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Abstract

Background: The individual data collected throughout patient follow-up constitute crucial information for assessing
the risk of a clinical event, and eventually for adapting a therapeutic strategy. Joint models and landmark models have
been proposed to compute individual dynamic predictions from repeated measures to one or two markers. However,
they hardly extend to the case where the patient history includes much more repeated markers. Our objective was
thus to propose a solution for the dynamic prediction of a health event that may exploit repeated measures of a
possibly large number of markers.

Methods: We combined a landmark approach extended to endogenous markers history with machine learning
methods adapted to survival data. Each marker trajectory is modeled using the information collected up to the
landmark time, and summary variables that best capture the individual trajectories are derived. These summaries and
additional covariates are then included in different prediction methods adapted to survival data, namely regularized
regressions and random survival forests, to predict the event from the landmark time. We also show how predictive
tools can be combined into a superlearner. The performances are evaluated by cross-validation using estimators of
Brier Score and the area under the Receiver Operating Characteristic curve adapted to censored data.

Results: We demonstrate in a simulation study the benefits of machine learning survival methods over standard
survival models, especially in the case of numerous and/or nonlinear relationships between the predictors and the
event. We then applied the methodology in two prediction contexts: a clinical context with the prediction of death in
primary biliary cholangitis, and a public health context with age-specific prediction of death in the general elderly
population.

Conclusions: Our methodology, implemented in R, enables the prediction of an event using the entire longitudinal
patient history, even when the number of repeated markers is large. Although introduced with mixed models for the
repeated markers and methods for a single right censored time-to-event, the technique can be used with any other
appropriate modeling technique for the markers and can be easily extended to competing risks setting.
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Background
A central issue in health care is to quantify the risk of
disease, disease progression or death at the individual
level, for instance to initiate or adapt a treatment strategy
as soon as possible. To achieve this goal, the informa-
tion collected at a given time (at diagnosis or at the first
visit) is often not sufficient and repeated measurements
of markers are essential. For example, repeated prostate
specific antigen (PSA) data are highly predictive of the
risk of prostate cancer recurrence [1–3], and markers
such as diabetic status or blood pressure level over time
are crucial in predicting the risk of cardiovascular dis-
ease [4, 5]. Including longitudinal information into the
prediction of a clinical event defines the framework for
individual dynamic predictions [1, 6, 7]. In some contexts,
a single marker may be sufficient to predict the occur-
rence of the event (e.g., in prostate cancer with PSA) but
often the complete patient history with possibly many
repeated markers should be exploited (see Fig. 1). Yet, sta-
tistical developments for individual prediction of event
have so far either focused on the repeated nature of the
information or on its large dimension.
When using repeated information to develop dynamic

prediction tools, two approaches are commonly used:
joint models [1, 6] and landmark models [8]. Joint mod-
els simultaneously analyze the longitudinal and event time
processes by assuming a structure of association built
on summary variables of the marker dynamics [9]. This
model which uses all the information on the longitu-
dinal and time-to-event processes to derive the predic-
tion tool is widely used in the case of a single repeated
marker but becomes intractable in the presence of more
than a few repeated markers due to high computational
complexity [7].
An alternative is to use partly conditional survival model

[10] or landmark models [8] which consist in directly
focusing on the individuals still at risk at the landmark
time and consider their history up to the landmark time
(see Fig. 1). When individual history includes repeated
measures of an endogenous marker, summaries of the
marker derived from preliminary mixed models can be
included in the survival model, instead of only the last
observed value [1, 5]. Although the landmark models do
not use as much information as the joint model (only
information from the at-risk individuals at the landmark
time is exploited) and thus may lack of efficiency, they
have shown competitive predictive performances, easier
implementation (much less numerical problems) and bet-
ter robustness to misspecification than joint models [7].
However, as joint models, they necessitate to consider the
actual nature of the relationship between the marker and
the event.
Although the landmark approach is per se very gen-

eral, in practice its definition is based on standard sur-

vival models, namely the Cox model, which prevents the
methodology to be applied in large dimensional con-
texts usually encountered in applications. Indeed the Cox
model becomes rapidly limited in the presence of: 1) a
large number of predictors, 2) highly correlated predic-
tors, and 3) complex relationships between the predictors
and the event [11]. Yet, in the context of dynamic predic-
tion frommultiple repeatedmarkers, these three limits are
rapidly reached. Indeed, the large dimension of the predic-
tors does not only come from the number of markers but
also from the number of (potentially correlated with each
other) marker-specific summaries that are necessary to
approximate the actual nature of the relationship between
the marker and the event.
Machine learning methods, including regularized

regressions or decision trees and random forests, have
been specifically developed to predict outcomes while
tackling the aforementioned issues [12]. Their good
predictive performances have been largely demonstrated
in the literature [13]. Initially proposed for continuous
or binary outcomes, they have been recently extended to
handle right censored time-to-event data. For instance,
Simon et al. [14] developed penalized Cox models either
using Ridge, Lasso or Elastic-Net penalty, Bastien et al.
[15] developed a Cox model based on deviance residuals-
based sparse-Partial Least Square, as an extension of
sparse-Partial Least Square [16] for survival data, and
Ishwaran et al. [17] extended random forests to survival
data. However, they were mostly applied to predict time-
to-event from time-independent marker information.
Our purpose is thus to show how these machine learning
methods can also be leveraged to provide dynamic indi-
vidual predictions from large dimensional longitudinal
biomarker data.
Computing dynamic predictions in the context of a

large number of repeated markers is a very new topic in
statistics, and only a few proposals have been made very
recently. Zhao et al. [18] and Jiang et al. [19] focused on
random forests. Using a landmark approach, Zhao et al.
transformed the survival data into pseudo-observations
and incorporated in each tree the marker information at
a randomly selected time. Although handling repeated
markers, this method neither accounts for measurement
errors of the biomarkers nor their trajectory shapes. By
considering a functional ensemble survival tree, Jiang et
al. overcame this issue. They characterized the chang-
ing patterns of continuous time-varying biomarkers using
functional data analysis, and incorporated those charac-
teristics directly into random survival forests. By con-
comitantly analyzing the markers and the event, this
approach belongs to the two-stage calibration approaches
[20] andmay suffer from the same biases [21]. Finally Tan-
ner et al. [22] proposed to extend the landmark approach
to incorporate multiple repeated markers with measure-
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Fig. 1 Illustration of individual dynamic prediction of an event computed using history of multiple repeated markers (here 6). The individual
probability of event is computed from a landmark time to a horizon time by using the information on the markers trajectories collected up to the
landmark time

ments errors. For the survival prediction method, they
chose to discretize the time and use an ensemble of
classical binary classifiers to predict the event.
In comparison with this emerging literature, our pro-

posal goes one step forward. As in Tanner et al., we
chose to rely on a landmark approach and consider vari-
ous prediction methods rather than only random forests.
However, we also chose to directly exploit the survival
data in continuous time. In addition, our methodology
handles markers of different nature, accounts for their
measurement error and intermittent missing data, and
for a possibly large number of summary characteristics of
each marker.
In the following sections, we first describe the proposed

method. We then demonstrate in a simulation study the
performances of the methodology and the benefit of using
machine learning methods to handle the large dimen-
sional aspect. We then illustrate the methodology in two
very different contexts: a clinical context with the predic-
tion of death in primary biliary cholangitis, and a public
health context with the prediction of 5-year death at dif-
ferent ages in the general elderly population. The paper
ends with the discussion of the strengths and weaknesses
of the proposed method.

Methods
Framework, notations and general principle
Let us consider a landmark time tLM of interest and a pop-
ulation of NtLM individuals that are still at risk of the event
at tLM. For an individual i ∈ {1, . . . ,NtLM }, we denote Ti
the true event time, Ci the independent censoring time.
We define T�

i = min (Ti,Ci) the observed time event
and δi = 1 (Ti < min (Ci, tLM + tHor)) the event indicator
with tHor the horizon time. We consider a single event for
simplicity.

At the landmark time, P time-independent covariates
Xi are available, and the history of K time-dependent
markers Yijk (k ∈ {1, . . . ,K}) measured at time tij (j ∈
{1, . . . , ni}) and tij ≤ tLM.
The target individual probability of event from the land-

mark time tLM to the horizon time tHor of a subject � is
defined as:

π�(tLM, tHor) = P(T� ≤ tLM + tHor | T� > tLM,
{Y�jk ; k = 1, ...,K , t�jk ≤ tLM},X�)

(1)

By assuming that the history of the K marker trajectories
up to tLM can be summarized into a vector ��, we define
the following probability:

π̃�(tLM, tHor) = P(T� ≤ tLM+tHor |T� > tLM,��(tLM),X�)

(2)

This probability is estimated by π̂
(m)
� (tLM, tHor) in 4

steps on a learning sample for each survival prediction
methodm:

1 Each marker trajectory is modeled using the
information collected up to tLM

2 The vector of summary variables �i(tLM) is
computed for each individual i

3 �i(tLM) and additional baseline covariates Xi are
entered into survival prediction method m

4 The predicted probability of event π̂
(m)
� (tLM, tHor) is

computed from survival method m

Once the estimator defined (i.e., the survival prediction
method trained) on the learning sample, the summary
variables ��(tLM) can be computed for any new external
individual � at risk of event at tLM, and the corresponding
individual predicted probability of event can be deduced.
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Step 1. longitudinal model for markers history
Longitudinal markers are usually measured at intermit-
tent times with error. The first step consists to estimate the
error-free trajectory of the marker of each individual over
the history period. We propose to use generalized mixed
models [23] defined as:

g(E(Yijk|bik)) = Y ∗
ik(tijk) = X�

ik (tijk)βk + Z�
ik(tijk)bik (3)

where X�
ik (tijk) and Z�

ik(tijk) are the pk- and qk-vectors
associated with the fixed effects βk and random effects bik
(with bik ∼ N (0,Bk)), respectively. The link function g(.)
is chosen according to the nature of Yijk (e.g. identity func-
tion for Gaussian continuous markers or logit function for
binary markers).

Step 2. summary characteristics of the marker trajectories
Once the parameters of the model have been estimated
(indicated by ̂ below), any summary that captures the
marker behavior up to the time tLM can be computed. We
give here a non-exhaustive list for individual i:

• Predicted individual deviations to the mean
trajectory:̂bik = ̂BkZ�

ik
̂V−1
ik (Yik − Xik̂βk) where

̂Vik = Zik̂BkZ�
ik + σ̂εkIni , if the marker is continuous.

Otherwise,
̂bik = argmax

bik
f (bik|Y ∗

ik) = argmax
bik

f (Y ∗
ik|bik)f (bik)

with f (.) the density function;
• Error-free level at time u ≤ tLM :

̂Y ∗
ik(u) = X�

ik (u)̂βk + Z�
ik(τ )̂bik ;

• Error-free slope at time u ≤ tLM : ̂Y ∗′
ik (u) = ∂̂Y ∗

ik(t)
∂t |t=u

;
• Cumulative error-free level during period T :

̂hik(tLM) = ∫ tLM
tLM−T

̂Y ∗
ik(u)du.

Any additional summary that is relevant for a spe-
cific disease can be considered as soon as it is a func-
tion of the error-free marker trajectory (e.g., time spent
above/below a given threshold). All the individual sum-
mary characteristics across the K markers are stored
into a vector �i. Using the list above and u = tLM,
�i(tLM) = {�ik(tLM), k = 1, ...,K} with �ik(tLM) =
(̂bik ,̂Y ∗

ik(tLM),̂Y ∗′
ik (tLM),̂hik(tLM))� is of length

∑K
k=1(qk+

3). This vector may have a large amount of summaries
which can also be highly correlated with each other. These
particularities have to be taken into account in survival
prediction methods.

Step 3. prediction methods for survival data in a large
dimensional context
To predict the risk of event from tLM to a horizon time
tHor using the vector Xi = (�i,Xi) of summaries �i and
time-independent variables Xi of length P, we can use any
technique that handles 1) right-censored time-to-event

data, 2) the possibly high dimension, 3) and the corre-
lation between the predictors. We focused in this work
on Cox model, Penalized-Cox model, Deviance residuals-
based sparse-Partial Least Square and Random Survival
Forests, although other techniques could also be applied.
For each technique, several sub-methods were consid-
ered that differ according to the type of variable selection
and/or the hyperparameters choices. We briefly describe
the different techniques and sub-methods below, and refer
to Section 1 in supplementary material for further details.

Coxmodels
The Cox model is a semi-parametric regression which
models the instantaneous risk of event according to a
log-linear combination of the independent covariates:

λi(t|�i,Xi) = λ0(t) exp (Xiγ + �iη) (4)

with λ0 the baseline hazard function, γ and η the coef-
ficients estimated by partial likelihood. We defined two
sub-models whether variable selection was performed
according to backward selection procedure using step()
R function (called Cox-SelectVar) or not (Cox-AllVar).

Penalized-Coxmodels
Penalized-Cox models extend the Cox model defined
in (4) to handle a high number of possibly correlated
predictors. The partial log-likelihood is penalized with
norm �2 (Ridge penalty), norm �1 (Lasso penalty [24])
which enables covariate selection, or a mixture of both
(Elastic-Net [14]). These methods require the tuning of
the norms mixing parameter (0 for Lasso, 1 for Ridge,
] 0; 1[ for Elastic-Net) and the penalty parameter. We used
cv.glmnet() function (from the glmnet R package)
with internal cross-validation to tune the penalty param-
eter, and we defined three sub-models according to the
norms mixing parameter (i.e. Lasso, Ridge or Elastic-Net).
There are called Penal-Cox-Lasso, Penal-Cox-Ridge and
Penal-Cox-Elastic, respectively.

Deviance residuals-based sparse-Partial least square
(sPLS-DR)
Partial Least Square (PLS) is a method of dimension
reduction where components (or latent variables) are built
to maximize the covariance with the outcome. Sparse-
PLS (sPLS) [16] adds a variable selection within each
component using Lasso penalty. First developed in the
framework of linear regression, this method was extended
to survival data [15] (sPLS-DR). The principle is to apply a
sPLS regression on the deviance residuals which are a nor-
malized transformation of the martingale residuals ̂Mi =
δi − ̂�i(t), with ̂�i(t) the Nelson-Aalen cumulative haz-
ard function estimate. Then, a Cox model is applied using
the C identified components fc(�i,Xi) as covariates. In
sPLS, the number of components C and the Lasso penalty
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parameter on each component (which controls the spar-
sity on each component) have to be properly tuned. We
used cv.coxsplsDR() function (from plsRcoxR pack-
age) with internal cross-validation to tune the number
of components, and considered three variants for the
penalty: no penalty (called sPLS-NoSparse), maximum
penalty (called sPLS-MaxSparse), or an optimized penalty
from a grid of values (called sPLS-Optimize).

Random survival forests
Random forests [12] are a non-parametric machine learn-
ing tool that can handle high-dimensional data with pos-
sibly complex input-output relationships. Random forests,
originally developed in a context of regression or clas-
sification, were later adapted to right-censored survival
data [17] and called random survival forests (RSF). A RSF
aggregates B survival trees, each one built on a differ-
ent bootstrap sample from the original data (subjects not
included in one bootstrap sample are called out-of-bag
(OOB)). As any tree-based predictor, a survival tree recur-
sively splits the sample into subgroups until the subgroups
reach a certain minimal size S. To deal with time-to-event
data, the splitting rule is usually based on the log-rank
statistics although other splitting rules have also been pro-
posed (e.g. gradient-based brier score splitting [17]). In
RSF, at each node of each tree, a subset of M predictors
is randomly drawn and the split is optimized among splits
candidates only involving those predictors. The size of the
predictors subset M and the minimal size S have to be
tuned.
The interpretation of the link between the predictors

and the event is not as easy in RSF as in (penalized)
regression methods. To address this issue, RSF provide
a quantification of this association, also known as vari-
able importance (VIMP). For a given predictor p, VIMP(p)

measures the mean (over all trees in the forest) increase of
a tree error on its associated OOB sample, after randomly
permuting the values of the pth predictor in the OOB sam-
ple. Large VIMP values indicate variables with prediction
ability while null (or even negative) VIMP values indicate
variables that could be removed from the prediction tool.
Using rfsrc() function (from randomForestSRC R

package), three RSF sub-methods were considered that
differed according to M and S parameter tuning: default
software parameters M = square root of the number of
predictors, S = 15 (called RSF-Default), M and S that
minimize the OOB error (called RSF-Optimize) or M and
S optimized plus a variable selection using the VIMP
statistic (called RSF-SelectVar).

Step 4. predicted individual probability of event
The estimator of individual probability of event
π̂

(m)
� (tLM, tHor) for a new patient � becomes:

• For Cox, penalized-Cox and sPLS-DR models:

π̂ (m)
� (tLM, tHor) = 1 − exp

(

−̂�0(tHor) exp (̂P�)
)

(5)

with ̂�0(.) the Nelson-Aalen estimator, and ̂P� the
predicted linear predictor directly obtained from ��

and X� for Cox and Penalized-Cox models, or from
the C components fc(��,X�) (c = 1, ...,C) for
sPLS-DR.

• For RSF:

π̂ (m)
� (tLM, tHor) = 1 − exp

(

− 1
B

B
∑

b=1

̂�b
�(tHor)

)

(6)

with ̂�b
�(tHor) the Nelson-Aalen estimator in the leaf

of tree b containing individual �.

Predictive accuracy assessment
We assessed the predictive performances of the models
using the time-dependent Area Under the ROC Curve
(AUC) [25] defined as:

AUC(tLM , tHor) = P
(

πi(tLM , tHor) > πj(tLM , tHor)
∣

∣

∣Di(tLM , tHor) = 1,

Dj(tLM , tHor) = 0,Ti > tLM ,Tj > tLM
)

(7)

and time-dependent Brier score [26] defined as:

BS(tLM, tHor)=E
[

(Di(tLM, tHor)−π(tLM, tHor))2
∣

∣

∣T> tLM
]

(8)

whereDi(tLM, tHor) is the survival status at time tLM+tHor .
We used estimators of these quantities that specifically
handle the censored nature of Di(tLM, tHor) using inverse
censoring probability weighting (see [26, 27] for details).
In the applications, predictive accuracy assessment was

done using a cross-validation approach to ensure inde-
pendence between the samples on which each predictive
tool was learnt and the samples on which their predictive
accuracy was assessed (Fig. 2A). This induced a two-layer
cross-validation since a cross-validation (or a bootstrap)
was also performed within each training set to determine
the method-specific hyperparameters.

Combining the predictions into a single super learner
Each survival prediction method m (m = 1, ...,M) pro-
vides a different individual predicted probability π̂

(m)
�

(Eq. 2). In some cases, one will prefer to select the best
predictive tool and rely on it. In other cases, one can
also choose to combine the predictive tools into a Super-
Learner predictive tool [28, 29]. It consists in defining the
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Fig. 2Multi-layer cross-validation framework: A Overall cross-validation to assess the predictive performances on independent samples, B
Intermediate-layer cross-validation for the superlearner only performed on the learning sample to determine the weights. A final internal
cross-validation (or Bootstrap for RSF) is done to tune each method

final predicted probability as a weighted mean over the
survival method-specific predictions:

̂�� =
M

∑

m=1
ωmπ̂ (m)

� (9)

where the weights ωm (defined in [ 0, 1] with
∑M

m=1 ωm =
1) are determined so that the Super-Learner predic-
tive tool ̂� minimizes a loss function. In our work, we
chose to minimize the BS function defined in Eq. 8 by
internal cross-validation. This lead to a three-layer cross-
validation for the superlearner building and validation
(see Fig. 2B).

Results
Performances of the methodology through a simulation
study
We contrasted the performances of the different sur-
vival prediction methods according to different scenarios,
based on Ishwaran et al. [30], in an extensive simula-
tion study. Prediction tools were trained on R = 250
learning datasets and their predictive performances were
compared on a unique external validation dataset.

Design
The R learning datasets and the validation dataset were
generated according to the same design. They included
N = 500 individuals at risk of the event at a landmark time
tLM of 4 years. Up to landmark time, repeated information
on 17 continuous biomarkers was generated according to
linear mixed models, as described in Eq. 3 with identity
link.
For each biomarker, measurement times were randomly

generated according to a N (0, 0.15) around 5 theoreti-
cal visit times at -4, -3, -2, -1 and 0 years prior to tLM.
Different shapes of individual trajectory were consider-
ing depending on the biomarker, although all followed an
individual polynomial function of time (see Fig. S1 in sup-
plementary material). Summary characteristics of each
error-free marker trajectory were computed (as defined
in “Methods” Section) leading to a total of 92 summaries
statistics, stored in a vector �0

i . An additional vector X0
i

of 10 time-independent covariates was generated at the
landmark time: 5 according to a standard normal distribu-
tion and 5 according to binomial distribution with success
probability of 0.5.
The risk of event after the landmark time was defined

according to a proportional hazard model with �0
i and



Devaux et al. BMCMedical ResearchMethodology          (2022) 22:188 Page 7 of 14

X0
i , and a Weibull distribution for the base hazard func-

tion, in order to not disadvantage the methods based on
the Cox model. Five different scenarios were built accord-
ing to the number of summaries actually associated to the
event (18 or 4 summaries) and the form of the depen-
dence function: biomarkers summaries were entered into
the linear predictor either linearly, linearly with interac-
tions across biomarkers, or non-linearly with polynomial
functions and binarization of summaries. Details on the
generation model and scenarios are respectively given in
Section 2 and Table S1 of supplementary material.
The target prediction was the probability of event up

to a horizon of 3 years. The predictive performances of
all the survival methods were compared on the exter-
nal dataset using the BS and AUC previously introduced,
as well as the Mean Square Error of Prediction (MSEP),
MSEP = 1

N
∑N

i=1
(

π̂i − π0
i
)2, which measures the average

squared difference between the estimated probability π̂i
and the true generated probability π0

i over all individuals.

Results
Predictive performances for scenarios with 18 summaries
are summarized in Fig. 3. The same figure for scenarios
with 4 summaries is given in Fig. S2 of supplementary
material.
When considering summaries entered linearly, the

penalized-Cox provided the smallest BS and MSEP, and
the highest AUC in both scenarios with 4 or 18 summaries
associated with the event. When the relationships became
increasingly complex (linear with interactions and non-
linear), RSF provided better predictive performance than
the other methods for both AUC, BS andMSEP regardless
of the number of summaries considered.
This simulation study highlights that the penalized-Cox

model provides more accurate predictions in the case of
simple relationships between the predictors and the event
while RSF outperforms the others in the case of complex
relationships (nomatter howmany summaries are consid-
ered). In contrast, classical Cox model was systematically

Fig. 3 Simulation results over 250 replicates when considering 18 summaries associated to the event either assuming a linear form (figure A) or
non-linear form (figure B). Methods are assessed using Mean Square Error of Prediction (MSEP), Brier Score (BS) and Area Under the ROC Curve
(AUC). (∗) symbol indicates the presence of MSEP values above 0.2, but not displayed
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outperformed by the other methods which points out the
potential benefit of using advancedmethods to predict the
event in landmark approaches.

Individual prediction of death in primary biliary cholangitis
We first illustrated our method for predicting death
among patients with primary biliary cholangitis (PBC).
PBC is a chronic liver disease possibly leading to liver fail-
ure. For these patients, the only useful treatment is a liver
transplantation [31], and prediction of the risk of death
can be useful in that context for patient stratification. We
focused on the widely known PBC data from a clinical
trial [32] including repeated measures of 11 biomark-
ers (7 continuous and 4 binary), such as bilirubin value,
albumin value or presence of hepatomegaly, and 3 addi-
tional demographic variables collected at the enrollment
in the study (see Table S2 in supplementary material for
the complete list). We aimed to predict the occurrence of
death at horizon time tHor = 3 using information col-
lected up to landmark time tLM = 4 years on the N = 225
patients still at risk at tLM (see the flow chart Fig. S3 in
supplementary material).
After a normalization for continuous markers which did

not follow a gaussian distribution using splines [33], we
modeled independently the markers according to general-
ized mixed models (see Eq. 3) with natural splines on time
measurements to capture potentially complex behavior
over time [34] (see Section 3.1 in supplementary material
for details on the models).
We used a 10-fold cross-validation to compute the pre-

dictive performances of the individual predicted proba-
bilities. The distribution of the event times did not differ
across folds (Fig. S4 in supplementary material). For the
superlearner, the optimal weights were determined in
a second-layer 9-fold cross-validation. We repeated this
process R = 50 times for all methods to assess the vari-
ability of the results across different cross-validation par-
titions. RSF hyperparameters tuning (according to OOB
error) is reported in supplementary material Fig. S5.
Predictive performances are displayed in Fig. 4A. All

the prediction tools provided satisfying predictive perfor-
mance for both BS (from 0.076 to 0.089 inmean) and AUC
(from 0.73 to 0.87 in mean). Nevertheless, we found that
Cox models gave much worst indicators, especially for
AUC (the only ones below 0.80 in mean), illustrating the
limits of classical methods compared to machine learning
methods that handle high dimension and correlation. In
this application, themost discriminating and accurate pre-
dictions were given by the Cox model with Lasso penalty
according to BS (0.076 in mean) and AUC (0.87 in mean).
Results from the superlearner did not show substantial
improvement in predictive performance. The weights of
the superlearner indicated that it was mostly driven by
penalized Cox models and RSF (Fig. 4B).

For comparison, we also developed predictive tools
based on (1) only baseline information for the 11 biomark-
ers and 3 covariates, (2) information on the 3 covariates
and the trajectory of one biomarker over time (either
serum bilirubin, albumin or platelets). The predictive
tools based only on baseline information provided poorer
cross-validation BS (32% higher in mean over the meth-
ods) and AUC (8% lower inmean over themethods) nicely
illustrating the gain in updating the biomarker informa-
tion over follow-up (Fig. 5). The predictive performances
were also worse when considering only repeated albumin
or platelets with in mean 22% and 37% higher BS (1% and
11% lower AUC), respectively. In contrast, the predictive
tools based on serum bilirubin (the main biomarker in
PBC) provided similar performances as the multivariate
predictive tool.

Individual prediction of 5-years death at 80 and 85 years
old in the general population
In this second application, we aimed to predict the 5-year
risk of death from any cause in the general older popula-
tion at two different ages: 80 and 85 years old. We relied
on the French prospective population-based aging cohort
Paquid [35] which included 3777 individuals aged 65 years
and older, and followed them up to more than 30 years
with general health assessment every two to three years
and continuous reporting of death. Beyond the individual
quantification of the risk of death, our aim was to identify
the main predictors of death and assess whether they dif-
fered according to age. The use of landmark models was
perfectly adapted to this context with the definition of an
age-specific prediction model. We chose to predict the 5-
year risk of death from information on 9 markers of aging:
depressive symptoms, 3 cognitive functions (general cog-
nition, verbal fluency and executive function), functional
dependency, incontinence, dyspnea, the live alone status,
and polymedication as a global and easily collectedmarker
of multimorbidity [36]. For each one, we focused on the
trajectory over the last 5 years prior to the landmark age.
In addition, we considered 18 other predictors includ-
ing socio-demographic information (such as generation
or sex) and medical history at the last visit prior to the
landmark age (such as cardiovascular disease). Complete
information on the markers and covariate definitions is
given in Section 3.2 and Tables S3/S4 of supplementary
material. The analysis was done on the samples of indi-
viduals still alive at tLM = 80 and tLM = 85, and with at
least one measure for each of the predictors resulting in
N = 1561 andN = 1240 subjects for tLM = 80 and tLM =
85, respectively (see flowchart Fig. S6 in supplementary
material).
We used the exact same strategy as explained in the

previous application for (i) modeling the trajectories of
each marker except that time was the backward time
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Fig. 4 Assessment (figure A) and weights in superlearner (figure B) of 3-years death survival probability in primary biliary cholangitis patients using
information collected up to 4 years over 50 replicates. Methods are assessed using Brier Score (BS) and Area Under the ROC Curve (AUC)

(from -5 to 0 years) from landmark; (ii) computing the
external probabilities with a 10-fold cross-validation and
computing the superlearner with an internal 5-fold cross-
validation. The event time distribution did not differ
across folds (see Figs. S7 and S8 in supplementary mate-
rial). Note that due to the impossibility of using predictors
with zero or near zero variance in sPLS-DR models, we
removed from these models the following predictors: level
of education, hearing, dementia, housing and dependency

(ADL). RSF hyperparameters tuning (according to OOB
error) is reported in supplementary material Figs. S9 and
S10.
Overall, the predictive performances of all the pre-

diction models were very low with AUC ranging from
0.55 to 0.64 in mean and BS ranging from 0.123 to
0.135 in mean (see Figs. S11A and S12A in supplemen-
tary material) showing the difficulty to accurately predict
the age-specific risk of all-cause death in the general
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Fig. 5 Assessment of 3-year survival probability in primary biliary cholangitis patients using baseline information on the 11 biomarkers and 3
covariates (figure A), baseline information and repeated measures collected up to 4 years of either serum bilirubin (figure B), albumin (figure C) or
presence of platelets (figure D). The 10-fold cross-validation was replicated 50 times. The figure displays the difference (in percentage) of Brier Score
(BS) and Area Under the ROC Curve (AUC) compared to the method using all the information with positive values for BS and negative values for
AUC indicating a lower predictive accuracy

population. For both tLM = 80 and tLM = 85, RSF
and the superlearner (which was mostly driven by the
RSF (see Figs. S11B and S12B in supplementary mate-
rial) provided the lowest BS, whereas Cox with variable
selection and penalized Cox models gave the highest AUC
(0.66 inmean). Comparison to baseline information is also
available in Fig. S13 in supplementary material.
This application mainly aimed at identifying and con-

trasting themain age-specific predictors of death at 80 and
85 years old. Fig. 6 reports the VIMP from the optimized
RSF (variables selected by the Lasso are shown in supple-
mentary material Fig. S14). The main predictors of 5-year
death were mainly the trajectory of moderate functional
dependency and polymedication both at 80 and 85 years
old, dyspnea, sex and dementia at 80 years old as well as
general self-assessment of health and severe dependency
status at 85 years old. The predictors of 5-year death did
not substantially differ between the two landmark times

for RSF, except for dyspnea, general self-assessment of
health and sex.

Discussion
We introduced in this paper an original methodology
to compute individual dynamic predictions from a large
number of time-dependent markers. We proposed to
compute this prediction using a landmark approach com-
bined with machine learning methods adapted to survival
data. The idea was to incorporate a set of individual
summaries of each marker trajectory (obtained in a pre-
liminary longitudinal analysis) as well as other covariates
in various prediction methods that could handle a large
number of possibly correlated predictors, and complex
associations. In addition to each prediction tool, we also
proposed a superlearner adapted to time-to-event data,
as a weighted mean of tool-specific predictions where
weights were determined in an internal cross-validation
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Fig. 6 Variables associated with all-cause death in the RSF-Optimizemodel at 80-year and 85-year landmark age. Are displayed the VIMP value for
each marker summaries (figure A) and covariate (figure B). A large VIMP value indicates that the variable is predictive of the event

to provide a minimal Brier Score. Through an extensive
simulation study, we showed that regularized Cox models
and RSF provided better cross-validated predictive per-
formance over standard Cox model in different scenarios
where there was a large number of markers and/or com-
plex associations with the event. This was also observed
in two real case applications: a clinical setting where death
was predicted from monitored markers in primary biliary
cholangitis, and in a setting where all-cause age-specific
death was predicted in the general population from main
markers of aging. We precise that given the wellknown
overfitting when assessing the predictive accuracy on the
same sample as used for the training, we systematically
assessed the predictive accuracy on an external sample
in the simulations. However, in the real data analyses,
in the absence of available external data, we used K-fold
cross-validations (repeated 50 times to account for the
variability due to the cross-validation partitioning).
Providing accurate predictions of health events that can

exploit all the available individual information, even mea-
sured repeatedly over time, has become a major issue with

the expansion of precise medicine. After the first propos-
als of dynamic predictions from repeated marker infor-
mation [1, 6], some authors have recently begun to tackle
the problem of large dimension of longitudinal markers
[18, 19, 22]. In comparison with this recent literature, our
method has the advantage of (i) considering any nature
of markers with measurement error while other consid-
ered only continuous outcomes [19], (ii) proposing the
use of many summaries from the biomarkers as individual
posterior computation from the longitudinal model (com-
pared for instance to [22] who only include one or two
summaries), (iii) exploiting the time-continuous informa-
tion from survival data rather than discretized scale as
in [22], and (iv) considering a vast variety of machine
learning techniques as well as a superlearner rather than
focusing only on one specific technique [18]. Ourmethod-
ology does not limit to the specific model and techniques
described in the paper, it allows the use of any relevant
method at each step. For example, we suggested to capture
individual trajectories using generalized mixed models,
but we also used functional principal component analysis
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[37] to characterize the individual variation of the tra-
jectories using eigenfunctions leading to similar results
(not shown here). We could also estimate the individual
probability using other techniques such as deep learn-
ing [38] or random forests based on pseudo-observations
[18]. Finally, although we considered for simplicity a sin-
gle cause of event in this paper, our methodology could be
extended to take into account several events through com-
peting risks. For example, we could easily replace random
survival forests by their extension that takes into account
competing risks [30].
In our simulations and applications, we considered only

a few dozens of markers repeatedly measured over time
since this is already a challenging situation in individual
dynamic prediction context where classical techniques are
limited to a fewmarkers. Yet, the method would also apply
in a much higher dimensional context (e.g., with omics
repeated data) or with a much larger amount of subjects.
Indeed, our methodology primarily relies on prediction
methods (random forests, penalized regressions, dimen-
sion reduction regressions) that were shown to scale very
well in high-dimensional context [39]. The preliminary
step we added to determine the set of summary features
is a univariate mixed model performed independently on
each marker. Therefore, it isn’t affected by the number of
markers. However, in high-dimensional contexts (highly
large number of subjects and/or highly large number
of markers), we anticipate the method to become com-
putationally very intensive. Reducing the computational
time in such high-dimensional contexts remains a future
direction of research.
Our work presents the same limitations as any landmark

approach. First, only the subjects at risk at the landmark
time are considered which can induce a loss of efficiency.
In addition, predictions from landmark approaches are
not consistent since the time-varying covariate with the
time-to-event are not linked at all times [40]. However,
the landmark method in an extensive simulation study
with one time-varying covariate, the landmark approach
was shown to provide very good predictive performances
compared to the joint modelling technique and better
robustness to misspecification [7]. Finally our method-
ology is limited to the prediction of an event from a
landmark time that is common over subjects or for a
small number of common landmark times as done in the
application. In other settings where any landmark time
should be considered, our methodology would need to be
adapted as it currently involves as many prediction tools
and the number of landmark times which would result in
a considerable increase of computational burden. A pos-
sible solution might be to define the prediction tools as a
continuous function of the landmarks, following the super
landmarkmodels idea [41] but we leave such development
for future research.

Conclusions
By extending the landmark approach to the large dimen-
sional and repeated setting, our methodology addresses a
current major issue in biomedical studies with a complete
methodology that has the assets of being (i) easy to imple-
ment in standard software (R code is provided at https://
github.com/anthonydevaux/hdlandmark andmore details
are given in Section 4 in supplementary material) and (ii)
generic as it can be used with any new machine learning
technique adapted to survival data, any methodology to
model repeated markers over time, any type of possible
summary characteristics for the markers, and any number
of markers.
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