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Flash evaporation process is currently developing in the wine industry where it is used for flash-cooling
or concentration. The design of flash evaporators is faced with specific constraints and must take into
account multiple design objectives. In this paper, the development of a multi-objective optimization
method is investigated for the joint optimization of design objectives such as process transportability,
environmental efficiency, operative cost or cooling power. The optimization method is based on
the aggregation of design objectives through desirability functions and indexes. Desirability functions are
suitable for formulating design constraints more precisely than inequality relations and, moreover, the
global designmodel results in an unconstrained optimization problem. However, aggregation methods do
make it difficult to compute the global optimum of the design problem. This difficulty has been addressed
by developing a distributed genetic algorithm which is not so sensitive to this type of numerical solving
difficulty. Another difficulty arises from theweighting method for the aggregation of desirability functions
since weight parameters have no physical meaning. This weighting problem is approached through
a sensitivity analysis of the weight parameters and by observing their relative influence.

� 2010 Elsevier Masson SAS. All rights reserved.
1. Introduction

This paper presents a methodology of multi-objective optimiza-
tion for designing applications and is applied to a two-stage flash
evaporation process for cooling and concentration applications. The
first part of the paper was focused onmodeling the design problem of
flash evaporators, taking into account the thermodynamicalmodeling
of the coupling betweenheat andmass transfer phenomena inside the
system, mainly the evaporation chambers and the condensers. It also
considers the industrial requirements relating to theflash evaporation
process, such as the dimensional, economical or environmental
constraints of the problem.

The present part of the paper deals with the multi-objective
optimization method of the design problem. Optimization is
performed byconsideringfive global performance criteria relating to
the system and the product. System criteria concern the cooling
power, eco-performances, transportability and costs of the system.
The product criterion concerns the cooling temperature of the
product at the system outlet. Multi-objective optimization is per-
formed by defining desirability functions for every design objective
of the problem and by aggregating them as desirability indexes. Two
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levels of desirability indexes are distinguished, which concern
design objectives or the objective function of the optimization
process. Optimal design solutions are computed using a distributed
genetic algorithm. In the fourth chapter, the aggregation method
is investigated through the flash evaporator design application.
We mainly perform a sensitivity analysis of weighting parameters
and we study the ability of the method to support design decision.
This analysis is carried out by computing several optimal design
configurations relating to different weight parameters.

2. Desirability and global optimization

Process optimization is faced with the difficulty of defining
design objectives for complex processes. Optimization must take
into account many different objectives relating to the entire life
cycle of the process, which includes constraints relating to its use
(product quality, maintainability, etc.) but also to its ability to be
manufactured, transported, sold, recycled, etc. Global optimization
must take into consideration every constraint of the design
problem. However, the life cycle of a system such as a flash evap-
orator is complex and its global optimization entails selecting and
modeling the most relevant objectives of the system design.
This paragraph aims at presenting the approach, based on the
concept of desirability, developed for modeling the design objec-
tives and optimizing the design problem.
mization of the design of two-stage flash evaporators: Part 2. Multi-
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2.1. Variable characterization

In design optimization some of the variables of the design
problemmust be characterized. Here,we consider twomain types of
variables to characterize candidate solutions to the design problem
and qualify their performance. Design variables (decision variables)
typify the main characteristics of a flash evaporator regarded as
a candidate solution and its functioning environment (fluids). These
variables are:

- inlet flow rate ðqpiÞ and inlet temperature ðTpiÞ of the product,
- flow rate ðqcl LPÞ and temperature of the ðTcl LPÞ of the coolant,
- flow rate ðqclþHPÞ of the coolant added in the HP stage,
- number of plates of the HP condenser ðNHPÞ and the LP

condenser ðNBPÞ.

Every variable value of the design problem model is derived
from the values of these seven variables, including the performance
variables (response variables). Performance variables are observed
to qualify any candidate solution determined from a set of values
related to the design variables. Design variables and performance
variables are denoted X and Y respectively. We consider seven
design variables and eight performance variables, therefore:

X ¼ fx1; x2;.; x7g; Y ¼ fy1ðXÞ; y2ðXÞ;.; y8ðXÞg (1)

where,

X˛U (2)

U is the value domain of the design variables and is defined in Table 1.

2.2. Desirability functions and performance variables

In the following, every design objective has been related to one or
several performance variables. For instance, the transportability of
the process is linked to themass ðMsysÞ or floor occupation area ðSsysÞ
of the system. These two performance variables determine the ability
of the flash evaporator to be transported on a flat bed truck. Standard
dimensions and maximal carrying capacities of trucks constrain
the admissible maximal values of themass and occupation area. As a
general rule, every performance variable can be linked to admissible
values related to constraints in the system life cycle. Transportability
is related to system utilization since flash evaporators must be
transported between several production sites during the grape
harvesting period (see Section 1), but also to its manufacturing
and recycling phases. In this paper, admissible values are formulated
through Harrington’s desirability functions [1]. These are mapped
onto performance variables to define the most desirable values
expected for these variables. These functions are non-dimensional,
monotonous or piecewise monotonous and take their values
between zero and one. Desirability functions can be interpreted as
a degree of satisfaction of the constraint; zero value corresponds to
minimal satisfaction and 1 to maximal satisfaction.
Table 1
Design variables and their corresponding value domains.

Design variablesX ¼ fx1; x2;.; x7g
Name Unit

Product Tpi (�C)
qpi (kg s�1)

Condenser coolant Tcl LP (�C)
qcl LP (kg s�1)
qclþHp (kg s�1)

Condenser plates NHP (�)
NBP (�)
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Harrington defined two types of desirability functions (see Fig. 1)
to formulate the constraint satisfaction inmulticriteria optimization
problems: one-sided and two-sided functions. One-sided functions
aim atmaximizing orminimizing performance variables and require
two (one-sided functions) or four (two-sided functions) limit spec-
ificationparameters, namely, theAbsolute Lower Cutoff (ALC), Lower
Soft Limit (LSL), Upper Soft Limit (USL) and Absolute Upper
Cutoff (AUC). These limits correspond to desirability values close to
one (0.99) or zero (0.01). Typically, one-sided functions are used
to express design specifications relating to threshold values. For
instance, the transportability of a flash evaporator is limited by the
maximal mass and dimensions of flat bed trucks, which correspond
to threshold values of mass and floor occupation area of the system.
Maximal threshold values must not be exceeded and, the lower the
mass and overall dimensions of the system, the more desirable they
are. Desirability functions relating to these performance variables
are used for modeling such preferences or design specifications.
Limit specification parameters are mainly derived from human
expert knowledge on the part designers, manufacturers, customers,
and so on, which is often based on practical knowledge of the
process life cycle and its environment. Desirability functions often
encompass complex technical know-how and intricate physical
phenomena and may be regarded as knowledge-based models.

The eight performance variables of the two-stage flash evapo-
rator observed in this paper are the cooling power ðPcoolÞ, eco-
indicator (EI), fluid consumption (Cf), electrical energy consumption
(Ce), mass (Msys), floor occupation area (Ssys), total cost of ownership
ðCtotÞ of the system and the outlet temperature of the product (Tpo).
Every performance variable is linked to a desirability function and
their corresponding limit specification parameters are presented in
Table 2. Some limit specification parameters have been based on the
design requirements of a wine producing company in the Bordeaux
area (France). This company was interested in developing a flash
evaporator capable of cooling ten tons of grape juice per hour from
an initial temperature ranging from 70 �C to 90 �C to a temperature
lower than 30 �C. The limit specification parameters of the cooling
power and outlet product temperature have been derived from
these data. The parameter ALC corresponds to a product mass flow
rate of 7 tons per hour cooled from 70 �C to 30 �C (330 kW) and the
parameter SLS to a productmass flow rate of 10 tons per hour cooled
from 90 �C to 20 �C (820 kW) (Table 3).

2.3. Desirability index and optimization problem formulation

Every performance variable, and therefore every desirability
function, may be related to particular design objectives (see Fig. 2).
The eight desirability functions of the flash evaporator designmodel
have been linked to five design objectives. In the same way, the
global objective of the optimization process has been aggregated
into a single Objective Function. The same method has been used to
aggregate desirability functions into design objectives and design
objectives into an objective function. This method is based on the
concept of desirability index introduced by Derringer [2] and
Value domain UðXÞ
x� xþ Type

70 90 Interval: [x�; xþ]
2.22 3.33 Interval: [x�; xþ]
15 20 Interval: [x�; xþ]
2.78 5.56 Interval: [x�; xþ]
0.28 6.94 Interval: [x�; xþ]
6 70 Sequence: {x�; xþ}
6 70 Sequence: {x�; xþ}
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recently developed inmulti-response optimization [3,4]. Any system
design becomes unacceptable as soon as at least one of the values
of the performance variables is non-desirable. From this principle,
Derringer proposed to aggregate every value of individual desir-
ability into a global desirability index through aweighted geometric
mean. This principle has been used to aggregate desirability
functions into design objectives (DOI standing for Design Objective
Index) and design objectives into an objective function (OF):

DOIiðXÞ ¼
Yni

j¼1

dj
�
yjðXÞ

�yj�P yj
(3)

Where yj is the weight corresponding to the jth desirability
function of the design objective and ni the number of desirability
functions taken into account in the definition of the ith Design
Objective Index DOIi (see Table 2).
Table 2
Design objectives, performance variables and limit specification parameters of the desira

Design obj. and perf. variables Y ¼ fy1ðXÞ; y2ðXÞ;.; y8ðXÞg
Des. Objective D.O. Index Perf. Var. U

Transportability DOI1 Msys (k
Ssys (m

Cooling power DOI2 Pcool (k
Product quality DOI3 Tpo (�

Environmental efficiency DOI4 EI (�
Cf (k
Ce (k

Objective cost DOI5 Ctot (k
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OFðXÞ ¼
Y5

DOIiðXÞwi=
P

wi (4)

i¼1

Where wi is the weight corresponding to the ith design
objective.

The weights are used to adjust the relative influence of the
different design objectives in the global optimization objective.
The global optimization problem relating to the flash evaporator
design is formulated as:

Find X= X˛U max: OFðXÞ (5)

Constraints of the design problem (relating to cost, mass and so
on) are formulated inside the model through desirability functions;
consequently the constraints are not explicit in the formulation of
the optimization problem, but are intrinsic to its definition.
bility functions.

Desirability functiondefinitionD ¼ fd1ðy1Þ; d2ðy2Þ;.; d8ðy8Þg
nit ALC LSL USL AUC

g) e e 3800 19 000
2) e e 3.20 16
W) 330 820 e e

C) 18 20 30 32
) e e 10 000 50 000
g s�1) e e 20 100
W) e e 8.40 42
V) e e 400 2000
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Table 3
Scenarios and optimal values.

Scenarios and order of preference Design Variables Performance
Variables

Desirability Design
Obj. Index

Weights Objective
Function

Transportability
Optimization:

(
DO2wDO3wDO4wDO53DO1
w2 ¼ w3 ¼ w4 ¼ w5 < w1

Tpi ¼ 82 �C
qpi ¼ 2.30 kg s�1

Tcl LP ¼ 15 �C
qcl LP ¼ 4.13 kg s�1

qclþHP ¼ 6.79 kg s�1

NHP ¼ 70
NLP ¼ 22

Msys ¼ 2297 kg d1 ¼ 0.995 DOI1 ¼ 0.982 w1 ¼ 10/14 OF ¼ 0.954
Ssys ¼ 5.58 m2 d2 ¼ 0.969
Pcool ¼ 512 kW d3 ¼ 0.776 DOI2 ¼ 0.776 w2 ¼ 1/14
Tpo ¼ 30 �C d4 ¼ 0.973 DOI3 ¼ 0.973 w3 ¼ 1
EI ¼ 14010 d5 ¼ 0.982 DOI4 ¼ 0.969 w4 ¼ 1/14
Cf ¼ 39.41 kg s�1 d6 ¼ 0.957
Ce ¼ 8.90 kW d7 ¼ 0.968
Ctot ¼ 1129 kV d8 ¼ 0.849 DOI5 ¼ 0.849 w5 ¼ 1/14

Cooling Power
Optimization:

(
DO1wDO3wDO4wDO53DO2
w1 ¼ w3 ¼ w4 ¼ w5 < w2

Tpi ¼ 88 �C
qpi ¼ 2.92 kg s�1

Tcl LP ¼ 15 �C
qcl LP ¼ 5.27 kg s�1

qclþHP ¼ 5.79 kg s�1

NHP ¼ 69
NLP ¼ 59

Msys ¼ 3232 kg d1 ¼ 0.992 DOI1 ¼ 0.859 w1 ¼ 1/14 OF ¼ 0.946
Ssys ¼ 10.26 m2 d2 ¼ 0.744
Pcool ¼ 728 kW d3 ¼ 0.976 DOI2 ¼ 0.976 w2 ¼ 10/14
Tpo ¼ 31 �C d4 ¼ 0.954 DOI3 ¼ 0.954 w3 ¼ 1/14
EI ¼ 23610 d5 ¼ 0.922 DOI4 ¼ 0.954 w4 ¼ 1/14
Cf ¼ 39.92 kg s�1 d6 ¼ 0.955
Ce ¼ 8.90 kW d7 ¼ 0.985
Ctot ¼ 1272 kV d8 ¼ 0.753 DOI5 ¼ 0.753 w5 ¼ 1/14

Environmental
Impact
Optimization:

(
DO1wDO2wDO3wDO53DO4
w1 ¼ w2 ¼ w3 ¼ w5 < w4

Tpi ¼ 88 �C
qpi ¼ 2.26 kg s�1

Tcl LP ¼ 15 �C
qcl LP ¼ 4.79 kg s�1

qclþHP ¼ 3.27 kg s�1

NHP ¼ 69
NLP ¼ 42

Msys ¼ 2802 kg d1 ¼ 0.993 DOI1 ¼ 0.931 w1 ¼ 1/14 OF ¼ 0.959
Ssys ¼ 8.64 m2 d2 ¼ 0.873
Pcool ¼ 567 kW d3 ¼ 0.870 DOI2 ¼ 0.870 w2 ¼ 1/14
Tpo ¼ 30 �C d4 ¼ 0.980 DOI3 ¼ 0.980 w3 ¼ 1/14
EI ¼ 19071 d5 ¼ 0.960 DOI4 ¼ 0.972 w4 ¼ 10/14
Cf ¼ 29.10 kg s�1 d6 ¼ 0.980
Ce ¼ 8.90 kW d7 ¼ 0.975
Ctot ¼ 927 kV d8 ¼ 0.927 DOI5 ¼ 0.927 w5 ¼ 1/14

Objective Cost
Optimization:

(
DO1wDO2wDO3wDO43DO5
w1 ¼ w2 ¼ w3 ¼ w4 < w5

Tpi ¼ 82 �C
qpi ¼ 2.22 kg s�1

Tcl LP ¼ 15 �C
qcl LP ¼ 4.83 kg s�1

qclþHP ¼ 0.85 kg s�1

NHP ¼ 69
NLP ¼ 51

Msys ¼ 2941 kg d1 ¼ 0.993 DOI1 ¼ 0.910 w1 ¼ 1/14 OF ¼ 0.943
Ssys ¼ 9.25 m2 d2 ¼ 0.833
Pcool ¼ 496 kW d3 ¼ 0.740 DOI2 ¼ 0.740 w2 ¼ 1/14
Tpo ¼ 30 �C d4 ¼ 0.983 DOI3 ¼ 0.983 w3 ¼ 1/14
EI ¼ 20409 d5 ¼ 0.952 DOI4 ¼ 0.969 w4 ¼ 1/14
Cf ¼ 20.53 kg s�1 d6 ¼ 0.990
Ce ¼ 8.90 kW d7 ¼ 0.965
Ctot ¼ 747 kV d8 ¼ 0.963 DOI5 ¼ 0.963 w5 ¼ 10/14
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3. Numerical solving

Aggregation methods based on weighting techniques tend to
increase the complexity of the shape of the response surface OF(X);
weighting may create numerous local minima, which makes the
Fig. 2. From design variables to the objective

Please cite this article in press as: P. Sebastian, et al., Multi-objective opt
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search for the global optimum of OF(X) more difficult. More to the
point, the design variable domain U is mixed since some variable
domains are discrete and sequential (number of condenser plates)
whereas others are continuous and real (mass flow rates and
temperatures). Therefore, optimization techniques based on the
function of multi-objective optimization.

imization of the design of two-stage flash evaporators: Part 2. Multi-
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analysis of the neighborhood of candidate solutions iteratively
improved from derivate calculations (conjugate gradients, etc.) are
difficult to implement and prove to be inefficient.

This problem has been addressed by developing a distributed
Genetic Algorithm [5] to perform the global optimization of the flash
evaporator. Genetic algorithms are nature-inspired algorithms [6],
which are receiving increasing interest in energy engineering and
sciences from heat transfer optimization [7e9] to energy system
synthesis [10e12]. These iterative algorithms enhance the perfor-
mances of populations of candidate solutions (individuals) based on
simulated competition between the individuals of the population.
Individuals are coded as a set of values corresponding to the design
variables. In other words, every individual is assigned to a particular
value of X. Optimization is performed by assessing the Objective
Function for every individual and individuals are competing for their
own survival in the population according to this desirability. Each
design variable xi is regarded as a gene of the individual and the
sequence {xi,., xiþk} as a gene sequence.

Competition is organized by means of four operators, namely
selection/reproduction, crossing, mutation and climbing operators.
Selection/reproduction is based on tournaments intended for
randomly selecting pairs of individuals and eliminating the less
desirable individual of the pair. This operator tends to favor desirable
individuals according to the Objective Function. Genetic algorithms
carry out a global exploration of the design search space U through
the mutation operator. Mutation is performed by randomly selecting
genes in the population and assigning new random values to them
inside the design search space U. Finally, the climbing operator
generates new genes by randomly selecting genes in the population
andconverting themintoaneighborgene,namelyby transforming the
valueof the selectedgene into a close value. This lastoperator supports
theglobal optimizationprocess in the search for local optima. Crossing,
mutation and climbing operators are linked to three probabilities
defining the proportion of individuals treated by these operators.
Crossing probability (pcr), mutation probability (pmu) and climbing
probability (pcl) have been evaluated through a sensitivity analysis:

pcr ¼ 0:8 pmu ¼ 0:05 pcl ¼ 0:15 (6)

Distributed genetic algorithms rely on the handling of population
subsets that evolve in a semi-isolated manner by regularly
�
DOj is preferable to DOi5DOi3DOj5wi < wj ðpreference relationÞ
DOj is as preferable as DOi5DOiwDOj5wi ¼ wj ðindifference relationÞ (7)
exchanging individuals (migrations). We developed an algorithm
with 4 populations migrating when the best individuals of each of
the isolated populations are no longer improved by the algorithm.
Migration is equivalent to a global combination of the population
and is activated as soon as the best individuals are not improved
during at least six iterations of the algorithm. Each of the isolated
populations contains 150 individuals. Iterations of the algorithm
consist of applying the four genetic operators to the isolated
populations (create new generations) and combining isolated pop-
ulations provided that they no longer improve theDesirability Index.
Iterations are stopped when DI optimization fails after ten genera-
tions. Due to their stochastic nature, Genetic algorithms cannot
guarantee the optimality of the design solutions resulting from the
optimization process. For this reason, as we note later in this paper,
different optimization calculations may result in different optimal
solutions.
Please cite this article in press as: P. Sebastian, et al., Multi-objective opti
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Weight parameters (yi and wi) of the desirability indexes (DOIi
and OF) involved in the aggregation process have no physical
meaning. For this reason, even for specialists in the domain of flash
evaporator design, it seems very difficult to evaluate them, namely
to properly balance their values. Weighting parameters are related
to expert knowledge which is difficult to formulate since it is
somewhat correlated to the context of the design project and is
dependent on the optimization solutions. Faced with this difficulty,
we propose to start the optimization from one particular configu-
ration of weight parameters and improve this solution step by step.
For simplicity’s sake, every weight parameter yi relating to each
of the Design Objective Indexes was fixed to one in the following
paragraphs. However, design solutions will be improved by
changing weighting parameters wi.
4. Sensitivity analysis and numerical results

4.1. Aggregation scenarios

Designing complex processes deals with antagonist phenomena
induced by both a high degree of complexity and combining
variables. Improvement in one particular performance generally
causes deterioration in one or several others. Improving the
transportability of flash evaporators, for instance, leads to power-
less systems since this downsizing process tends to decrease the
exchange surfaces of the condensers. Therefore, a feasible solution
is generally a compromise between all of the design objectives
(see [13] and [14]). In design processes human judgment is required
to select the most relevant solutions by taking into account
cognitive aspects which come from outside the application domain
of mathematical models.

Aggregationmethods andweight assignment allow designers to
classify solutions according to the satisfaction of design objectives.
A stronger weight on a particular DOI means that the associated
design objective is more relevant than the others in the whole
product life cycle. Introducing the notion of preference, we propose
a systematic weight assignment in this paper. Given a set of design
objectivesfDO1;DO2;DO3;DO4;DO5g and that each DOi is associ-
ated to a single index DOIi, which is linked to a unique weightwi,
the preference and indifference relations are defined as,
Using both the reflexivity and the transitivity of such relations, it
becomes possible to sort design objectives by setting orders of pref-
erences. Several levels of preference can then be identified from level
0, an initial state consisting of only indifference relations and homo-
geneousweights. Although thevalueofweights associated to this level
has no physicalmeaning, it will be set to 1 by default in this paper. The
maximumnumber of different preference levelswhich canbe found is
equal to the number of design objectives.Weight assignment is finally
established according to the level of preference of each design objec-
tive through an arbitrary scheme w ¼ f ðnÞ, where w is the weight
associated to the level n. Therefore, identical weights will be assigned
to two design objectives at the same preference level. Consider, for
instance, a two-stage flash evaporator designed with transportability
as the primary objective. Cooling power and the cost of the process are
also considered as quite relevant objectives for the users. This scenario
can be expressed in terms of preference relations as,
mization of the design of two-stage flash evaporators: Part 2. Multi-
rmalsci.2010.07.002



�
DO3wDO43DO53DO23DO1
w3 ¼ w4 < w5 < w2 < w1

with a scheme wi ¼
�
1=

P
wi if n ¼ 0

10� 2n�1=
P

wi otherwise
(8)
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The solution found using this particular aggregation scenario
presents properties which are required to satisfy both the design
objectives and their preferences. This is the topic of the following
chapter.

4.2. Results and discussion

This part deals with different feasible design solutions for the
two-stage flash evaporator. Each one translates a desire to orient
the design of the solution towards satisfying one of the design
objectives. Different orders of preference are combined, starting
from an initial configuration with a homogeneous weighting.
The initial solution, called iso-solution, is improved step by step,
assigning different weights to the DOIs. The iso-solution will be
used as an element of comparison. Using this process we are able to
determine the most salient characteristics for each scenario, and
define at least an Eco solution, for example, or a Low Cost solution.
Seven aggregation scenarios are performed:

- iso-scenario: initial configurationwith homogeneousweighting
- a-scenario: optimization of the transportability objective
- b-scenario: optimization of the cooling power objective
- g-scenario: optimization of the product quality objective
- d-scenario: optimization of the environmental efficiency

objective
- 3-scenario: optimization of the cost objective
- mix-scenario: configuration of the example in Section 4.1

For computing the design objective indexes and objective func-
tions, the weights yi are set to 1, whereas the wi are computed
with the formula given in Section 4.1. Fig. 3 shows some results from
optimizing the two-stage flash evaporator design. It displays the
properties expected from each optimal solution. The bars of the
design objective indexes are plotted on the desirability scale, which
corresponds to levels of satisfaction of the design objectives.
Fig. 3. Comparative analysis of th

Please cite this article in press as: P. Sebastian, et al., Multi-objective opt
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The figure reveals that any improvement in the DOI index of
one particular design objective tends to degrade the other indexes.
Whatever the value of the DOI, the aggregation formula property
makes the solution still acceptable, even if the result is near 0.
For example, some improvement in the transportability of the iso-
solution (a-scenario), i.e. both its size andmass, tend to decrease the
desirability of the cooling power and objective cost. In fact, if the size
is reduced, the condenser exchange surface decreases and a higher
fluid consumption is required to cool down the product. Thus, the
resulting solution will be smaller and lighter than the iso-solution,
but powerless and more expensive. In the same way, a rigorous
comparison between all scenarios identifies some antagonistic
design objectives such as:

- Transportability and cooling power objectives cannot be
satisfied simultaneously,

- Fluid consumption increases while the system dimensions
decrease,

- Operation costs decrease as the system becomes powerless.

Using preference relations leads to some balance between two
antagonistic phenomena, reaching solutions which are trade-offs
among the design objectives. Starting from the a-scenario solution,
cooling power and cost objectives can be improved according to the
mix-scenario. The resulting solution is not as good as the a-solution
for the transportability objective, but its cooling power and cost
objectives are considerably better. Whatever theweighting applied,
the environmental efficiency objective seems to keep a constant
value. The DOI relating to environmental efficiency is computed
from the desirability of the eco-indicator and the consumption
of fluids or electrical energy. Desirability on the eco-indicator
increases while the mass of the system decreases, and fluid
consumption increases while the size of the system decreases.
Moreover, electrical energy consumption does not vary signifi-
cantly. Therefore, the balance of the aggregation formula remains
e Design Objective Indexes.

imization of the design of two-stage flash evaporators: Part 2. Multi-
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constant. From the design and performance variable given in Table
2, the most salient characteristic for scenarios a, b, d and 3 can be
determined:

- A compact system is obtained by reducing both size and
mass. The number of plates in the LP condenser and the tank
dimensions are reduced and such a system therefore allows
a lower inlet product treatment, at a lower temperature. As the
cooling power of the system is less, more coolant liquid is
required, which increases the operative costs. However, the
eco-indicator is very high since it is determined from the mass
of the system.

- Conversely, a powerful solution (cooling power) is obtained by
increasing the exchange surface of the condensers and the tank
dimensions. Consequently, more inlet product can be treated
at a higher inlet temperature.

- Designing an “eco-solution” consists of finding a compact
system with the lowest possible fluid consumption, since the
eco-indicator is linked to the mass and we have seen that
the electrical energy consumption has little influence. Basing
the “eco-solutions” design on the eco-indicator criteria
does not seem appropriate. The fluid consumption is the most
significant variable able to qualify an “eco-solution” and this
variable is improved by optimizing the system size.

- Low cost solutions (total cost of ownership) correspond to
evaporators as tall as possible, and requiring the minimum
cooling power. This is therefore able to treat the same quantity
of inlet product as a compact system but using less coolant.

Through this study, we have shown that using strategy aggre-
gation based on preference relations leads to an oriented solution,
satisfying some design objectives chosen by the designer. This
solution is optimal for the scenario applied, and thus strongly
dependent on the values of theweighting parameters. This difficulty
results from the lack of physical sense of these parameters. Wemust
thereforewonder if there is an optimal set ofweightswhich produce
a global optimal solution instead of a local optimum. In the following
section, a sensitivity analysis is performed in order to consider
this problem and observe the influence of weighting parameters on
solutions.
Fig. 4. Weighting parameters
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4.3. Sensitivity analysis

The sensitivity analysis has been performed by assigning
variable weights to particular design objectives while keeping the
others constant. In this case we focus on the transportability and
cooling power DOI indexes. Starting form the iso-scenario, these
DOI indexes (respectively DOI1 and DOI2) have been assigned to
increasing values of the weight parameters. Two different optimi-
zations are performed corresponding to weight values of w1 or w2
ranging between 0.2 and 0.95. The evolutions of DOI1, DOI2, d1 and
d2 with the weight value, are shown in Fig. 4. DOI1 and DOI2
correspond to optimal solutions computed by the genetic algorithm
and are mapped onto a desirability scale. Several computations
have been performed for every value of the weighting parameters
and, as the genetic algorithm did not reach the global optimum and
is based on the generation of random numbers, this results in
different optimal solutions. It is worth remembering here that the
transportability objective (DOI1) results from the aggregation of the
desirability functions of the size andmass (d1 and d2) of the system.

Fig. 4 highlights the fact that increasing w1 (respectively w2)
makes DOI1 (respectively DOI2) increase until a limit value is
reached. It would therefore appear that above a certain weight
value, DOI values no longer vary significantly. The same observation
can be made for the associated antagonist design objective.
The larger the weight, the more the antagonist DOI decreases, until
it also reaches a limit value. However, forw equals 2, optimization of
the transportability and cooling power objectives can lead to the
same solution. Assigning greater and greater weights (from 10 for
example) ensures that radically different solutions are obtained.
More to the point, this figure shows that when the transportability
objective of the system is optimized, only the size of the system is
actually improved. The mass keeps a constant value close to 1 and
the criterion set on the mass are easily satisfied. The mass is not
a restrictive element for optimization. If we set more restrictive
criteria on the mass, changing the maximal capacity of the truck to
6500 kg, feasible solutions are still found. Solutions for flash evap-
orators are very compact (2053 kg for 2.89 m2) but their cooling
power is at the limit of the minimum required (412 kW). Thus,
we are no longer able to increase compactness without any dete-
rioration in the cooling power.
and sensitivity analysis.
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5. Conclusion

Multi-objective optimization of complex processes remains
a challenging research topic. Faced with the rapid development
of some innovative energy processes, more and more constraints
relating to their life cycle (manufacturability, transportability, etc.)
must be taken into account in the early phases of the design process
in order to improve the reliability of design decisions. This difficulty
entails the development of novel approaches to the optimization of
design applications. In this paper, a modeling method based on
the aggregation of physical, environmental, economical models with
design objectives throughdesirability functions and indexes has been
proposed. This method has proved to be effective to some extent
since it is able to reach efficient solutions froma design analysis point
of view. Numerical solving difficulties may be overcome by using
distributed genetic algorithms, and design objectives may be satis-
fied by controlling a set ofweighting parameters, however, weighting
parameters must be adjusted through a sensitivity analysis, which
remains the bottleneck of this kind of approach.

According to our model and regarding the particular design
problem discussed in this paper, this study proves that it is no longer
possible to drastically improve one of the design objectives of the
two-stage evaporator without deterioration in one or several of the
other design objectives. Anymajor improvements in this technology
will have to rely on novel adaptations of the concept. Such adapta-
tions may concern the droplet filtration system, which remains
problematic since, due to the flash phenomenon, the diameter
ranges of the droplets are difficult to predict. Other improvements
may concern the pumps in the system which are expensive and
prevent any increase in investment cost. Current developments in
the optimization method concern robustness optimization.
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