard that comes from the
delineation of standard FLAIR by 2 expert readers; the blue mask is
the manual delineation from a third reader; and the green mask is the
automatic segmentation from volBrain software. After we applied
dDLR, some lesions showed contours closer to the criterion standard
(black arrows). dDLR also retrieved lesions that were missed on the
original image (white arrows and arrowhead).
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we cannot exclude the fact that the reader, while blinded, could
recognize the type of FLAIR sequence because of relatively strong
noise in ultrafast and the shortest implementations. However, the
time spent drawing was within the same range for all types of
sequences (Online Supplemental Data), ensuring that all the
images were considered equally. It was possible as well that the
reader could remember the delineation of lesions from $1
FLAIR sequence from the same patient segmented before.
However, this recognition bias was likely minor because of the
random presentation of 224 sequences segmented intermittently
during several months. Fifth, we conducted only 1 automatic seg-
mentation, while new segmentations using deep learning technol-
ogies have become mainstream.37 Finally, the criterion standard
was created on the basis of the standard FLAIR without dDLR.
Additional FLAIR hyperintense areas detected on standard
FLAIR with dDLR explained the decrease in PPV, but the under-
lying histologic substrate (authentic lesions or real false-positives)
cannot be known without conducting a postmortem study.

CONCLUSIONS
In this study, dDLR allows a reduced FLAIR scan time while pre-
serving the image quality in the context of MS. dDLR is adaptable
to different noise levels with significant positive effects at differ-
ent acceleration levels and awaits further clinical validation in
several applications.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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