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Macrophages are important effectors of tissue homeostasis, inflammation and host defense.
They are equippedwith an arsenal of pattern recognition receptors (PRRs) necessary to sense
microbial- or danger-associated molecular patterns (MAMPs/DAMPs) and elicit rapid
energetically costly innate immunity responses to protect the organism. The interaction
between cellular metabolism and macrophage innate immunity is however not limited to
answering the cell’s energy demands. Mounting evidence now indicate that in response to
bacterial sensing, macrophages undergo metabolic adaptations that contribute to the
induction of innate immunity signaling and/or macrophage polarization. In particular,
intermediates of the glycolysis pathway, the Tricarboxylic Acid (TCA) cycle, mitochondrial
respiration, amino acid and lipid metabolism directly interact with and modulate macrophage
effectors at the epigenetic, transcriptional and post-translational levels. Interestingly, some
intracellular bacterial pathogens usurp macrophage metabolic pathways to attenuate anti-
bacterial defenses. In this review, we highlight recent evidence describing such host-bacterial
immunometabolic interactions.
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PREFACE

Derived from hematopoietic precursors, macrophages are central innate immune cells that function in
host defense and maintenance of tissue homeostasis. First described by Ilya (Elie) Mechnikov in 1882,
macrophages are essentially found in every tissue, seeding the tissue during embryonic development and
acquiring specialized organ-specific identities and functions through transcriptional and epigenetic
programs governed by factors released by the organ’s stroma (Lavin et al., 2015). In case of perturbations
to tissue homeostasis, bone marrow-derived monocytes are recruited from the blood to the affected site
where they differentiate into macrophages. Both tissue-resident and monocyte-derived macrophages
activate innate and adaptive immunity (Lavin et al., 2015). They act as scavengers that engulf and destroy
microbes, particulate matters or altered host cells, while alerting the immune system through the
secretion of cytokines, chemokines and lipid mediators. In addition, macrophages contribute to wound
healing and tissue repair processes. In contrast, dysregulated activation of macrophages leads to
inflammatory tissue damage and inflammatory diseases, cancer promotion, granulomas and chronic
infections, atherosclerosis and themetabolic syndrome (Murray andWynn, 2011). Macrophages express
scavenger receptors and immunoglobulin receptors, which promote phagocytosis (Kumar, 2020),
antibody-dependent cell phagocytosis (ADCP) and antibody-dependent cell cytotoxicity (ADCC). In
addition, they are equipped with germ-line encoded pattern recognition receptors (PRRs) that sense
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Galli and Saleh Immunometabolism of Macrophages
microbial- or danger-associated molecular patterns (MAMPs/
DAMPs). Following PRR stimulation, signal transduction
cascades converge on the activation of master transcription
factors, proteases, and effectors of phagocytosis, allowing a quick
innate immune response (Kumar, 2020) (Figure 1A). PRR
engagement also ensures durable responses through metabolic
and epigenetic establishment of an “innate memory”, termed
trained immunity. This term coined in 2011 (Netea et al., 2011)
refers to the ability of innate immune cells, such as monocytes and
macrophages to develop a heightened secondary response, that is
rather unspecific, as it occurs following rechallenge by the same or
other pathogens. Trained immunity has been demonstrated
primarily in studies exploring the response to b-glucan of
Candida albicans or Mycobacterium tuberculosis (Mtb) bacillus
Calmette-Guérin (BCG). Unlike the classical immunological
memory of the acquired immune system, which involves gene
recombination events, trained immunity is established by
metabolic and epigenetic reprogramming of transcriptional
pathways in myeloid progenitors (Netea et al., 2020) (Figure 1B).

According to their function in inflammation and host defense
versus wound healing and tissue repair, macrophages have been
broadly designated as classically activated macrophages or
alternatively activated macrophages (also referred to as M1 and
M2, respectively). However, such an M1/M2 classification is an in
vitro paradigm that does not reflect the heterogeneity of
macrophages observed in vivo, as recently revealed by single cell
approaches (Guilliams et al., 2018; Bonnardel and Guilliams, 2018).
Previous studies have relied on in vitro polarization of murine bone
marrow-derived macrophages (BMDM) with bacterial
lipopolysaccharide (LPS) + interferon (IFN)g to obtain the M1
phenotype or interleukin (IL)-4 and/or -13 for M2 polarization.
These two macrophage states can be distinguished based on the
expression of inducible nitric oxide (NO·) synthase (iNOS) and
arginase in M1 andM2 cells, respectively (MacMicking et al., 1997).
These markers highlight a primary metabolic difference in the
metabolism of arginine into the “killer” molecule NO· in M1 cells
or the “repair” metabolite ornithine in M2 cells. Macrophage
metabolic adaptations are however not limited to the arginine
pathway. As we discuss below, a number of studies have reported
a “break” in the TCA cycle and a shift to aerobic glycolysis in M1
macrophages versus a preference for oxidative phosphorylation
(OXPHOS) with enhanced glutamine and fatty acid utilization in
M2 macrophages. Metabolic intermediates and effectors (e.g. NO·,
reactive oxygen species [ROS], TCA derivatives, itaconate,
prostaglandins, tryptophan metabolism etc.) were shown to
regulate macrophage phenotypes and functions by acting as direct
bactericidial agents or through the modulation of innate immunity
signaling pathways, leading to the production of cytokines, anti-
microbial peptides or tissue repair factors (O’Neill et al., 2016).
Here, we focus on recent examples of immunometabolic
adaptations following bacterial challenge and of bacterial strategies
that target metabolic effectors to modulate host defense
mechanisms. The discovery of such immunometabolic
interactions provide novel therapeutic entry points to treat
immunological disorders and infectious diseases.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
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FIGURE 1 | Macrophage innate immunity effectors. (A) Macrophage
polarization to M1 or M2 is an over-simplified in vitro model that does not
illustrate the complexity of macrophage ontogeny and phenotypes observed
in vivo. The main macrophage receptors, transcription factors and markers
associated with the M1/inflammatory and bactericidal (red) versus M2/wound
healing (green) phenotypes are shown. M1 macrophages shift their
metabolism to aerobic glycolysis while M2 macrophages have increased
mitochondrial OXPHOS and lipid metabolism. (B) Trained immunity in myeloid
cells. The graph depicts the enhanced innate immunity response induced
upon rechallenge with the same or other microorganisms. Such innate
memory is mediated by metabolites (mevalonate, acetyl-coA, NAD, a-KG,
fumarate) and metabolic effectors (AKT, mTOR, HIF-1a) that converge on
epigenetic (H3K4me3, H3K27ac) reprogramming of myeloid progenitors
(Netea et al., 2020).
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MACROPHAGE METABOLIC REWIRING
AND ASSOCIATED FUNCTIONAL
OUTCOMES

Prior to delving into macrophage metabolic rewiring, we briefly
provide a snapshot of the key cellular bioenergetic pathways
described to impact macrophage functions upon bacterial
challenge, with a focus on glycolysis and the mitochondrial
TCA cycle (Box 1) (O’Neill et al., 2016). Early studies
examining macrophage immunometabolism have explored the
impact of Toll-like receptors (TLR) engagement, in particular
that of TLR4, on metabolic rewiring. Follow-up studies examined
live bacterial infections and interrogated the functional outcome
of metabolic adaptations on macrophage function. Whether the
early metabolic changes impact macrophage polarization or are a
consequence of inflammatory signaling is currently debated.
Nonetheless, there is ample evidence that metabolic mediators
and effectors control both innate immunity and trained
immunity in a feedforward manner.

Nitric Oxide∙ Kick-Starts the Metabolic
Rewiring in Lipopolysaccharide-Activated
Macrophages
Macrophages stimulated with LPS upregulate the expression of
iNOS and metabolize arginine to produce high levels of NO∙
(MacMicking et al., 1997). Besides its anti-microbial effects, NO∙
has been shown, almost 30 years ago, to inhibit the ETC (Granger
and Lehninger, 1982; Stadler et al., 1991; Cleeter et al., 1994). More
recently, NO∙ was demonstrated as the main driver of metabolic
rewiring in LPS-activated macrophages, as demonstrated using
murine BMDM (Palmieri et al., 2020). Previous studies have
described two metabolic “breaks” in the TCA cycle in such
inflammatory macrophages leading to the accumulation of
citrate and succinate. Citrate accumulation was attributed to
changes in isocitrate dehydrogenase (IDH1) expression (Jha
et al., 2015) and activity (Bailey et al., 2019; De Souza et al.,
2019). However, the recent report by Palmieri et al. demonstrated
that the break is rather mediated by NO∙-dependent inactivation
of aconitase 2 (ACO2) (Palmieri et al., 2020) (Figure 2A). NO∙
also inhibited pyruvate dehydrogenase (PDH), potentially through
Cysteine nitrosylation of the PDH-E3 subunit (dihydrolipoyl
dehydrogenase, DLD), which blunts the entry of pyruvate in the
TCA cycle. Cessation of glucose flux thus increases glutamine
uptake and its anaplerotic utilization. Concomitantly, NO∙ impairs
SDH function (Jha et al., 2015), although this has also been
attributed to itaconate-mediated inhibition (Cordes et al., 2016;
Lampropoulou et al., 2016). In either case, SDH inhibition leads to
succinate accumulation (Figure 2A).

Reactive Oxygen Species and NAD+ as
Determinants of the Macrophage
Inflammatory and Bactericidal Response
In 2011, West et al. reported that stimulation of TLR1, TLR2, and
TLR4 on murine BMDM augmented mitochondrial ROS. They
demonstrated juxtaposition between phagosome and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
mitochondria and an interaction between the TLR adaptor
TRAF6 and ECSIT (Evolutionarily Conserved Signaling
Intermediate In Toll Pathway), a protein involved in CI
assembly in the inner mitochondrial membrane. This TLR-
induced interaction leads to TRAF6-dependent ubiquitination
of ECSIT which alters its localization to the outer mitochondrial
membrane resulting in CI disassembly (West et al., 2011)
(Figure 2A). Depletion of either ECSIT or TRAF6 impaired
the ability of murine BMDM to clear intracellular bacteria, such
as Salmonella typhimurium, supporting a role of CI-derived
mROS in antibacterial defense (West et al., 2011). Follow up
studies showed that engagement of different TLRs on human
monocytes by lysates from different bacteria including
Escherichia coli, Mtb and Staphylococcus aureus resulted in a
universal increase in aerobic glycolysis, but changes in OXPHOS
and lipid metabolism were restricted to some but not all TLRs
(Lachmandas et al., 2016). This suggests that bacterial infection
might induce context-specific metabolic adaptations in
macrophages, different from what has been reported with the
LPS challenge model.

In parallel to enhanced aerobic glycolysis, Tannahill et al.
were first to show that LPS-activated murine BMDM accumulate
succinate (Tannahill et al., 2013). Succinate enhances the activity
of SDH (CII), which overloads coQ with electrons, forcing the
electrons to flow backwards to CI in a process referred to as
reverse electron transport (RET). RET was proposed to trigger
CI-dependent generation of mitochondrial ROS (mROS), which
has been linked to the induction of pro-inflammatory gene
expression (Mills et al., 2016) (Figure 2A). In line with these
findings, Garaude et al. showed that murine BMDM challenged
with live bacteria remodel their ETC, decreasing CI assembly and
switching to CII preferential utilization. This switch was
dependent on sensing bacterial viability by TLRs and the
NLRP3 inflammasome and was mediated by phagosomal
NADPH oxidase and the ROS-dependent tyrosine kinase FGR
phosphorylating and activating SDH (CII) (Garaude et al., 2016).
Reciprocally, inflammasome activation was driven by CII, as its
inhibition diminished the production of IL-1b (while increasing
IL-10) (Figure 2A) (Garaude et al., 2016). Importantly,
inhibition of CII rendered mice more susceptible to infection
with S. typhimurium or E. coli (Garaude et al., 2016). More
recently, the role of RET and CI as the source of mROS has been
challenged (Cameron et al., 2019). CIII was shown to produce
mROS in LPS-stimulated murine BMDM. Inhibition of CIII
which is hypothesized to drive RET, reduced rather than
increased inflammatory cytokine production. Consistently,
deletion of the CI subunit NDUFS4 leads to systemic
inflammation in Ndufs4-/- mice (Jin et al., 2014).

One of the effects of mROS accumulation in LPS-activated
murine BMDM is the depletion of the cellular NAD+ pool,
leading to inhibition of NAD+ dependent mitochondrial
respiration. On one hand, NAD+ is consumed by poly(ADP-
ribose) polymerase activation in response to mROS-induced
DNA damage (Cameron et al., 2019). On the other hand, the
de novo synthesis of NAD+, derived from tryptophan
metabolism via the kynurenine pathway, is inhibited in
January 2021 | Volume 10 | Article 607650
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FIGURE 2 | Metabolic adaptations in activated macrophages. (A) Inflammatory macrophages are characterized by NO∙ -mediated inhibition of glucose flux in the
Tricarboxylic Acid (TCA) cycle. NO∙ inhibits pyruvate dehydrogenase (PDH), aconitase 2 (ACO2), and SDH presumably through cysteine nitrosylation. This results in
citrate accumulation and its conversion to itaconate which also blocks SDH. Citrate conversion to acetyl coA by ATP citrate lyase in the cytosol leads to histone
acetylation and activation of inflammatory gene loci. SDH inhibition results in succinate accumulation, which inhibits PHDs, stabilizing HIF-1a and enhancing its
transcriptional induction of glycolytic and inflammatory genes (e.g. pro-IL-1b). Succinylation of PKM2 leads to its inhibition and translocation to the nucleus where it
promotes HIF-1a activity. RET mediated by succinate accumulation leads to ROS production. (B) Metabolic adaptations in M2 macrophages are represented in
green. Macrophage tolerance in response to prolonged LPS exposure are in yellow.
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response to TLR4 engagement as revealed by Isotype tracer
studies (Minhas et al., 2019). To replenish NAD+ levels and
sustain GAPDH activity in glycolysis, TLR4 quickly induces the
NAD+ salvage pathway by upregulating the expression of
nicotinamide phosphoribosyltransferase (NAMPT) (Cameron
et al., 2019). Together, these studies demonstrate that PRR-
stimulated murine BMDM convert their mitochondria from
ATP- to ROS-producing factories, which depletes NAD+ levels
and inhibits mitochondrial respiration while promoting
glycolysis. Of note, NAD+ also controls the Sirtuins, a family
of NAD+ dependent type III deacetylases that modulate
inflammation by deacetylating various substrates, including
transcription factors involved in macrophage activation such as
NF-kB and AP-1 (Galli et al., 2011). A competition among the
SIRT family members can fine-tune the macrophage
inflammatory response, as recently shown for SIRT5 using
murine peritoneal macrophages (Qin et al., 2017).

Itaconate, an Anti-Inflammatory and
Bactericidal Derivative of the Tricarboxylic
Acid Cycle
As a consequence of the break in the TCA cycle at the level of
ACO2, inflammatory macrophages convert citrate to itaconate
through the mitochondrial enzyme immune-responsive gene 1
(IRG1)-mediated decarboxylation of cis-aconitate, as shown
using murine peritoneal macrophages (Michelucci et al., 2013).
Itaconate blocks SDH, resulting in impaired succinate oxidation,
diminished oxygen consumption (Németh et al., 2016) and
reduction in the levels of inflammatory cytokines (IL-1b, IL-18,
IL-6, IL-12), NO and HIF-1a. Mechanistically, itaconate inhibits
inflammation via the alkylation and inactivation of KEAP1
(Kelch-like ECH-associated protein 1) (Mills et al., 2018),
which is a repressor of the transcription factor Nrf2 (Bellezza
et al., 2018), allowing Nrf2 to exert its anti-oxidant and anti-
inflammatory effects. The anti-inflammatory property of
itaconate was also observed in vivo for e.g. in murine models
of LPS-induced lethality (Liao et al., 2019), ischemia-reperfusion
injury (Lampropoulou et al., 2016), and Mtb infection (Nair
et al., 2018). In the latter, Irg1-/- mice were shown to be more
susceptible to Mtb infection than wild-type animals, due to a
more severe immunopathology. Besides its anti-inflammatory
activity, itaconate is a potent anti-bacterial, as it inhibits the key
enzyme of the bacterial glyoxylate cycle isocitrate lyase, and has
been shown to restrict the growth and virulence of Mtb
(Michelucci et al., 2013), S. typhimurium (Michelucci et al.,
2013) and Legionella pneumophila (Naujoks et al., 2016).

HIF-1a and Aerobic Glycolysis Govern the
Macrophage Inflammatory and Anti-
Bacterial Response
HIF-1a is a master transcription factor best known for its role in
cellular adaptation to hypoxia. In bacterial infection, HIF-1a
levels are upregulated at the transcriptional level by NF-kB, as
shown in murine BMDM infected with group A Streptococcus or
Pseudomonas aeruginosa or in LPS challenge of the murine
macrophage cell-line (RAW264.7) (Rius et al., 2008). The
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
stability of HIF-1a is also regulated at the post-translational
level. The latter is induced by succinate accumulation in
inflammatory macrophages. On one hand, succinate inhibits
prolyl hydroxylases (PHD) (Tannahill et al., 2013), a family of
a-KG-dependent dioxygenases (a-KGDD) involved in HIF-1a
degradation at steady state (Bruick and McKnight, 2001). PHDs
are also indirectly inhibited by mROS leading to HIF-1a
stabilization (Mills et al., 2016). On the other hand,
succinylation of the glycolysis rate limiting enzyme pyruvate
kinase M2 (PKM2) converts it from an active homotetramer into
an inactive monomer/dimer that binds to and activates HIF-1a
(Palsson-McDermott et al., 2015). Among the key inflammatory
genes with a HIF-1a response element is the gene encoding pro-
IL-1b. Thus HIF-1a couples the metabolic shift to aerobic
glycolysis in murine BMDM to the induction of IL-1b-
mediated inflammatory response (Figure 2A). In chronic
infection with some intracellular bacteria, HIF-1a stabilization
leads to reduced citrate levels, and such a nutritional depletion
prevents bacterial replication but without impacting bacterial
survival leading to bacterial persistence (Hayek et al., 2019). This
was demonstrated for Coxiella burnetii, the causative agent of Q
fever, using human monocyte-derived macrophages (hMDM)
and in murine BMDM and for L. Pneumophila, the causative
agent of Legionnaires’ pneumonia, in a murine BMDM
infection model.

The Role of Glutaminolysis, a-KG, and the
Hexosamine Biosynthetic Pathway (HBP)
in M2 Macrophage Polarization
Using metabolomics and transcriptomics approaches on murine
BMDM cultured under LPS+IFNg elicited M1 or IL-4-induced
M2 polarizing conditions, Jha et al. identified different metabolic
pathways important for each macrophage state. In particular, an
enrichment of effectors and metabolites of the glutaminolysis
and the HBP was observed in M2 macrophages. Concordantly,
inhibition of N-glycosylation or glutamine deprivation reduced
M2 polarization (Jha et al., 2015). The same was seen with
inhibition of the glutaminase Gls1, which was demonstrated to
promote M2 polarization through elevation of a-KG production
and epigenetic upregulation of M2-associated genes by Jumonji
domain-containing protein D3 (JMJD3) (Liu et al., 2017), a
histone demethylase belonging to the a-KGDD superfamily
(Loenarz and Schofield, 2008). Glucosamine treatment, which
engages the HBP, suppressed LPS-induced proinflammatory
gene expression in BMDM and improved clinical outcomes in
the cecal ligation and puncture (CLP) mouse model of sepsis
(Hwang et al., 2019) (Figure 2B). Conversely, myeloid-specific
knockout of murineOgt, which encodes the HBP effector enzyme
O-GlcNAc transferase (OGT) led to heightened susceptibility to
LPS-induced septic shock, mediated by exacerbated macrophage
inflammation (Li et al., 2019a; Li et al., 2019b).

Metabolic Epigenetic Control of
Inflammation and Trained Immunity
As mentioned earlier, a-KG exerts important epigenetic
regulation of murine BMDM polarized to the M2 phenotype
January 2021 | Volume 10 | Article 607650
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through the histone demethylase activity of JMJD3 (Liu et al.,
2017). Another layer of control of macrophage inflammatory
response is mediated by acetyl-CoA production and histone
acetylation. Using metabolic tracing of glucose and glutamine
and metabolic assays, Lauterbach et al. recently demonstrated
that TLR4 stimulation of murine BMDM activates ATP-citrate
lyase, which converts citrate pumped out of the mitochondria to
acetyl-CoA in the cytosol. Acetyl-coA is then used for histone
acetylation and activation of several inflammatory gene loci,
including the Il-12 locus, linking cellular metabolism to
epigenetic activation of innate immunity (Lauterbach et al.,
2019) (Figure 2B). A new post-translational modification
(PTM) of histone lysine residues, derived from lactate and
referred to as lactylation, has recently been added to the
metabo-epigenetic armamentarium of macrophage regulation
(Zhang et al., 2019). Interestingly, this PTM appears to occur
later in the course of murine BMDM polarization than histone
acetylation, upregulating genes involved in wound healing (e.g.
Arg1) presumably to restore homeostasis (Zhang et al., 2019).

The immune tolerance state observed in macrophages following
prolonged exposure to LPS, which provides a model to study
immune paralysis, as observed in sepsis (Kumar, 2018), is
similarly controlled by chromatin remodeling. Seeley et al.
showed that sustained LPS promoted murine BMDM tolerance
by inhibiting STAT1/2-dependent upregulation of inflammatory
genes. Prolonged LPS treatment induced two microRNAs, miR-221
and miR-222, that inhibited the chromatin remodeling complex
SWI/SNF by targeting its core component brahma-related gene 1
(Brg1). Interestingly, expression of miR-221/-222 correlated with
increased organ damage in sepsis patients, andmay potentially serve
as a biomarker of sepsis-related immune paralysis (Seeley et al.,
2018). Beyond the regulation of innate immunity, the metabolic-
epigenetic crosstalk exerts a key role in the establishment of trained
immunity. The two main epigenetic marks linked to trained
immunity are histone methylation (H3K4me3) in promoters and
histone acetylation (H3K27ac) in distal enhancers of poised innate
immunity genes within specific loci in the genome. In human
monocytes stimulated with b-glucan (to induce trained immunity),
Arts et al. showed that cholesterol synthesis, aerobic glycolysis and
glutamine anaplerotic use in the TCA cycle, lead to fumarate
accumulation, which induces epigenetic rewiring of macrophages
by inhibiting the histone demethylase lysine demethylase 5 (KDM5)
(Figure 1B). Inhibition of glutaminolysis and cholesterol synthesis
in mice reduced trained immunity induction in vivo (Arts et al.,
2016). b-glucan inhibits IRG1 thus limiting itaconate inhibition of
SDH; as a consequence succinate is converted to fumarate in b-
glucan-trained human MDM (Dominguez-Andres et al., 2019).
BACTERIA REWIRE MACROPHAGE
METABOLISM AS A STRATEGY TO GROW
AND EVADE INNATE IMMUNITY

Some intracellular bacterial pathogens evolved multiple and
overlapping mechanisms to survive within the threatening
environment of a macrophage (Figure 3). These include exploiting
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
macrophage metabolic resources to survive and rewiringmacrophage
metabolism to attenuate bacterial sensing and innate anti-bacterial
defenses. Furthermore, some bacteria adapt to macrophage innate
immunity responses to tolerate antibiotics.

Exploiting the Macrophage Glycolytic
Pathway as a Nutrient Source
Among the intracellular bacteria shown to rewire macrophage
metabolism toward aerobic glycolysis are L. pneumophila, Brucella
abortus, Mtb and Listeria monocytogenes. While L. pneumophila
depends on serine metabolism in its exponential growth phase, it
switches to glycerol and glucose use in the post-exponential phase
(Hauslein et al., 2017; Oliva et al., 2018). L. pneumophila establishes
a permissive niche by impairing macrophage OXPHOS in a type IV
secretion system (T4SS)-dependent manner (Escoll et al., 2017).
Using human MDM and the murine RAW264.7 macrophage cell-
line, Escoll et al. showed that L. pneumophila triggered
mitochondrial fission through the secreted effector MitF, a Ran
GTPase activator that interacts with host DNM1L, a GTPase
involved in mitochondrial fission. In parallel, L. pneumophila
enhances glycolysis in a T4SS-independent manner, although the
mechanism controlling this pathway has not been determined.
Using macrophages derived from the human monocytic cell-line
THP-1, Czyż et al. showed that B. abortus increased macrophage
aerobic glycolysis to promote its survival, which depended on lactate
as its sole carbon source. This was demonstrated using a Brucella
strain deficient in lactate dehydrogenase or by pharmacological
inhibition of host glycolysis, both resulting in impaired Brucella
growth (Czyz et al., 2017).Mtbwas reported to use lactate instead of
pyruvate as a carbon source. Using WT and KO mutant strains,
Billig et al. showed that this ability to use lactate relied on oxydation
by the L-lactate dehydrogenase LldD2. 13C tracing experiments
proved that lactate was used in the bacterial TCA cycle and for
gluconeogenesis via phosphoenolpyruvate carboxykinase. This
pathway was key for Mtb intracellular survival in human
macrophages (Billig et al., 2017). The cytosolic bacteria Listeria
monocytogenes poorly metabolizes lactate and pyruvate, but relies
on glycerol and glucose-6-phosphate for energetic and anabolic
needs, respectively (Grubmuller et al., 2014). Through its toxin
Listeriolysin O (LLO), L. monocytogenes induces transient
mitochondrial fragmentation (Stavru et al., 2011), and takes
advantage of the increased glycolysis elicited in inflammatory
macrophages to proliferate (Gillmaier et al., 2012).

Dampening Macrophage Glycolysis to
Promote Chronic Infection
B. abortus chronic intracellular infection preferentially occurs in
alternatively activated or M2 macrophages, relying on PPARg that
contributes to increased glucose availability for the bacteria (Xavier
et al., 2013). Similarly, S. typhimurium hijacks glucose from the host
cell requiring the transcription factor PPARd to sustain chronic
infection as shown usingmurine BMDM (Eisele et al., 2013). Unlike
the findings by Billig et al. described above (Billig et al., 2017),
Cumming et al. demonstrated that enhanced aerobic glycolysis was
only observed with M. bovis BCG or dead Mtb. In contrast, live
virulentMtb directed humanmacrophagemetabolism to exogenous
January 2021 | Volume 10 | Article 607650

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Galli and Saleh Immunometabolism of Macrophages
fatty acid consumption instead of glucose while globally reducing
both glycolysis and the TCA cycle. Mtb thus reprograms
macrophage metabolism into a “quiescent state” to facilitate its
intracellular survival (Cumming et al., 2018). Among the
mechanisms by which Mtb dampens macrophage glycolysis is
through the induction of microRNA-21 (miR-21) that targets the
glycolysis limiting enzyme phosphofructokinase-M (PFK-M). Using
WT or miR-21 deficient mice and in vitro assays with human and
mouse macrophages, Hackett et al. demonstrated that this anti-
inflammatory miR-21 dampened glycolysis and ultimately
decreased IL-1b production, promoting bacterial growth.
Interestingly, IFNg secreted in response to Mtb infection counters
miR-21 induction, restoring the macrophage anti-bacterial response
(Hackett et al., 2020).

Countering the Anti-Bacterial Effect
of Itaconate
Several bacteria, including Yersinia Pestis and P. aeruginosa
degrade itaconate as a common survival strategy, by expressing
three enzymes, namely itaconate coenzyme A (CoA) transferase,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
itaconyl-CoA hydratase, and (S)-citramalyl-CoA lyase
(Sasikaran et al., 2014). Furthermore, P. aeruginosa exploits
itaconate as a carbon source allowing it to produce biofilm as
in cystic fibrosis patients lungs. Riquelme et al. recently reported
that itaconate-adapted P. aeruginosa accumulate mutations in
the LPS-assembly protein IptD, and upregulate extracellular
polysaccharides, which in turn promotes itaconate production
by macrophages in a feedforward mechanism (Riquelme
et al., 2020).

Targeting Metabolic Effectors to “Hide”
From Macrophage Pattern Recognition
Receptors and to Tolerate Antibiotics
Using murine BMDM, Grayczyk et al. determined that S. aureus
is able to secrete a lipoic acid synthetase, LipA, that modifies
pyruvate dehydrogenase E2 subunit (PDE2) by adding a lipid
moiety, lipoic acid. This yields the secreted metabolic protein
lipoyl-E2-PDH that blocks TLR1/2 stimulation by bacterial
lipopeptides. Altogether, these data suggest a key role for LipA
in bacterial escape from innate immunity (Grayczyk et al., 2017).
FIGURE 3 | Bacterial strategies targeting macrophage metabolism toward a successful infection. Bacteria manipulate metabolic pathways to enhance the necessary
nutrient resources required for their survival, including glucose and lactate as carbon sources. The antibacterial effects of itaconate is countered by some bacteria
through expression of itaconate degradative enzymes. Bacteria can “hide” from innate sensors by altering host metabolic enzymes (e.g. PDE2 conversion into lipoyl-
E2-PDH that blocks TLR1/2 stimulation by bacterial lipopeptides). Chronic infection by intracellular bacteria is promoted through the actions of PPARd and PPARg
that promote a wound healing phenotype and enhance glucose availability for the bacteria.
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S. aureus also benefits from host-derived ROS to tolerate
antibiotics. Rowe et al. showed that ROS attenuated the
metabolism of S. aureus by attacking iron-sulfur (Fe-S)
clusters-containing proteins including bacterial TCA cycle
enzymes, namely SDH and acotinase. This metabolic state
confers S. aureus resistance to killing by multiple antibiotics,
highlighting a situation where innate immunity is exploited by
the bacteria for a successful infection (Rowe et al., 2020).
CONCLUSION AND FUTURE
PERSPECTIVES

The last decade has witnessed an impressive growth in the
understanding of the intricate immunometabolic network
governing macrophage activation in bacterial infections.
Furthermore, several studies have now described strategies used
by intracellular bacterial pathogens to survive in macrophages,
evade innate immunity and establish a chronic infection. These
advances provide exciting perspectives for developing new therapies
targeting macrophage metabolic effectors to treat infectious and
inflammatory diseases. Notable example of currently approved anti-
inflammatory drugs that target metabolic effectors include
methotrexate, rapamycin and metformin, that respectively inhibit
dihydrofolate reductase, mammalian target of rapamycin (mTOR),
and CI. Additional metabolic modulators include dimethyl
fumarate (DMF) that inhibits KEAP1, NF-kB and the
inflammasome, among others, and TEPP-46 that promotes
PKM2 tetramerization [reviewed in (Palsson-McDermott and
O’Neill, 2020)]. However, to expand this armamentarium, the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
focus must be steered away from tissue culture models of
macrophage infection and in vitro macrophage polarization
studies to fully grasp organ-specific immunometabolic
mechanisms of macrophages of different lineages involved in
fighting or containing bacterial infections. Exploring the efficacy
of new immunometabolic modulatory drugsmight provide urgently
needed therapeutic options for emerging infectious diseases or those
resistant to approved therapies.
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