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Abstract
Fault detection and isolation on hydraulic systems are
very important to ensure safety and avoid disasters.
In this paper, a fault detection and isolation method,
based on the flatness property of nonlinear systems,
is experimentally applied on the three-tank system,
which is considered as a popular prototype of hydraulic
systems. Specifically, fault indicators, called residues,
are generated using flat output measurements, and for
the purpose of fault isolation, a definition of the isola-
bility is introduced. This definition allows the charac-
terization of flat outputs that are useful for fault iso-
lation. A sensitivity analysis is proposed in order to
improve the robustness of the method. Multiplicative
faults are considered on sensors and actuators.
Keywords— Hydraulic system, Flat system, Fault

detection and isolation, Three-tank system

1 Introduction
The three-tank system is considered as a representa-
tive process of the aircraft fuel tank system, used by
researchers to test various fault detection and isolation
(FDI) methods. The fuel storage in the tanks and fuel
consumption have a significant impact on the CG posi-
tion of the aircraft [7]. In particular, the position of the
center of gravity (CG) of an aircraft is very important
for its stability and safety. Therefore, controlling fuel
levels in each tank is essential to providing the desired
CG position and guarantee the safety of the aircraft.
To do this, it is important to have correct information
about the fuel level in each tank and to have fuel flow
supervision. Accordingly, any fault on the aircraft fuel
system sensors or actuators may affect the aircraft’s
CG control and cause disasters. For this purpose, the
application of a FDI technique on the aircraft fuel tank
system is important to detect and isolate faults on sen-
sors and actuators.

The three-tank system has been considered previ-
ously for validation of FDI methodologies. The authors
in [6] tested a robust fault detection filter in order to

detect and isolate faults on the three-tank sensors and
actuators, and in [14], a nonlinear observer has been
designed, based on the nonlinear model of the three-
tank system, in order to detect a leakage from a pipe.

FDI methods are classically based on the notion of
redundant measurements which can be obtained either
by multiple sensors or analytical components generat-
ing fault indicators, called residues. They represent
the gap between each measurement (physical or ana-
lytical). For survey papers on FDI see [21, 16]. In the
ideal case of noise free observations, if all the residues
are equal to zero, then there is no fault on the system.
However, if at least one residue is different from zero,
then a fault is detected. In practice, due to the pres-
ence of noise on the system, the residues are compared
next to fixed thresholds. If at least one residue exceeds
its threshold, then a fault is detected, otherwise, there
is no fault on the system. Studies on tuning thresholds
can be found in [2, 5].

Recently, FDI methods based on the flatness prop-
erty of nonlinear systems have also been shown to be
effective in detecting and isolating faults on sensors and
actuators (see [9, 15, 10]). Roughly speaking, we recall
that a nonlinear system is said to be flat if there exists
a variable z, called flat output, such that all the system
states, inputs and outputs can be expressed in function
of z and a finite number of its successive time deriva-
tives. In [9], the flatness-based FDI method is used to
estimate actuator faults only. The developed method
in [15] is applied to linear systems and takes into ac-
count only sensor faults. In [10], the proposed flatness-
based FDI method can be applied on both linear and
nonlinear systems and takes into account sensor and
actuator faults. In this method, the measurement of
the flat output is used to calculate the redundant vari-
ables. The fault detection is common with the other
FDI methods: if a residue exceeds its threshold, then
a fault is detected. However, the isolability is more
complex and depends on the chosen flat output, and
sometimes multiple flat outputs are needed to isolate
all faults [17]. Nevertheless, the choice of these flat out-
puts is not arbitrary, i.e. there are flat outputs that,
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2 DESCRIPTION OF THE THREE-TANK SYSTEM

when used together, increase the isolability of faults
and others that do not.

Recently, in [12], an open-loop characterization of
the flat outputs for FDI has been briefly presented,
without being evaluated. It allows the definition of flat
outputs that are independent, which is useful for the
isolability. The contribution of this paper is twofold:

(i) Firstly, the flatness based FDI method presented
in [12] is improved by including a sensitivity anal-
ysis of the residues with respect to the faults in
order to improve its robustness.

(ii) Secondly, an experimental evaluation on a three-
tank benchmark in the presence of PI feedback
controller with a flatness based feedforward action
is provided.

The paper is organized as follows: Section 2 de-
scribes the benchmark. The flatness-based fault detec-
tion and isolation is presented in Section 3. Section 4
presents the extension of the characterization of the
flat outputs in closed-loop system. The experimental
results are given in Section 5. Finally, Section 6 con-
cludes the paper.

2 Description of the Three-Tank
System

In this paper, all the experiments were performed on
the three-tank system represented in Figure 1.

Figure 1: Three-tank system.

The three-tank system is about three cylindrical
tanks of cross-sectional area S, connected to each
other by means of pipes of section Sn. Each tank
is also connected to the central reservoir through a
pipe. Three piezo-resistive pressure transducer are in-
stalled on the top of each tank to measure the cor-
responding water level. The water is pumped from

the central reservoir into tanks T1 and T2 with the
help of two pumps (actuators) P1 and P2. The in-
coming flows, by unit of surface S, into tanks T1 and
T2 are denoted by u1(t) and u2(t) and are obtained
by using two electrical pumps with voltage input com-
mands uA1

(t) and uA2
(t). The actuator dynamics are

given by u̇i(t) = − 1
T ui(t) + K

T uAi(t), i = 1, 2, where T
and K denote, respectively, the time constant and the
gain of each actuator’s transfer function. Given that
the actuator dynamics are negligible with respect to
the system dynamics, in the sequel it is assumed that
ui(t) = KuAi(t).

The water level in the tank Ti is denoted by xi(t) ≥
0, i = 1, 2, 3. The maximum water level in any tank
is denoted by hmax and the maximum incoming flow
rate is denoted by umax. A descriptive scheme of the
system is presented in Figure 2.

Figure 2: Scheme of the three-tank System, Source: [11]

The explicit system of equations that describes the
dynamic of the three-tank model is given by:1

ẋ1 = −Q10(x1)−Q13(x1, x3) + u1 (1)
ẋ2 = −Q20(x2) +Q32(x2, x3) + u2 (2)
ẋ3 = Q13(x1, x3)−Q32(x2, x3)−Q30(x3) (3)

where Qi0, i = 1, 2, 3 represents the outflow by unit of
surface S between each tank and the central reservoir,
Q13 is the outflow between tank T1 and tank T3 and
Q32 the outflow between tank T3 and tank T2. In this
study, the valves that linking tanks T1 and T3 to the
central reservoir are considered closed, i.e. Q10 ≡ 0 and
Q30 ≡ 0. The outflows by unit of surface S are given

1In some of the following equations, the parentheses (t) are
dropped to save space.
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3 FLATNESS-BASED FDI

by:

Q13(x1, x3) = µ13 sgn(x1 − x3)
√
|x1 − x3| (4)

Q20(x2) = µ20 sgn(x2)
√
|x2| (5)

Q32(x2, x3) = µ32 sgn(x2 − x3)
√
|x3 − x2| (6)

where µ13, µ20 and µ32 are the flow coefficients and sgn
is the sign function given by:

sgn(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

. (7)

The parameters’ values of the three-tank system are
given in Table 1.

Parameters Symbol Value
Tank sectional area S 0.0154 m2

Pipes sectional area Sn 5× 10−5 m2

Outflow coefficient µ13 8.5273× 10−5

Outflow coefficient µ32 8.5563× 10−5

Outflow coefficient µ20 1.5901× 10−4

Maximum water level hmax 0.62 m
Maximum flow rate umax 10−4 m3/s

Table 1: Parameters’ values of the three-tank benchmark.

The experimental setup is composed of a DTS200
three-tank benchmark connected to a Windows 7 PC
using a MF624 plug-in card. Matlab/Simulink version
R2008b is available on the development PC.

For the FDI purpose, the three-tank model allows
the application of any type of fault on both sensors
and actuators:

(i) Multiplicative faults: sensor and actuator gains
may be reduced from 100% (total measurement)
to 0% (complete measurement failure);

(i) Additive faults: sensors and actuators may present
biases on their measurements.

Therefore, the sum of sensor and actuator faults can
be expressed mathematically by [13]:

Sfi (t) = αiSi(t) + Si0

Afj (t) = βjAj(t) + Aj0

where Sfi (t) and Si(t) (resp. Afj (t) and Aj(t)) denote
faulty and unfaulty ith sensor (resp. jth actuator) re-
spectively, Si0 and Aj0 are the biases (additive faults) of
ith sensor and jth actuator respectively, and 0 ≤ αi ≤ 1
and 0 ≤ βj ≤ 1 are gain loss factors (multiplicative
faults). The method presented in this paper can be
used for both multiplicative and additive faults.

Hypothesis: In the sequel, we assume that there is
only one fault at a time affecting sensors or actuators.

In the next section, we introduce a new definition of
the signature matrix by taking into account the sensi-
tivity of the residues with respect to the faults.

3 Flatness-Based FDI

3.1 Flatness-based residual generation

Consider the following nonlinear system{
ẋ = f(x, u)

y = h(x, u)
(8)

where x = (x1, . . . , xn)T is the state vector, belongs
to an n-dimensional manifold X, u = (u1, . . . , um)T ∈
Rm is the input vector, y = (y1, . . . , yp)

T ∈ Rp is the
measured output, m ≤ n, p ≥ m and rank

(
∂f
∂u

)
= m.

In the sequel, we denote by

ξ = (ξ, ξ̇, ξ̈, . . .) ∈ Rm∞ (9)

the sequence of infinite order jets of a vector ξ and by

ξ
(α)

, (ξ, ξ̇, . . . , ξ(α)) (10)

the truncation at the finite order α ∈ N. Let (x, u) ,
(x, u, u̇, ü, . . .) be a prolongation of the coordinates
(x, u) to the manifold of jets of infinite order X ,
X × Rm∞ [8, Chapter 5].

Definition 1 ([3]). The system (8) is said to be flat
at a point (x0, u0) ∈ X if, and only if, there exist a
vector z = (z1, . . . , zm)T ∈ Rm and two mappings ψ,
defined on a neighbourhood V of (x0, u0) ∈ X, and
ϕ = (ϕ0, ϕ1, . . .), defined on a neighbourhood W of
ψ(V) of z = (z, ż, . . .) , ψ(x0, u0) such that:

1. z is a function of x, u and successive derivatives
of u up to a finite order ν:

z = ψ(x, u, u̇, . . . , u(ν)); (11)

2. In turn, x and u are functions of z and its succes-
sive derivatives up to a finite order ρ:

(x, u) = (ϕ0(z, ż, . . . , z(ρ)), ϕ1(z, ż, . . . , z(ρ+1))),
(12)

hence, the expression of the output y is given by:

y = h(ϕ0(z, ż, . . . , z(ρ)), ϕ1(z, ż, . . . , z(ρ+1)));
(13)

3. The differential equation dϕ0

dt = f(ϕ0, ϕ1) is iden-
tically satisfied.

3



3.1 Flatness-based residual generation 3 FLATNESS-BASED FDI

The vector z is called flat output of the system and its
components z1, . . . , zm and their successive derivatives
are linearly independent. The mappings ψ and ϕ are
called isomorphisms of Lie-Bäcklund and are inverse of
one another.

Remark 1 ([4]). The property of flatness is not de-
fined globally on the state space X. It means that there
may exist points on X where the system is not flat,
or, in other words, where the isomorphisms of Lie-
Bäcklund ψ and ϕ are not defined. The set of such
points is called the set of intrinsic singularities. In [4]
it is shown that the set of equilibrium points that are
not first order controllable, is included in the set of
intrinsic singularities.

Let us assume the system (8) is flat with z =
(z1, . . . , zm)T as flat output. We also suppose that the
full output y is measured by sensors S1, . . . ,Sp and we
denote its measurement by

ys = (ys1, . . . , y
s
p)
T . (14)

Moreover, we assume that the values u1, . . . , um of
the input vector u, corresponding to the actuators
A1, . . . ,Am, are available at any moment.

In order to detect and isolate faults on physical sen-
sors and actuators, their analytical measurements must
first be computed. Equations (12) and (13) provide
an efficient way to construct these analytical measure-
ments, as long as the measurement of the flat output is
available during the system process. In the following,
we suppose that the measurement of the flat output is
available and we denote it by:

zs = (zs1, . . . , z
s
m)T . (15)

According to (12), the analytical state xz and input
uz, constructed via the flat output (15), read:

xz = ϕ0(zs
(ρ)

) and uz = ϕ1(zs
(ρ+1)

), (16)

and the analytical output yzk, is given, according to
(13), by:

yzk , hk(ϕ0(zs
(ρ)

), ϕ1(zs
(ρ+1)

)). (17)

The variables zs(ρ) and zs(ρ+1) are defined using (10).
The following definition of residues is borrowed from

[12]:

Definition 2. The kth-sensor residue RSk , for k =
1, . . . , p, and the lth-input residue RAl , for l = 1, . . . ,m,
are given by:

RSk = ysk − yzk, RAl = ul − uzl , (18)

respectively.

Then, the full vector of residues, denoted by r, is of
dimension p+m and given by:

r = (RS1 , . . . , RSm , RSm+1 , . . . , RSp , RA1 , . . . , RAm)T

= (r1, . . . , rm, rm+1, . . . , rp, rp+1, . . . , rp+m)T . (19)

Remark 2. We can consider, without loss of general-
ity, that:

zs = (ys1, . . . , y
s
m)T . (20)

In this case, the first m components of yz are equal to
the corresponding components of zs, then

yz = (zs, h̃(ϕ0(zs
(ρ)

), ϕ1(zs
(ρ+1)

)))T (21)

with

h̃ = hm+1(ϕ0(zs
(ρ)

),ϕ1(zs
(ρ+1)

), . . . ,

hp(ϕ0(zs
(ρ)

), ϕ1(zs
(ρ+1)

).

Hence, the first m residues are identically zero, and the
vector (19) becomes:

r = (0, . . . , 0, rm+1, . . . , rp, rp+1, . . . , rp+m)T . (22)

A zero residue means that even if a fault occurs on
one sensor or actuator, this residue cannot be affected.
Then, it is not useful either for detection or isolation
of the fault and we eliminate it from (22), which will
be truncated to the last p components:

rτ = (RSm+1 , . . . , RSp , RA1 , . . . , RAm)T

= (rτ1 , rτ2 , . . . , rτp)T . (23)

Remark 3. The components zs1, . . . , zsm of the flat out-
put (15), must be derivated in order to calculate the
values of yz and uz. Due to the presence of noise on
system’s sensors and actuators, filtering these deriva-
tives is inevitable. Many methods have been developed
in the literature and can be used here, we cite among
them the algebraic derivative estimation [20], high-gain
observers [19] and averaged finite difference methods
[1]. In our experiments on the real three-tank system,
we use the algebraic derivative estimation based on a
receding horizon strategy given in [20]:

y
(j)
k ≈ (−1)(j)

Ts

2

M∑
i=1

(Πi−1yk−i+1 + Πi yk−i) (24)

where y(j)k = y(j)(kTs) is the jth time derivative of
y(kTs), yk−i = y(tk−i) with tk−i = (k − i)Ts and
Ts = 1s is the sample time, M = T/Ts with T is small

4



3.2 Fault Detection and Isolation 4 FLAT OUTPUT CHARACTERIZATION

time window and Πi = ΠjNν(T, ti) with

ΠjNν(T, ti) =
(N + j + ν + 1)!(N + 1)!(−1)j

TN+j+ν+1

N−j∑
κ1=0

j∑
κ2=0

( (T − ti)ν+κ1+κ2(−ti)N−κ1−κ2

κ1!κ2!(N − j − κ1)!(j − κ2)!

1

(N − κ1 − κ2)!(ν + κ1 + κ2)!(N − κ1 + 1)

)
(25)

with N the order of the Taylor-series expansion and ν
is the number of additional integrals.

3.2 Fault Detection and Isolation

In order to detect and isolate faults using the flatness-
based approach, a definition of the signature matrix
was introduced in [12]. However, the former defini-
tion does not take into account the sensitivity of the
residues with respect to the faults. Indeed, sometimes
even if the residue depends on the faulty signal, it is
not sensitive enough to exceed its threshold. There-
fore, in this paper we propose a new definition of the
signature matrix definition:

Definition 3 (Signature matrix). Given the vec-
tor of residues r defined in (23) and ζ =
(ys1, . . . , y

s
p, u1, . . . , um) the vector of measurements

that are subject to faults, the signature matrix S, as-
sociated to zs, is given by:

S =

σ1,1 σ1,2 . . . σ1,p+m
...

... . . .
...

σp,1 σp,2 . . . σp,p+m

 (26)

with

σi,j ,

0 if ∂rτi
∂ζ

(%)
j

= 0 ∀% ∈ {0, 1, . . . , ρ+ 1},

1 if ∃ % ∈ {0, . . . , ρ+ 1} s.t.
∣∣∣ ∂rτi
∂ζ

(%)
j

∣∣∣ > Thi,j,%

(27)
where Thi,j,% is the threshold of the sensitivity of the
residue rτi with respect to the %-order derivative of the
variable ζj . The partial derivation is defined with re-
spect to the coordinates (x, u) and their prolongation.

Let Σj , for j = 1, . . . , p + m, be the jth-column of
the matrix S. Σj indicates if a residue ri is or is not
functionally affected by a fault on the measurement ζj :
σi,j = 0 means that ri is not affected by a fault on
ζj and σi,j = 1 if it is affected. Thi,j,% can be found
experimentally if sufficient experimental data with and
without faults is available or theoretically by consider-
ing also the relative influence of disturbances and un-
certainties on the residue (see also [2, Chapter 7]).

Definition 4 (Fault alarm signature). Each column
Σj of the signature matrix S is called fault alarm
signature or simply signature, associated to the sen-
sor/actuator ζj .

Remark 4. Given that the flat outputs are measured
by sensors (see Remark 2), the dimension of the signa-
ture matrix S will be reduced to p× (p+m).

The following definitions of detectability and isola-
bility in the flatness context are borrowed from [12]:

Definition 5 (Detectability). A fault on a sen-
sor/actuator ζj is detectable if there exists at least one
i ∈ {1, . . . , p+m} such that σi,j = 1.

Definition 6 (Isolability). A fault on a sensor Sk,
k = 1, . . . , p, is said isolable if its corresponding fault
alarm signature Σk in the signature matrix S is distinct
from the others, i.e.

Σk 6= Σj , ∀j = 1, . . . , p+m, j 6= k. (28)

An isolable fault on the actuator Al, for l = 1, . . . ,m,
is defined analogously:

Σp+l 6= Σj , ∀j = 1, . . . , p+m, j 6= p+ l. (29)

This definition of isolability reflects the fact that if
the signature matrix S has two identical signatures
Σi = Σj with i 6= j, then a fault that affects the sen-
sor/actuator ζi or ζj cannot be isolated. Therefore, in
order to be able to isolate as many faults as possible,
we need to increase the number of the residues by us-
ing several flat outputs. These flat outputs must be
independent, in the sense that if a fault affects one flat
output, not all the residues will be affected [18]. In the
next section, a characterization of the relation between
flat outputs is discussed.

4 Flat Output Characterization

We suppose that the flat system (8) admits different
flat outputs whose measurements are available. We
also define by µ the number of distinct signatures of
the matrix S, associated to a flat output, then µ is
the number of isolated faults. So, in order to get more
isolability of faults, we need to increase the number of
distinct signatures µ.

In the following, we denote the ith element of the set
of q flat output vectors Zi by

Zi = (zi1, . . . , zim)T . (30)

In order to characterize the flat outputs, the notion of
augmented signature matrix is defined:

5



5 EXPERIMENTAL RESULTS

Definition 7 (Augmented signature matrix). Let
Z1, . . . , Zq be q different measured flat outputs of the
flat system (8). The augmented signature matrix S̃
associated to Z1, . . . , Zq is defined by:

S̃ =


S1

S2

...
Sq

 (31)

where Si is the signature matrix associated to the flat
output vector Zi.

Definition 8 (Independence). Let S̃ be the augmented
signature matrix associated to Z1 and Z2:

S̃ =

(
S1

S2

)
,

µi, i = 1, 2, the number of distinct signatures of the
matrix Si and µ̃ the number of distinct signatures of
the augmented matrix S̃. We say that Z1 and Z2 are
independent if, and only if,

µ̃ > µ1 and µ̃ > µ2. (32)

According to Definition 8, the condition of full isola-
bility is achieved if the augmented matrix

S̃ =


S1

S2

...
Sq

 (33)

has p+m distinct signatures, i.e. µ̃ = p+m.
In [12], this characterization of the flat outputs is ap-

plied on the three-tank system in the open loop case,
and two flat outputs are needed to achieve full isolabil-
ity. In the open loop case, a fault that affects a sensor
has no impact on the actuators.

In this paper, we focus on the closed-loop case. As
such, the control action depends on the measured out-
puts. Therefore, a fault in a closed-loop system is prop-
agated with the feedback loop, increasing the difficulty
of fault isolation. For the system (8), this implies that
at least one input component ul is related to an output
measurement ysk. Then, the expression of the control
input ul is given by:

ul = urefl + Cl,k(yrefk − ysk) (34)

where, urefl and yrefk are the reference input and output
trajectories, respectively, and Cl,k denotes the discrete-
time feedback controller between the lth control input
and the kth measured output. In this case, the lth input
residue RAl is given by:

RAl = ul − uzl (35)

where ul is replaced by (34). So a fault that appears
on the sensor Sk and affects originally only the residue
RSk , in the closed-loop case, affects both residues RSk

and RAl .

5 Experimental Results
In this section, experiments on the three-tank system
are presented in order to show the effectiveness of the
flatness-based FDI method and the characterization of
the flat outputs. First, subsection 5.1 represents the
flatness analysis of the three-tank model. Then, sub-
section 5.2 represents the path tracking, using the flat-
ness property, and the the controller applied on the
system. Finally, subsection 5.3 represents theoretical
and experimental results of FDI.

5.1 Flatness analysis of the three-tank
system

In the three-tank system, the only equilibrium point
which is not first order controllable, or that represents
an intrinsic singularity (see Remark 1) is where the
water level is equal in all three tanks, i.e. x1 = x2 =
x3. To avoid this singularity, we consider the following
configuration:

(C) : x1 > x3 > x2 > 0. (36)

According to Definition 1, we can show that the three-
tank system (1)-(2)-(3) is flat with

z = (x1, x3)T = (z1, z2)T (37)

a flat output. In fact, from (3) and using (4) and (6),
it is easy to express x2 in function of z:

x2 = z2 −
1

µ2
32

(
− ż2 + µ13

√
z1 − z2

)2
. (38)

In addition, from (1) and (4), u1 is given by:

u1 = ż1 + µ13

√
z1 − z2 , (39)

and from (2), u2 is expressed by

u2 = ẋ2 + µ20
√
x2 − µ32

√
z2 − x2 (40)

where x2 is given in (38) as a function of (x1, x3), which
proves that z = (x1, x3)T is a flat output of the three-
tank system.

5.2 Path tracking and control of the
system

In control theory, the concept of path tracking consists
in finding control input values allowing the system to
follow a predefined reference trajectory. The flatness

6



5.3 Results on FDI 5 EXPERIMENTAL RESULTS

property ensures the calculation of the control variables
in a very simple way. One needs only to calculate a tra-
jectory t 7→ zref (t), sufficiently differentiable, for the
flat output z then, since the variables x and u are func-
tions of z and its successive derivatives, the reference
trajectory t 7→ (xref (t), uref (t)) of the system is de-
duced by differentiating t 7→ zref (t) a finite number of
times. Concerning our three-tank system experiments,
a reference trajectory of the system is generated using
the flat output z = (x1, x3)T . The initial and final
conditions for the flat output are given by:

x1i = 0.20 m, x1f = 0.35 m

x3i = 0.15 m, x3f = 0.25 m (41)

The initial and final times are respectively ti = 0 s and
tf = 400 s. The trajectory t 7→ zref (t), that does not
satisfy any differential equation, is calculated using a
fifth order polynomial interpolation [8].

In order to control the system against external faults
and disturbances, the following PI controllers, that are
already implemented on the system, are used to control
the water level in tanks T1 and T2 [10]:

C1,1(z) =
−0.001043 + 0.0009565z−1

1− z−1
(42)

C2,2(z) =
−0.00104 + 0.00096z−1

1− z−1
(43)

The output of the system in the fault free case is rep-
resented in Figure 3.
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Figure 3: Reference trajectories vs. measurements of
the water level in each tank, in the fault free case.

5.3 Results on FDI
Sensors on the three-tank system are S1, S2 and S3 and
they measure the water level in each tank, respectively
so the measured output is given by:

ys = (xs1, x
s
2, x

s
3)T , (ys1, y

s
2, y

s
3)T . (44)

Pumps P1 and P2 are the actuators of the system and
we denote them by A1 and A2 and their outgoing flows
are denoted by u1 and u2, respectively.

In this paper, we show that a single flat output vec-
tor is not sufficient to isolate all possible faults on the
three-tank system and that we need a second flat out-
put to ensure full isolability. So two cases are repre-
sented: using one flat output and using two flat out-
puts.

Case A: using one flat output

As shown in section 5.1, the three-tank system is flat
with z = (x1, x3)T as flat output. Components of the
flat output are measured by sensors S1 and S3 and their
measurements are denoted by:

zs = (ys1, y
s
3)T , (zs1, z

s
2)T . (45)

In order to construct the vector of residues, the redun-
dant inputs and outputs are firstly computed using (37)
through (40):

yz1 = zs1

yz2 = zs2 −
1

µ2
32

(
− żs2 + µ13

√
zs1 − zs2

)2
yz3 = zs2 (46)

uz1 = żs1 + µ13

√
zs1 − zs2

uz2 = ẏz2 − µ32

√
zs2 − yz2 + µ20

√
yz2 .

Then, the vector of residues associated to zs is given
by:

r =


RS1

RS2

RS3

RA1

RA2

 =


ys1
ys2
ys3
u1
u2

−

yz1
yz2
yz3
uz1
uz2

 . (47)

Nevertheless, according to Remark 2, residues RS1
and

RS3
are identically zero, hence the vector r is truncated

to:

rτ = (RS2 , RA1 , RA2)T , (rτ1 , rτ2 , rτ3)T . (48)

The vector ζ of measurements that are subject to
faults, introduced in Definition 3, is given by:

ζ = (ys1, y
s
2, y

s
3, u1, u2) ∈ R5. (49)

Therefore, the signature matrix S, associated to zs, is
of dimension 3× 5:

S =

σ1,1 σ1,2 σ1,3 σ1,4 σ1,5
σ2,1 σ2,2 σ2,3 σ2,4 σ2,5
σ3,1 σ3,2 σ3,3 σ3,4 σ3,5

 (50)

According to Definition 3, in order to construct the
signature matrix S, a threshold has to be fixed for the

7
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∂
∂ys1

∂
∂ys2

∂
∂ys3

∂
∂ẏs1

∂
∂ẏs2

∂
∂ẏs3

∂
∂ÿs3

∂
∂u1

∂
∂u2

RS2
0.99 1 1.99 0 0 5209 0 0 0

RA1
10−4 0 10−4 1 0 0 0 1 0

RA2 4× 10−4 1 7× 10−4 0.99 0 4.3 5209 0 1

Table 2: Partial derivatives of residues RS2 , RA1 , and RA2 with respect to ζ and its derivatives computed at
the equilibrium point x1e = 0.20 m, x2e = 0.10 m, x3e = 0.15 m.

sensitivity of each residue with respect to a measure-
ment and its time derivatives. An analysis of the sensi-
tivity can be made by computing the numerical values
of the partial derivatives of the residues with respect
to the measurements and their time derivatives around
an equilibrium point. Table 2 gives numerical val-
ues for the partial derivatives at the equilibrium state
x1e = 0.20 m, x2e = 0.10 m, x3e = 0.15 m. Higher ab-
solute values with respect to measurements of sensors
or actuators denote higher sensitivity. On the other
hand, a small absolute value indicates that the residue
can be insensitive to the fault in the presence of distur-
bances or uncertainties. Given the values from Table 2,
a common threshold value Th = 0.5 for the sensitivity
matrix is selected such that the residues with sensitiv-
ities of order 10−4 are neglected for the FDI analysis.
It can be noticed that residue RZ1

A1
is weakly sensitive

to a fault on sensor S3 because its partial derivatives
with respect to ys3 and its derivatives are smaller than
Th. The following signature matrix is obtained:

S =

1 1 1 0 0
1 0 0 1 0
1 1 1 0 1

 . (51)

As mentioned in Section 2, both additive and mul-
tiplicative faults can be applied on the DTS200 three-
tank system. In this paper, we add multiplicative faults
on all the system sensors and actuators. Moreover,
due to the presence of noise on the system, thresholds
for each residue are fixed: several nominal experiments
were run, i.e. without introducing any fault on sys-
tem sensors and actuators. For each experiment, the
initial and final values of the reference trajectory are
modified. The maximum and minimum values of the
residues are extracted in each experiment, and the am-
plitude of the threshold is fixed by choosing the worst
case among all the calculated residues. A safety margin
of 5% is added to avoid false alarms.

For multiplicative faults we consider a 20% failure
for sensors and actuators. At time t = 200 s, sensors
measure 80% of the actual water level measurements
instead of 100%, and for actuators, a 20% failure is
considered:

– Figures 4 and 5 show the residues with their re-
spective thresholds for one single fault on sensors
S1 and S2, respectively. As it can be observed,

the first two fault signature columns Σ1 and Σ2 in
(51) are validated.

– All residues are affected by a fault on the sensor S3,
however, as mentioned earlier (see also Table 2),
residue RZ1

A1
is weakly sensitive to this fault, as can

be seen in Figure 6, which validates the definition
of the fault signature column Σ3 in (51).

– Figures 7 and Figure 8 show the residues and their
thresholds for faults on actuators A1 and A2, re-
spectively. These results validate the definition of
the fault signature columns Σ4 and Σ5 in (51).
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Figure 4: Case A: residues responses to a fault on sen-
sor S1.

According to Definition 5, all faults on the system
sensors and actuators are detectable. In addition,
since fault alarm signatures Σ1, Σ4 and Σ5 are dis-
tinct, faults on sensor S1 and actuators A1 and A2 are
isolable, according to Definition 6. This reflects the
fact that if, at some point during system operation,
a fault alarm is launched with the signature Σ1 then
we conclude that the sensor S1 is faulty. Neverthe-
less, if we obtain a signature like Σ2, the fault could
be on the sensor S2 or S3, since signatures Σ2 and Σ3

are identical, hence, a fault on S2 or S3 cannot be iso-
lated. Therefore, the number of distinct fault alarm
signatures is µ = 3 < p+m.
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Figure 5: Case A: residues responses to a fault on the
sensor S2.
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Figure 6: Case A: residues responses to a fault on the
sensor S3.

Case B: using two flat outputs

In order to improve the isolability, a second flat out-
put is needed. For the sequel, a second flat output
z = (x2, x3)T is used. In the following, we denote by Z1

the first flat output Z1 = (zs11, z
s
12)T = (xs1, x

s
3)T and by

Z2 the second flat output Z2 = (zs21, z
s
22)T = (xs2, x

s
3)T .

The signature matrix associated to Z1 is given by (51)
and we denote it by S1. The number of distinct signa-
tures is µ1 = 3 < p+m.

In order to construct the signature matrix S2, as-
sociated to Z2, the redundant inputs and outputs are
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Figure 7: Case A: residues responses to a fault on ac-
tuator A1.
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Figure 8: Case A: residues responses to a fault on ac-
tuator A2.

first computed using (16) and (17):

yZ2
1 = zs22 +

1

µ2
13

(
żs22 + µ32

√
zs22 − zs21

)2
yZ2
2 = zs21

yZ2
3 = zs22 (52)

uZ2
1 = ẏZ2

1 + µ13

√
yZ2
1 − zs22

uZ2
2 = żs21 + µ20

√
zs21 − µ32

√
zs22 − zs21

According to Remark 2, residues associated to sensors
S2 and S3 are identically zero. Then, the vector of
residues is truncated to:

rZ2
τ =

RZ2

S1

RZ2

A1

RZ2

A2

 =

ys2u1
u2

−
yZ2

2

uZ2
1

uZ2
2

 . (53)
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6 CONCLUSION

∂
∂ys1

∂
∂ys2

∂
∂ys3

∂
∂ẏs1

∂
∂ẏs2

∂
∂ẏs3

∂
∂ÿs3

∂
∂u1

∂
∂u2

RZ2

S1
1 1 2 0 0 5262 0 0 0

RZ2

A1
1 10−4 10−4 0 1 3 5262 1 0

RZ2

A2
0 10−4 10−4 0 1 0 0 0 1

Table 3: Partial derivatives of residues RZ2

S2
, RZ2

A1
, and RZ2

A2
with respect to ζ and its derivatives computed at

the equilibrium point x1e = 0.20 m, x2e = 0.10 m, x3e = 0.15 m.

As for the flat output Z1 (see Table 2), the numeri-
cal values for the partial derivatives at the equilibrium
state x1e = 0.20 m, x2e = 0.10 m, x3e = 0.15 m are
given in Table 3.

Using Definition 3 and the threshold Th = 0.5, the
signature matrix associated to Z2 is obtained as:

S2 =

1 1 1 0 0
1 1 1 1 0
0 1 0 0 1

 (54)

and faults on sensors S1 and S3 are not isolable. The
number of distinct signature is µ2 = 3 < p+m.

In order to prove the independence of the flat outputs
Z1 and Z2, the following augmented signature matrix
is constructed using the experimental results:

S̃ =

(
S1

S2

)
=


1 1 1 0 0
1 0 0 1 0
1 1 1 0 1
1 1 1 0 0
1 1 1 1 0
0 1 0 0 1

 . (55)

The number of distinct signature of S̃ is µ̃ = 5, thus,
even in the presence of uncertainties, the condition (32)
is satisfied, then the flat outputs Z1 and Z2 are inde-
pendent. In addition, µ̃ = p + m, then, according to
Definition 8, the flat outputs Z1 and Z2 provide full
isolability of faults.

This result is demonstrated experimentally:

– Figure 9 shows that if a fault affects the sensor S1,
all the residues exceed their threshold except RZ2

A2

which confirms the signature Σ1 of the matrix S̃.

– Figure 10 shows that if a fault affects sensor S2,
all the residues exceed their threshold except RZ1

A1

which confirms the signature Σ2 of the matrix S̃.

– Finally, Figure 11 confirms that residues RZ1

A1
and

RZ2

A2
are weakly affected by a fault on the sensor

S3.

6 Conclusion
In this paper, a FDI method based on the flatness prop-
erty of nonlinear systems is presented. The flat output
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Figure 9: Case B: residues responses to a fault on sen-
sor S1.
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Figure 10: Case B: residues responses to a fault on
sensor S2.

measurement is used to calculate the redundant vari-
ables and then generate the residues. Moreover, it has
been shown that sometimes, using a single flat output
is not sufficient to ensure full isolability and several flat
outputs may be needed. These flat outputs must be in-
dependent in the sense that by using them together the
number of isolable faults increases. Therefore, a full
presentation of this flat output characterization is pro-
vided. sensitivity analysis of residues with respect to
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Figure 11: Case B: residues responses to a fault on
sensor S3.

faults is proposed in order to robustly design the fault
signature matrix. Finally, the validity of this method
has been shown experimentally on the DTS200 three-
tank benchmark.
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