
                          

LETTER • OPEN ACCESS

Active colloids in harmonic optical potentials(a)

To cite this article: I. Buttinoni et al 2022 EPL 140 27001

 

View the article online for updates and enhancements.

You may also like
Proceedings of the Colloidal Dispersions in
External Fields II Conference (Bonn-Bad
Godesberg, 31 March–2 April 2008)
H Löwen

-

The near UV emission spectra of the Li*He
excimers: experimental and theoretical
studies
W Behmenburg, A Kaiser, H Bettermann
et al.

-

Interaction between charged colloids in a
low dielectric constant solvent
E. Allahyarov, E. Zaccarelli, F. Sciortino et
al.

-

This content was downloaded from IP address 147.210.50.42 on 28/11/2022 at 14:02

https://doi.org/10.1209/0295-5075/ac9c28
/article/10.1088/0953-8984/20/40/400301
/article/10.1088/0953-8984/20/40/400301
/article/10.1088/0953-8984/20/40/400301
/article/10.1088/0953-4075/35/4/301
/article/10.1088/0953-4075/35/4/301
/article/10.1088/0953-4075/35/4/301
/article/10.1209/0295-5075/78/38002
/article/10.1209/0295-5075/78/38002


October 2022

EPL, 140 (2022) 27001 www.epljournal.org
doi: 10.1209/0295-5075/ac9c28

Focus Article

Active colloids in harmonic optical potentials(a)

I. Buttinoni
1(b)

, L. Caprini
2(c)

, L. Alvarez
3,4

, F. J. Schwarzendahl
2 and H. Löwen
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Abstract – We study the motion of active Janus colloids in an optical trap using experiments,
theory and numerical simulations. To achieve isotropic and harmonic confinement, we prototype
microparticles with a nearly uniform refractive index and verify that, in the absence of activity, the
confined motion is identical to that of optically homogeneous Brownian particles. If the activity is
turned on by means of vertical AC fields, the density distributions are described by Boltzmann-like
statistics (Gaussian with effective temperature) only for strongly confining traps, whereas weaker
potentials give rise to non-Gaussian distributions with a bimodal shape. Our results showcase
a simple way to study active soft matter in optical potential landscapes eliminating the optical
torque.
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Optical tweezers, i.e., tightly focused laser beams,
are widely used in soft condensed matter to confine
and manipulate micro- and nanospheres that have a
refractive index larger than the one of the surrounding
medium [1–3]. Their success is partly due to the fact
that, in a very good approximation, the sum of the
forces exerted by the trap in the focal plane normal
to the beam’s propagation gives rise to a harmonic
potential well. Because the confining forces behave as
springs of stiffness k, the equilibrium spatial probability
distribution of a trapped particle is a Gaussian curve
centred around the midpoint, and any external force F
can be quantified from the average displacement of the
particle from the trap’s centre. This simple behaviour
prompted a plethora of fundamental and applied studies
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including the measurement of interaction forces with
sub-piconewton accuracy (photonicforcesmicroscopic)
[4–9], the investigation of resonance and stochastic
phenomena [10–14], and the development of microscopic
heat engines [15,16] and information machines [17].

The harmonic approximation is valid so long as the
trapped object is homogenous in shape and composi-
tion [2,18] —a condition that does not usually apply to mi-
croswimmers since symmetry breaking is a key ingredient
to achieving locomotion at the micro- and nanoscale [19].
Synthetic active colloids, i.e., microparticles that undergo
self-propulsion rather than being in thermal equilibrium
with the fluid [20], are often fabricated by depositing onto
one hemisphere of bare polymer or silica particles a second
material (e.g., a layer of metal). The “cap” interacts with
the surrounding liquid to generate local slip flows, and
thus self-propulsion [21], but at the same time introduces
refractive-index mismatches so that, in combination with
optical tweezers, the particles can no longer be assumed
as confined in a spring-like potential [22–25]. Because of
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this, the state of the art of light fields applied to active
colloids is, so far, mostly limited to optical landscapes
that reorient the particles or tune their velocities [26–29],
but do not provide a confining harmonic potential (except
for the experiments in ref. [30], done with nanoparticles).
In contrast, the latter situation has been studied theo-
retically [31–36], in granular active systems [37] and in
acoustic confinements [38].

In this work, we fabricate Janus colloidal particles with
a nearly homogeneous refractive index, confine them in a
tightly focused laser beam, and activate them by means
of AC electric fields applied in the direction perpendicu-
lar to the plane of motion. We demonstrate that, despite
the asymmetric material composition of the particles, the
optical trap is harmonic. Within a range of swimming ve-
locities and laser intensities, the active motion in the op-
tical tweezer agrees well with theoretical predictions and
numerical simulations of active Brownian particles in har-
monic wells, showing non-Boltzmann properties.

The remainder of the manuscript is structured as fol-
lows. As a preliminary study, firstly, we consider the active
motion of optically homogenous —yet Janus— particles
without confinements (swimming velocity V0 > 0, trap’s
stiffness k = 0). Secondly, we introduce and characterise
the confinement, considering optically trapped particles
that are “passive”, i.e., there without activity (V0 = 0,
k > 0). Finally, we focus on active Brownian particles in
optical traps (V0 > 0, k > 0), interpreting the main result
in a final discussion.

Unconfined active colloids (V0 > 0, k = 0). –
We prepare Janus colloids by coating one hemisphere

of polymethyl methacrylate PMMA microparticles (radius
R � 1 μm, refractive index nPMMA=1.48, Microparticles
GmbH) with a thin layer of silicon dioxide (SiO2, thickness
λ = 10 nm, nSiO2=1.46–1.48 [39,40]) using a magnetron
sputter coater (PVD Inc.). A scanning electron micro-
scope (SEM) snapshot of the resulting Janus particle is
shown in the inset of fig. 1(a) (note that the “wrinkles”
are due to partial buckling of PMMA in high vacuum, i.e.,
during SiO2 deposition). The PMMA-SiO2 colloidal parti-
cles are dispersed in deionised water and pipetted in a thin
sample cell (thickness 120 μm) made of two planar nega-
tively charged electrodes (indium tin oxide coated glasses
functionalised with poly-sodium-4-styrenesulfonate, sur-
face resistivity 8–12 Ω/sq, Merck KGaA). We apply ver-
tical AC electric fields at frequency f = 4 kHz and use an
inverted light microscope (Olympus IX73) to look at the
two-dimensional motion of the particles onto the bottom
electrode, where they sink due to gravity.

The PMMA-SiO2 microspheres are active because of
induced-charge electro-osmosis (ICEO, see the sketch in
fig. 1(a)). The electric field, E, applied in the verti-
cal direction sets in motion the electrical double layer of
the substrate, polarises the particle and, ultimately, pro-
duces recirculating hydrodynamic flows [41]. If the parti-
cle is Janus, the magnitude (or even the direction) of the

Fig. 1: Unconfined active colloids. (a) Schematic illustration
of self-propulsion due to induced-charge electroosmotic flows
(ICEO) under AC electric fields applied in the vertical direc-
tion. Inset: scanning electron microscopy image of a PMMA-
SiO2 colloidal particle. (b) Two-dimensional trajectory of a
PMMA-SiO2 particle swimming just above the bottom elec-
trode (E = 66 V/mm). (c) Characteristic reorientation time,
τR, in the 2D plane of motion as a function of the swimming
velocity, V0. (d) V0 plotted against the electric field squared.
The line is a linear fit. In (c) and (d) each data point is an
average of 15–20 particles.

rolls near the two faces is different, causing net motion of
the particles in the plane parallel to the electrode. This
type of self-propulsion was demonstrated for both hybrid
dimers [42–44] and Janus colloids [45] swimming onto con-
ductive surfaces; remarkably, it does not require a metallic
coating, in contrast to other self-propulsion mechanisms
such as induced-charge electrophoresis (ICEP) [46].

Figure 1(b) shows a typical active trajectory; the
PMMA-SiO2 particle swims at constant velocity V0 along
the axis linking the poles of the two hemispheres and reori-
ents according to its rotational diffusion time τR = D−1

R =
(8πηR3)/(kBT) (fig. 1(c), horizontal line), where η is the
water viscosity and kBT is the thermal energy at room
temperature. Despite the fact that our spherical colloidal
particles obey the Stokes-Einstein relation in three dimen-
sions, rotational diffusion takes place only in 2D [45,46],
leading to a fully two-dimensional active motion just above
the bottom electrode (fig. 1(b)). τR and V0 are extracted
by fitting the mean squared displacement (MSD) [20]; τR

does not depend on the activity, V0 (fig. 1(c)), whereas
V0 increases linearly with the electric field squared, E2

(fig. 1(d)) [42,43]. Due to the lack of optical contrast be-
tween the two hemispheres, which is paramount for optical
tweezing, we are unable to resolve the local orientation.
Nonetheless we speculate that the particles swim with the
SiO2 hemisphere heading, in analogy with polystyrene-
silica dumbbells [43].
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Confined passive colloids (V0 = 0, k > 0). – We
now consider the scenario in which the Janus particles
are not active (E = 0, V0 = 0) and confine them in
two-dimensional optical trap, imposed by a focused laser
beam propagating from above (wavelength, λ = 532 nm,
note that out-of-plane motion due to optical scattering
force is hindered by the underlying surface). We measure
their MSD (fig. 2(a), orange curve) and spatial probability
distribution (p(x), fig. 2(d)), and compare them to those
of homogeneous (see blue data in fig. 2(a) and fig. 2(b))
and Pt-coated (see red data in fig. 2(a) and fig. 2(c)) SiO2

colloids of similar size. The latter particle is chosen as
model common synthetic microswimmer since the major-
ity of active microspheres available to date are equipped
with metallic caps. Notwithstanding, note that in this
section none of the particles are active.

The dynamics of an optically homogeneous microsphere
in an optical trap centred on the origin is described by a
simple overdamped (diffusive) equation of motion in two
dimensions for the particle position x,

γẋ = F(x) + γ
√

2DW, (1)

where W is δ-correlated white noise with unit variance and
zero average. The constants γ = 6πηR and D = KBT/γ
are the friction and diffusion coefficients, respectively. The
term F(x) describes the confinement force due to the op-
tical trap; in first approximation, it can be recast onto a
linear force,

F(x) ≈ −kx, (2)

where k is the trap’s stiffness (or spring constant) which
determines the curvature of the harmonic potential. As
a result, the density distribution projected onto the x-
axis, p(x), is described by a Gaussian curve of variance
σ2 = (kBT ) /k (black lines in figs. 2(b)–(d) —we use this
formula to calibrate experimentally the optical traps) and
the MSD for the x-coordinates has the following form:

MSD(t) = 2
kBT
k

(
1 − e− k

γ t
)

. (3)

It is diffusive for t → 0 and reaches a plateau at 2kBT/k
when t � γ/k, as usual for passive Brownian particles.
Note, however, that the optical trap has a finite size and
the harmonic approximation breaks down at the boundary
where the shape of potential bends to a maximum.

The dynamics described above is observed for both
bare SiO2 colloids (blue data in fig. 2 and supplementary
video Video S1.mp4 (S1)) and PMMA-SiO2 Janus micro-
spheres (orange data in fig. 2 and supplementary video
Video S2.mp4 (S2)). In contrast, microparticles with
metallic caps behave differently (supplementary video
Video S3.mp4 (S3)): the red data in fig. 2 indicate that
at short timescales (up to t ≈ 1 s) the motion of Pt-SiO2

colloids in the trap is superdiffusive, possibly due to addi-
tional optical “kicks” as well as self-thermophoretic effects
similar to those observed in ref. [25]. As such, the corre-
sponding Gaussian density distribution (fig. 2(c)) has a

Fig. 2: Confined passive colloids. (a) MSD of colloidal parti-
cles (see legend) in an optical trap of stiffness k = 0.18 pN/μm.
(b)–(d) Corresponding density distributions evaluated for ap-
proximately N = 104 coordinates. The histograms are nor-
malized: the number of elements in the bin is divided by the
number of elements in the input data. The solid black lines
represent the Gaussian distributions expected in a harmonic
confinement of curvature k, as described in the main text.

width that is remarkably larger than what is expected in
a harmonic confinement of curvature k, consequently de-
parting from a Boltzmann distribution (even if Gaussian).
Before saturation, the MSD of Pt-SiO2 particles also ex-
hibits a clear oscillatory behaviour (fig. 2, red data for
t > 1 s). These oscillations confirm the presence of optical
torques, stemming from the fact that the optical gradient
force acts more on the Pt cap than the uncoated hemi-
sphere [22–25].

A comprehensive study of the motion of optically in-
homogeneous particles in laser traps is beyond the scope
of this manuscript because it involves effects we want to
avoid. Nonetheless, we expect that the behaviour shown
by the red data in fig. 2 affects all active systems where
self-propulsion is achieved by breaking the symmetric op-
tical composition of the particles. This is not the case of
PMMA-SiO2 colloids, which are optically identical to their
homogeneous counterparts; they are therefore a suitable
choice to study active motion in combination with har-
monic optical potentials.

Confined active colloids (V0 > 0, k > 0). – Con-
fined active Brownian particles display different proper-
ties with respect to their “passive” counterparts. While
the dynamics of a “passive” colloid in a harmonic trap
is fully determined by the competition between thermal
fluctuations and the confining force (see eq. (1)), active
microbeads have an additional effective swimming (self-
propulsion) force of magnitude FS = 6πηRV0. If the force
due to activity is smaller than the confining force, the
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swimmer remains confined in the harmonic potential; oth-
erwise, the optical trap is too weak to hold back the ac-
tive colloid, which will escape when FS exceeds the optical
force exerted on the particles at the boundary, where the
optical potential reaches a maximum. This behaviour
is illustrated in the supplementary videos Video S4.mp4
(S4) and Video S5.mp4 (S5). In S4, a colloid swim-
ming at V0 = 1.7 μm/s (E = 40 V/mm) is confined in
an optical trap of stiffness k = 0.085 pN/μm. Assum-
ing a displacement x = 1 μm (along the x-direction) with
respect to the trap’s centre, the optical restoring force,
F(x) = −kx = −85 fN, is approximately twice the ef-
fective swimming force. The particle immediately leaves
the trap if the laser is turned off (video S4) or the self-
propulsion velocity is increased in situ to V0 = 5 μm/s (E
= 66 V/mm, FS = 100 fN, video S5), while keeping the
stiffness of the laser trap constant.

We consider the case of fully trapped active particles
and model their dynamics through a popular model in the
field of active matter, known as active Brownian particles
(ABP) [47–52]. The position of the colloid, x, is described
by an overdamped equation of motion in two dimensions,

γẋ = γ
√

2DW + F(x) + γV0n, (4)

which resembles eq. (1) except for the additional force,
γV0n, accounting for the self-propulsion mechanism. The
swim velocity, V0, is directed onto the orientational vector
n=(cosθ, sinθ), where θ corresponds to the orientational
angle of the active particle. According to the ABP model,
θ evolves as

θ̇ =
√

2
τR

ξ, (5)

where ξ is another Gaussian random variable with zero
mean and unit variance, statistically independent of W.
We identify two dimensionless parameters that control the
dynamics in the harmonic confinement: the first can be in-
terpreted as a reduced spring constant k′ = τRk/γ, given
by the ratio between the rotational diffusion time and the
time due to the external optical force; the second corre-
sponds to a reduced swim velocity, V ′

0 = V0

√
τR/D, which

quantifies the strength of active and passive fluctuations
(note that V 2

0 τR is the diffusion of potential-free active
particles). In practice, k′ and V ′

0 are experimentally mod-
ified through k (i.e., by tuning the laser power) and V0

(i.e., by tuning the electric field), as τR, γ and D are con-
stant.

Following ref. [31] (see also sect. 4 of ref. [53]), we can
also obtain an analytical approximation for the radial den-
sity distribution ρ(r), holding for k′ � 1 (experimentally
satisfied for all the values of k) and for self-propulsion ve-
locities that are large enough (so that V ′

0 � 1):

ρ(r) ∼ r1/2exp
(

− 1
2D

(
k+

1
2τR

)(
r− V0

k + (2τR)−1

)2)
.

(6)
The integration of eq. (6) over one of the two Carte-
sian components provides a prediction for p(x) (a simple

explicit expression for this integral is unknown in the lit-
erature to the best of our knowledge).

In fig. 3, we investigate the reduced distribution in
Cartesian coordinates projected onto the x-axis, p(x), and
the radial distribution, ρ(r), for different values of k′ and
V ′

0 . The histograms are experimental data, whereas the
solid lines correspond to numerical or theoretical predic-
tions. When applicable, the analytical result of eq. (6) is
used and marked in red to distinguish it from ABP simula-
tions. Curves from simulations (black) are consistent with
the theoretical predictions (red). Grey panels are inserted
in correspondence of the values of k′ and V ′

0 for which the
active particles escape the harmonic trap. The shape of
p(x) reveals a transition from a unimodal (Gaussian) to
a bimodal (non-Gaussian) distribution, when the reduced
swim velocity V ′

0 increases (faster particles) at fixed k′ (see
fig. 3(h) → (e) and (c) → (a)), or when k′ is decreased
(weaker traps) at fixed V′

0 (see fig. 3(a) → (b); (c) → (d)
and (e) → (f)). In correspondence with this transition,
the peak of ρ(r) shifts towards a larger value of r com-
pared to the Gaussian cases, and even much larger as V ′

0

is increased (fig. 3(k), (m), (o)). In the bimodal regime
(fig. 3(a), (c), (e)), p(x) shows two symmetric peaks far
from the minimum of the potential trap, where p(x) is de-
pleted: an active particle persistently moves against the
potential force (i.e., it climbs up the potential barrier)
until its self-propulsion is balanced by the optical force.

Equation (6) reflects the bimodality of the density dis-
tribution, shown in simulations of ABP confined in a
harmonic trap [32,54–58], and provides a distinct (and
needed) feature compared to the results obtained through
other popular models in active matter [33,59–62]. As
shown in fig. 3(k), (m) and (o), formula (6) is also in good
agreement with experiments: the expression for ρ(r) (red
curve) is roughly centred around V0/[k/γ + 1/(2τR)] ∼
V0γ/k (for kτR/γ � 1) and accounts for the shift of
the main peak observed in fig. 3. Remarkably, the best
Gaussian fits reported in the same panels (dashed blue
lines) confirm the non-Gaussian effects occurring in ρ(r).
A fair agreement between theory and experiments (less
good than for ρ(r) because of worse statistics) is also ob-
tained for p(x), where the bimodality and the positions
of the peaks are correctly predicted by the integral form
of eq. (6). In the Gaussian cases (all the other panels
in fig. 3), experiments are reproduced through numerical
simulations of the dynamics (eq. (4)).

Discussion. – We investigated active colloids that
break symmetry to achieve self-propulsion, while conserv-
ing the uniform optical properties needed to confine them
in harmonic laser potentials. After verifying indepen-
dently that the Janus microspheres 1) undergo free active
Brownian motion in the absence of confinements and 2) are
laser-tweezed just as homogenous colloids in the absence
of activity, we studied the active motion in harmonic traps
as a function of the curvature of the optical potential, k,
and swimming velocity, V0.
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Fig. 3: Confined active colloids. (a)–(j) Normalized density distribution p(x) (along a single axis x) and (k)–(t) radial density
distribution ρ(r) (along the radial axis r) for different values of reduced potential strength k′ = τRk/γ and reduced swim
velocity V ′

0 = V0

√
τR/D. The grey panels (top, left) are drawn for the regimes of parameters where active particles escape

from the trap. The two red solid lines between panels qualitatively mark the transition between bimodal and unimodal p(x).
The histograms and solid lines are obtained from experiments (each trajectory is measured for approximately 10 minutes) and
theoretical predictions (or simulations), respectively. In particular, the red lines in panels (a), (c) and (e) are calculated from
eq. (6), while the red lines in panels (k), (m) and (o) are obtained by integrating eq. (6) along one of the two spatial coordinates.
The dashed blue lines in panels (k), (m), (o) are the results of best (radial) Gaussian fits, f(r) = b r exp

(−ar2
)

where a and b
are two fitting parameters. Finally, the solid black curves have been obtained through numerical simulations of the dynamics
(eq. (4)).

The active dynamics in the trap strongly differs from
the one of “passive” Brownian colloids; the Gaussian
behaviour breaks down when the swimmers are fast or
when the harmonic potential is weak. Nonetheless, a re-
markable observation is that the Boltzmann-like statis-
tics (Gaussian with effective temperature) is retained in
strongly confining potential wells. At first glance, our
result qualitatively disagrees with ref. [38], where Janus
particles (platinum/polystyrene), swimming in hydrogen
peroxide solution and harmonically confined in acoustic
traps, show non-Boltzmann distributions for stiff traps
(large values of k) and Gaussian distributions for weak
traps (small values of k). In ref. [38], the transition is in-
duced by the increase of the reduced spring constant, k′

(in particular, when k′ crosses one), interpreted in terms
of the competition between persistence length, V0τR, and
the effective width of the potential, V0k/γ. On the con-
trary, our study focuses on the regime k′ � 1 for all the
values of the trap stiffness considered. In this regime, the
transition (Gaussian → non-Gaussian shape of p(x)) is in-
duced by the increase of the reduced swim velocity, V ′

0 ,
and the decrease of the potential stiffness, k′. This occurs
because stronger traps reduce the ability of active par-
ticles to climb up the potential barrier so that they are

only responsible for a reduction of the variance of p(x)
without affecting its Gaussian shape (see fig. 3(g) → (f);
(j) → (i) → (h)). This effect is qualitatively in agree-
ment with our intuition coming from the passive scenario.
However, unlike the case of passive particles, the variance
of p(x) does not scale as ∼ 1/k (not shown). This ob-
servation implies the occurrence of non-Boltzmann dis-
tributions also in the regime of parameters where p(x)
is characterised by a Gaussian shape. Similarly, the in-
crease of V ′

0 (for low V ′
0 and large values of k′) leads to

the variance increase of the distribution, showing a phe-
nomenology qualitatively consistent with the increase of
the effective active temperature (see fig. 3(i) → (f); (j) →
(g) → (d)). Moreover, its dependence on the model pa-
rameters goes beyond the simple scaling ∼ V 2

0 /DR (not
shown), i.e., the effective diffusion typical of an uncon-
fined active particle. The breaking of these scalings of the
variance (∼ 1/k and ∼ V 2

0 τR) occurs because the system
is far from the equilibrium for all the combinations of pa-
rameters of k′ and V ′

0 experimentally investigated.
Finally, we highlight the advantages of our experimen-

tal system. Firstly, the confining and swimming force
(F = −kx and FS = γV0n) have similar magnitude and
can be both tuned in situ —by changing the laser power
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and the strength of the AC electric field, respectively— to
optically trap or release on demand the microswimmers.
Secondly, the optical traps have a size comparable to the
particle’s diameter, as opposed to existing experimental
works of active colloids in harmonic wells [37,38], where
the confinements are much larger. Lastly, unlike many
experiments in which active particles are used in com-
bination with laser fields [26–28], here the optical beam
does not alter the self-propulsion mechanism, but only
provides a confining potential. All in all, these features
are paramount to confine two particles in distinct traps
and measure the pair interaction as a function of the rela-
tive distance, or study active Brownian motion in complex
potential landscapes (e.g., periodic or random substrate
potentials, time-modulated traps, etc.).
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[39] Rodŕıguez-de Marcos L. V., Larruquert J. I.,
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Phys.: Condens. Matter, 34 (2021) 035101.

27001-p7


