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Depression and anxiety are devastating disorders. Understanding the mechanisms that
underlie the development of depression and anxiety can provide new hints on novel
treatments and preventive strategies. Here, we summarize the latest findings reporting
the novel roles of gut microbiota and microRNAs (miRNAs) in the pathophysiology of
depression and anxiety. The crosstalk between gut microbiota and the brain has been
reported to contribute to these pathologies. It is currently known that some miRNAs can
regulate bacterial growth and gene transcription while also modulate the gut microbiota
composition, suggesting the importance of miRNAs in gut and brain health. Treatment
and prevention strategies for neuropsychiatric diseases, such as physical exercise, diet,
and probiotics, can modulate the gut microbiota composition and miRNAs expressions.
Nonetheless, there are critical questions to be addressed to understand further the
mechanisms involved in the interaction between the gut microbiota and miRNAs in the
brain. This review summarizes the recent findings of the potential roles of microbiota
and miRNA on the neuropathology of depression and anxiety, and its potential as
treatment strategies.
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INTRODUCTION

MicroRNAs (miRNAs) are single-stranded non-coding RNAs, with an average of 22 nucleotides in
length, which function as the posttranscriptional regulators of gene expression, primarily through
translational repression (Ha and Kim, 2014). Most miRNAs are transcribed from DNA sequences
into the primary miRNAs, then processed into the precursor miRNAs, and finally the mature
miRNAs (O’Brien et al., 2018). miRNAs are involved in regulating numerous developmental and
physiological processes (Ha and Kim, 2014). They are also secreted into the extracellular fluid and
serve as the signaling molecules to facilitate cell-to-cell communication (Sohel, 2016). The aberrant
expressions of miRNAs are associated with the pathogeneses of cancer (Cui et al., 2019), aging
(Kinser and Pincus, 2020), and neuropsychiatric disorders (Xu et al., 2012). Hence, the expressions
of miRNAs could be the biomarkers for these diseases, and specifically, miRNAs are suggested as the
new pharmacological targets and biomarkers for treating and diagnosing depression and anxiety
(Scott et al., 2015; Yuan et al., 2018).

The composition of gut microbiota, on the other hand, is another factor that is associated
with psychiatric disorders. Gut microbiota is the microbial flora that inhabits the intestine and
is involved in digestion, including bowel movement, food digestion, as well as water and nutrient
absorption (Grochowska et al., 2018). Interestingly, changes in the gut microbiota composition may
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eventually contribute to the pathogeneses of neuropsychiatric
disorders. Patients with depression, for instance, have altered
intestinal microbiota compositions (Amirkhanzadeh Barandouzi
et al., 2020). In addition, changes in the microbiota due to
antibiotics administration and other conditions can induce
depression-like behavior in animals. Chronic unpredictable
mild stress promotes anxiety and depression-like behaviors
in mice associated with an altered gut microbiota profile,
whereas mice colonized with gut microbiota from stressed
animals show similar behaviors (Li et al., 2019). Likewise,
fecal microbiota transplantation from depressed patients to
microbiota-depleted rats can induce depression and anxiety-like
behaviors (Kelly et al., 2016).

The miRNA expressions in the brain and the gut microbiota
composition are associated with the pathogenesis of depression
and anxiety. Critically, miRNAs secreted in the circulation can
modulate the microbiota composition, whereas the microbiota
composition influences the miRNA expressions in limbic
structures that are important for mood regulation. In-depth
reviews of the roles of miRNAs and the microbiome in psychiatric
disorders such as anxiety and depression can be referred to
Meydan et al. (2016), Allen and Dwivedi (2020), Huang and Wu
(2021), and Simpson et al. (2021). Here, we review the latest
literature by discussing the potential gut microbiota-miRNA
crosstalk in modulating depression and anxiety-related disorders,
highlighting the relevance of miRNA as the new biomarkers and
potential intervention strategies.

THE ROLES OF MICROBIOTA ON
DEPRESSION, ANXIETY, AND MicroRNA
EXPRESSION

The Potential Role of Microbiota in
Depression
Depression is characterized by sad or irritable mood
accompanied by autonomic and cognitive changes that
substantially affect the individual’s functionality (American
Psychiatric Association, 2013). Depression can be understood
from a neurochemical perspective, where a downregulation
in the monoaminergic transmission associated with dorsal
raphe nucleus (DRN) activity results in poor mood regulation
(Coppen, 1967; Cosci and Chouinard, 2019). On the other
hand, as it has been more recently proposed, depression
is recently proposed as a result from the disintegration of
systems and mal-functioning circuits (Manji et al., 2003;
Castrén, 2013; Marsden, 2013). In agreement with that, it was
recently found that patients with major depressive disorder
present lower synaptic density in the dorsolateral prefrontal
cortex (PFC), anterior cingulate cortex, and hippocampus
(Holmes et al., 2019), all these structures that are involved
with emotional reappraisal (Buhle et al., 2014), sadness
(Drevets et al., 1997), and cognition (Anacker and Hen, 2017).
Increasing structural and synaptic plasticity within these systems
have been proposed to be linked to antidepressant actions
(Duman et al., 2016).

The relationship between microbiota composition and
depression has long been established. Depressed patients have
altered microbiota composition compared with healthy controls
and decreased microbiota diversity and richness (Kelly et al.,
2016; Zheng et al., 2016). Moreover, fecal transplantation from
depressed patients to germ-free (GF) rodents induces depressive
phenotype that is usually followed by increased anxiety-like
behaviors (Kelly et al., 2016; Zheng et al., 2016). However,
the mechanisms by which the microbiota affects the brain
remain poorly understood. The inflammatory system has been
suggested as a possible pathway among the candidates due to
its relevance for neuronal development and plasticity (Fung
et al., 2017). Indeed, a recent meta-analysis has confirmed that
several psychiatric disorders, including depression and anxiety,
present reduced gut bacteria responsible for producing the anti-
inflammatory butyrate along with increased pro-inflammatory
generating bacteria (Nikolova et al., 2021). The enteric nervous
system also represents a pathway by which alterations in the
gut microbiota can directly inform the central nervous system
(Bravo et al., 2011). Severing the vagal nerve can block some
microbiota effects over central signaling systems (Bravo et al.,
2011). Finally, the microbiota composition has been shown to
modulate the individuals’ response to stress to the same extent
to which chronic stress can shape the microbiota composition
(Foster and McVey Neufeld, 2013).

In the learned helplessness paradigm, vulnerable rats have
altered microbiota composition compared with resilient and
control rats, suggesting the microbiome influences stress
susceptibility (Zhang et al., 2019). On the other hand, early-
life stress induced by maternal separation induces dysbiosis in
the adult offspring displaying depressive phenotype (O’Mahony
et al., 2009; de Palma et al., 2015). Likewise, chronic probiotic
treatment significantly improves depressive phenotype induced
by maternal separation in the adult offspring (Desbonnet et al.,
2010). Of note, the beneficial effects of probiotic administration
are independent to dysbiosis, such that chronic treatment
with a Lactobacillus strain reduces anxiety- and depression-
like behavior in the physiological condition and reduces
corticosterone reactivity in response to acute stress (Bravo et al.,
2011). Moreover, both acute (ketamine) (Yang et al., 2017)
and chronic (fluoxetine) (Zhang et al., 2021) antidepressant
treatment are associated with an increased relative abundance
of the gut microbiota. Therefore, stress directly influences the
microbiota composition, and the microbiota per se can impact
stress resilience.

Microbiota composition can directly affect the central
nervous systems associated with the glucocorticoid response.
Depleted microbiota is associated with increased hippocampal
noradrenaline and reduced serotonin levels (de Palma et al.,
2015; Hoban et al., 2016), increased neuronal activation in
areas associated with stress response, such as the paraventricular
nucleus of the hypothalamus (PVN) and bed nucleus of the
stria terminalis (BNST) (Wu et al., 2021), and decreased
gene expression of glucocorticoid receptors and CHF in the
hippocampus and amygdala (Hoban et al., 2016). Likewise, mice
with depleted microbiota have increased basal corticosterone
levels and HPA reactivity in response to acute stress, which can
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be reversed by microbiota recolonization (Clarke et al., 2013; Wu
et al., 2021). Moreover, chronic probiotic treatment reduces the
corticosterone reactivity to acute stress and improves depressive
phenotype (Bravo et al., 2011; Liang et al., 2015). Noteworthy,
probiotic antidepressant effects are associated with improved
expression of GABA receptors (Bravo et al., 2011) and restored
BDNF, noradrenaline, and serotonin levels in the hippocampus
and mPFC (Liang et al., 2015; Sun et al., 2018). Moreover, such
probiotic effects are abolished upon vagotomy (Bravo et al., 2011),
suggesting the enteric nervous system as a direct communication
pathway in the gut-brain axis.

Remarkably, GF rodents tend to present reduced anxiety-
and depression-like behaviors (Heijtz et al., 2011; Clarke
et al., 2013; de Palma et al., 2015; Wu et al., 2021) and
are resilient to behavioral impairments induced by maternal
separation (de Palma et al., 2015). Such aberrant profile
is associated with reduced hippocampal BDNF expression,
increased hippocampal and striatal serotonin levels, and plasma
tryptophan concentrations (Heijtz et al., 2011; Clarke et al., 2013).
Notably, microbiota recolonization in adult life fails to restore
some features associated with early life microbiota deficiency,
mainly concerning the aberrant hippocampal monoaminergic
system activity (Clarke et al., 2013), suggesting a long-lasting
effect of early life dysbiosis. Unexpectedly, GF mice that are
resilient to maternal separation display depressive phenotypes
upon microbiota colonization in adult life (de Palma et al., 2015),
suggesting changes of microbiota profile in adulthood can affect
stress resilience.

The Potential Roles of Microbiota in
Anxiety
Clinical anxiety is characterized by a broad range of exaggerated
and enduring symptoms, such as increased arousal and excessive
fear and anxiety-related responses, including autonomic changes,
such as increased heart rate and sweating, often in the absence
of any real threat or danger (Hoffman and Mathew, 2008). The
mechanisms leading to anxiety pathophysiology are not yet fully
elucidated, although studies have indicated that anxiety disorders
are multifactorial, possibly involving gene and environmental
interaction (Hoffman and Mathew, 2008). Similar to depression,
ample evidence has shown that the gut microbiota plays a major
role in anxiety pathogenesis (Nishino et al., 2013; Crumeyrolle-
Arias et al., 2014; de Palma et al., 2015).

Several early studies have shown anxiolytic-like behaviors in
GF rodents, as indicated by increased exploration of unfamiliar
areas in the open-field test (OFT) and elevated plus-maze (EPM)
test (Heijtz et al., 2011; Crumeyrolle-Arias et al., 2014). A further
study has demonstrated the infectious effect of microbiota on
anxiety by colonizing GF adult mice with microbiota from
specific pathogen-free (SPF) mice (Neufeld et al., 2011). This
effect returns to normal as infant rodents enter adulthood
(Nishino et al., 2013). Also, offspring subjected to microbiota
colonization has shown a significant reduction in spontaneous
locomotor activity and anxiety-like behavior (Heijtz et al., 2011).

Anxiety-like behavior can be caused by a dysbiosis of the
gut microbiota (Carding et al., 2015; Kc et al., 2020). Rodent
studies have demonstrated that intestinal microbiota disruption

induced by stress (Bharwani et al., 2017), or high-fat diet
(Bruce-Keller et al., 2017), or antibiotics (Park et al., 2021)
leads to anxiety-like behavior, which can be restored to normal
by probiotic administration, including Escherichia coli (Park
et al., 2021) and B. longum (Pinto-Sanchez et al., 2017). These
results suggest that anxiety may arise from perturbations in
the gut microbiota caused by external conditions. However,
the precise mechanisms whereby the dysbiosis of microbiota
affects anxiety-like behaviors is still unclear. Recent findings show
that disrupted gut microbiota is associated with autoimmune
disease and neuroinflammation, as indicated by increased serum
levels of the pro-inflammatory cytokines IL-6 and NF-κB (Estes
and McAllister, 2015; Schnorr and Bachner, 2016), suggesting
that inflammatory response could be potential mediator of gut
dysbiosis on inducing anxiety.

The Fusobacterium, such as Lachnospiraceae (Luna and
Foster, 2015) and Ruminococcaceae (Tengeler et al., 2020)
increases levels of pro-inflammatory cytokine in association with
social avoidance. Studies have shown that the microbiota induces
release of cytokines and associated pro-inflammatory proteins
into the blood (such as TNF-α and interferon-γ), which in turn
impair epithelial function and intestinal permeability (Lee and
Lee, 2014; Martin-Subero et al., 2016), and activate the intestinal
immune cells (de Palma et al., 2017) and primary afferent
nerves (Burton and Gebhart, 1995). Anxiety and depression are
commonly associated with dysregulation of the HPA axis (van
den Bergh et al., 2008), whereas the gut microbiota has been
shown essential for regulating the HPA axis activity (Messaoudi
et al., 2011; Xu et al., 2020). Dysbiosis-induced release of
cytokines may contribute to anxiety via modulation of the HPA
axis (Martin-Subero et al., 2016).

Previous studies have found that GF mice are more susceptible
to stress-induced hyperactivation of the HPA axis resulting
in elevated levels of adrenocorticotropic hormones (ACTH),
corticotropin-releasing hormone (CRH), and corticosterone
(Huo et al., 2017; Frankiensztajn et al., 2020). However, HPA
axis hyperactivity returns to normal after colonization with
commensal bacteria (Sudo et al., 2004). Furthermore, rats
subjected to maternal separation (an animal model of early
life adversity) showed dysbiosis depending on activation of the
HPA axis (Cong et al., 2016). However, probiotic (Lactobacillus
spp.) treatment normalizes basal cortisol levels and prevents
hyperactivation of the HPA axis in offspring from dams with
microbiota depletion (Bailey and Coe, 1999).

Lipopolysaccharide (LPS) and peptidoglycan also play critical
roles in activating the HPA axis. Several studies have shown
that stress not only simulates NF-κB activation and monocyte
migration to the intestine (Jang et al., 2018) but also improves
the density of Aspergillus and E. coli in the gut microbiota
and increases fecal and serum LPS levels in rodents with
anxiety-like behavior (Frankiensztajn et al., 2020). Further
investigation suggests that intraperitoneally injection with LPS
triggers persistent depression-like behavior in adolescent female
mice and anxiety in adult male mice (Yahfoufi et al., 2021).
Conversely, pubertal probiotic administration prevents LPS-
induced depression/anxiety-like behaviors (Sylvia et al., 2018;
Yahfoufi et al., 2021). These results support the hypothesis that
LPS from proteobacteria causes an inflammatory response in the
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gastrointestinal tract, which then activates NF-κB signaling and
thus the HPA axis, and consequently leads to anxiety (Girard-
Joyal and Ismail, 2017; Yahfoufi et al., 2021).

Gut-brain communication has been demonstrated to transmit
via the vagal nerve (Bercik et al., 2011; Breit et al., 2018;
Fülling et al., 2019). Several studies have shown that the gut
microbiota may communicate with the brain via intermediate
intestinal cells and dendritic cells, conveying endocrine and
neurological signals (Westfall et al., 2017; Huh and Veiga-
Fernandes, 2020). In addition, microbial metabolites are potential
regulators of neurotransmitter synthesis, for instance short-
chain fatty acids, trypsin, 5-hydroxytryptamine, glutamate, and
dopamine (Dalile et al., 2019). Thus, there are implications
that microbial metabolites facilitate gut-brain communication
and behavior regulation. The vagal nerve is chemosensitive and
regulates anxiety-like behavior via orexigenic and anorexigenic
neuropeptides secreted by enteroendocrine cells (Forsythe et al.,
2014). Additionally, the vagal nerve responds to multiple
signaling factors released by mast cells and lymphoid cells,
including 5-HT and CRH, suggesting the enteric nervous system
is also involved in modulating the HPA axis (Gui, 1998).

Anatomical studies have also shown that the sensory neurons
of the submucous plexus are in contact with the microbiota
and are involved in synaptic neogenesis with the motoneurons
of the intestine (Furness et al., 2014), which is associated with
the regulation of anxiety-like behaviors (Burokas et al., 2015).
Moreover, Campylobacter jejuni increases the expression of c-Fos
in vagal afferent brain regions and induces anxiety in mice
(Goehler et al., 2005). Additionally, probiotics, such as B. longum,
can relieve anxiety through enteric modulation in mice with
colitis (Khoshdel et al., 2013).

Probiotics and prebiotics, which can promote the balance
of gut microbiota, are of great interest as they also promote
anxiety relief (Cryan and O’Mahony, 2011). Decreased anxiety-
like behavior and plasma corticosterone are observed after
prebiotic treatment (fructo-oligosaccharides) in stressed mice
(Burokas et al., 2017). Such prebiotic strain also improves the
mRNA expression of γ-aminobutyric acid (GABA) receptors in
the hippocampus (Burokas et al., 2017). GABA is one of the major
inhibitory neurotransmitters and can be synthesized by intestinal
Lactobacilli and Bifidobacteria (Barrett et al., 2012). In addition,
dietary probiotics have been shown to support gastrointestinal
remodeling by increasing circulating glutathione and reducing
inflammatory markers (Aslam et al., 2020).

In summary, the neurobiological study of anxiety and gut-
CNS connections has revealed potential ways in which microbial
disturbances can result in mood and behavior alterations.
Although animal experiments have confirmed the use of
probiotics to treat anxiety and depression, further mechanistic
studies and clinical trials are required to provide scientific
evidence on their clinical use.

Effects of Microbiota on Modulating
MicroRNA Expression
Recent studies show that microbiota depleted animals have
altered expression of miRNA levels in addition to anxiety-
like behavior (Hoban et al., 2017), supporting the role of

microbiota in influencing the levels of miRNAs. Absence of
microbiota in adolescent GF mice results in dysregulation of
transcriptome expression in the hippocampus and reduced
anxiety-like behavior (Liu et al., 2020). In another study, GF
and antibiotic-induced depletion of the microbiota changes the
miRNA expression in the amygdala and PFC (Hoban et al., 2017;
Table 1). In the amygdala, miR-183-5p and miR-182-5p levels are
decreased and subsequently normalized by colonization (Hoban
et al., 2017). Both miRNAs are linked with amygdala-dependent
stress- and fear-related behaviors (Bocchio-Chiavetto et al., 2013;
Griggs et al., 2013). Moreover, miR-219a-2-3p expression in the
same brain regions is altered in GF and antibiotic-treated mice
(Hoban et al., 2017). Moreover, evidence shows that miR-219a-2-
3p/miR-219-3p are altered in the basolateral amygdala following
social defeat stress (Chen et al., 2015).

The microbiome regulates amygdala-dependent fear and
anxiety circuitry, and miRNAs are suggested as key mediators
(Scott et al., 2015). GF mice have impaired auditory fear
conditioning (Scott et al., 2015), which can be related to
the apparent incapacity of GF mice to retain the association
between conditioned (tone) and unconditioned (shock) stimuli
when compared with controls (Hoban et al., 2018). After fear
conditioning, miR-34b-5p, miR-34c-5p, and miR-34b-3p are
downregulated (Hoban et al., 2018). Interestingly, it is shown that
deletion of this miRNA family is related to anxiety resilience in
stressed mice and reduced fear memory (Andolina et al., 2016).
Together, these data indicate that microbiota and miRNA can be
targeted for treating fear- and anxiety-related disorders.

Levels of seven miRNA, including miR-190a-5p, miR-3095-3p,
miR-363-5p, miR-421-3p, miR-539-5p, miR-673-3p, miR-758-
5p, are changed in the hippocampus when compared to GF
mice (Chen et al., 2017). Interestingly, microbiota colonization
of GF mice, restore changes of all miRNAs (Chen et al.,
2017; Table 1). These miRNAs have reported to be related to
neuropsychiatric diseases. Expression of miR-421-3p is changed
in the amygdala and serum of rats exposed to acute traumatic
stressors, suggesting its role in regulating posttraumatic stress
disorder (Balakathiresan et al., 2014). Moreover, maternally
separated mice significantly differ in the hippocampal miR-190a-
5p expression levels (McKibben and Dwivedi, 2021).

In humans, administration of Lactobacillus gasseri CP2305
for 12 weeks improved stress-related behaviors in healthy young
students who are with increased basal salivary cortisol and
miR144 and miR144∗ expression levels (Nishida et al., 2017).
Moreover, peripheral miR11/144∗ levels are elevated in medical
students during the pre-examination period (Katsuura et al.,
2012). Additionally, a decrease in miR144∗ levels during the
post-examination period is correlated with decreased interferon-
gamma (IFN-γ) levels such subjects (Katsuura et al., 2012).

Another aspect that hints at the microbiota relevance for
miRNA expression is the commonly observed alterations in
patients and animal models with irritable bowel syndrome
(IBS). IBS is the most common functional digestive condition,
characterized by recurrent abdominal pain and altered bowel
movements (Saha, 2014). It is also considered as a complex
and heterogeneous disorder with dysfunctional brain-gut axis
and gut microbial dysbiosis (Saha, 2014). Not surprisingly,
IBS presents high comorbidity with depression and anxiety
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TABLE 1 | Microbiota-induced modulation of miRNA levels in brain regions related to depression/anxiety.

Microbiota depletion
strategy

Altered miRNAs compared to control Behavioral
alterations

Results after microbiota
colonization

References

Male Swiss Webster Germ free ↑ miR-3535, miR-187-3p, miR-369-5p
(amygdala)
↓ miR-182-5p, miR-183-5p, 219a-2-3p
(amygdala)
↑ miR-219a-2-3p (PFC)

– Restored: miR-182-5p,
miR-182-3p, 219a-2-3p,
miR-122-5p

Hoban et al., 2017

Male Sprague Dawley Cocktail of antibiotics ↑ miR-369-3p (amygdala)
↓ miR-206-3p, 219a-2-3p (amygdala)
↓ 219a-2-3p (PFC)

– – Hoban et al., 2017

Male C57BL/6J mice Germ free ↑ miR-184-3p, miR-344c-3p, miR-92b-5p,
miR-342-5p, miR-380-3p, miR-760-3p,
miR-485-3p (amygdala)
↓ miR-874-3p, miR-204-5p, miR-211-5p,
miR-1298-5p, miR-448-3p (amygdala)

↓ Fear memory Restored: behavior Hoban et al., 2018

Male Balb/c mice Germ free ↑ miR-190a-5p, miR-539-5p
(hippocampus)
↓ miR-3095-3p, miR-363-5p, miR-421-3p,
miR-673-3p, miR-758-5p (hippocampus)

↓ Anxiety-like behavior No changes in behavior
Restored: All microRNAs

Chen et al., 2017

Altered microRNAs in microbiota depletion strategies in brain regions involved with depression and anxiety. ↓ (Decrease levels) and ↑ (Increase levels).

disorders (Fond et al., 2014). Recent evidence shows increased
miR-24 expression in the enterocytes (epithelial intestinal) in
patients and a mouse model of IBS (Liao et al., 2016). By
downregulating SERT expression, miR-24 inhibits serotonin
reuptake transporter expression and aggravates IBS (Liao et al.,
2016). Interestingly, miR-24 inhibitor alleviates intestinal pain
and inflammation in IBS mice (Liao et al., 2016). Also, miR-16
and miR-103 are downregulated in the small intestine of IBS
patients (Wohlfarth et al., 2017). miR-16 has been reported to
mediate depression and anxiety (Song et al., 2015). These findings
highlight the importance of new biomarkers involved in IBS
and neuropsychiatric disorders, which could be new targets for
disease treatment.

THE ROLE OF MicroRNA ON
DEPRESSION, ANXIETY, AND
MICROBIOTA COMPOSITION

The Potential Roles of MicroRNAs in
Depression
Stress is one of the most studied etiologic factors for the onset
of depression and other psychiatric disorders (Mandelli et al.,
2015). Early life traumatic experiences, such as neglect and
abuse, increase the risk of developing depression in adult life
(Felitti et al., 2019). Prior experiences create a long-lasting
change in central and peripheral systems associated with stress
regulation, affecting how individuals adapt to future stressors
(Ellis et al., 2006). Emerging data demonstrate that miRNAs
activity could play a major role in long-lasting changes associated
with depression pathogenesis and treatment (Baudry et al., 2010;
Issler et al., 2014; Lopez et al., 2014).

Reduced NOTCH1 gene expression, a transmembrane protein
necessary for proper development, has been associated with
depression and anxiety vulnerability in subjects exposed to

traumatic early-life experiences (Steine et al., 2016). NOTCH1
is a target for the miR-34 family. Blood analyses of 32 drug-
naïve, first episode depressed patients display the increased
levels of miR-34 alongside reduced NOTCH1 mRNA levels,
showing a negative association between the levels of miR-
34 and NOTCH1 mRNA (Sun et al., 2016). miRNA-9 is also
suggested to mediate the adverse early life experience with
future depression onset and severity, which could be linked with
disturbed functional connectivity among prefrontal structures
and subcortical limbic systems (He et al., 2021). miRNAs can
be secreted into the extracellular fluid, acting as autocrine or
paracrine communicators (Bayraktar et al., 2017), suggesting its
essential role as potential biomarkers for stress-related neuronal
dysfunction.

The relationship among stress, miRNA, and depression
has also been validated in several animal models. Maternal
deprivation can increase the hippocampal expression of miRNA
Let-7a, which negatively correlates with reduced 5-HT4 receptors
and anhedonia in the adult offspring (Bai et al., 2014). Chronic
stress increases depressive phenotypes together with reduced
miR-124 (Higuchi et al., 2016), increased miR-182 levels (Li
et al., 2016) in the hippocampus, and increased miR-34a in
the DRN (Lo Iacono et al., 2020). Chronic corticosterone
administration can increase depressive phenotypes and miR-
124 levels in the mPFC (Roy et al., 2017) and miR-34a levels
in the hippocampus (Yi et al., 2020). Chronic stress-induced
change in miRNA expressions in the mPFC are associated
with altered gene expressions of BDNF, CREB and glutamate
receptors, which are involved in synaptic transmission and
plasticity (Dwivedi et al., 2015). Moreover, modulating miRNA
expression by increasing miR-124 expression in the hippocampus
(Higuchi et al., 2016), silencing miR-34 (Lo Iacono et al., 2020),
and upregulating miR-135 (Issler et al., 2014) in the DRN,
prevents stress-induced depression-like behaviors. Likewise,
manipulating miRNA expression itself, such as upregulating
hippocampal miR-182 by lentiviral overexpression, can induce
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depression-like behavior and increase the susceptibility to stress
(Li et al., 2016). Therefore, accumulated evidence has proved
that miRNAs could play a critical role as epigenetic regulators in
depression pathogenesis.

MicroRNA expression profile is also sensitive to
antidepressant treatment. Microarray analysis of blood from
patients after a 12-week antidepressant drug treatment depicted
an upregulation of 28 miRNAs and downregulation of two
miRNAs when compared to the pre-treatment profile (Bocchio-
Chiavetto et al., 2013). Chronic serotonergic antidepressant
treatment downregulates serotonin transporter (SERT) and
5-HT1A receptor, which are negatively modulated by the miR-
135 (Issler et al., 2014). Congruently, depressed patients have
reduced peripheral and central miRNA-135 levels, whereas
peripheral levels are increased after 3 weeks of cognitive-
behavioral therapy (Issler et al., 2014). GRM4 which is targeted
by miR-1202, can modulate serotoninergic and glutamatergic
synaptic transmission. MiR-1202 is upregulated in the brain and
downregulated in the blood of depressed patients, whereas both
central and peripheral miRNA levels are normalized in patients
taking antidepressant drugs (Lopez et al., 2014).

Selective serotonin reuptake inhibitors (SSRI), which
compose most current first-line antidepressant treatments,
have a delayed therapeutic onset of 4–8 weeks after treatment
started (Trivedi et al., 2006). Chronic serotonergic antidepressant
treatment reduces SERT protein expression without affecting
its transcriptional level, suggesting translational-regulating
mechanisms (Baudry et al., 2010). miR-1202 is reduced in the
blood of depressed patients but can be normalized by chronic
antidepressant treatment (Lopez et al., 2014). Accordingly,
chronic but not acute serotonergic antidepressant treatment
in neural progenitor cells upregulates expression levels of
miR-1202 (Lopez et al., 2014). Likewise, chronic but not acute
SSRI treatment in animals increases expression levels of miR-34a
(Lo Iacono et al., 2021) and miR-16 (Baudry et al., 2010) in the
DRN, whereas miR-34a is also increased in the hippocampus
(Yi et al., 2020). It is suggested that such modulation of miRNA
expression upon chronic but not acute serotonergic treatment
is a key mediator of the antidepressant effects and one of the
mechanisms associated with delayed therapeutic onset.

The relationship between miRNA and the serotonergic
system has advanced the understanding of pathogenesis and the
treatment of depressive disorders (Babicola et al., 2020). The
miR-34 family is reported to be highly relevant to depression.
Acute (Andolina et al., 2016) and chronic stress (Lo Iacono et al.,
2020) upregulate miRNA-34a levels in the DRN. Knocking out
the miR-34 family increases resilience to acute stress-induced
anxiety (Andolina et al., 2016), chronic stress-induced depression
(Lo Iacono et al., 2020), and switches the coping strategy toward
active coping in the forced swim test (Andolina et al., 2018).
Acute (Andolina et al., 2016) and chronic (Lo Iacono et al., 2020)
stress increase serotonin levels in the mPFC, whereas miR-34
knockout prevents this increase and results in reduced expression
of 5-HT2C (Andolina et al., 2016), and increased corticotropin-
releasing hormone receptor 1 (CRHR1) (Andolina et al., 2018) in
the DRN. Therefore, increased miR-34 could modulate the DRN
sensitivity to serotonin and corticotrophin-releasing hormone

in response to stress exposure, resulting in increased serotonin
input to the mPFC.

miRNAs could also function as crucial mediators of
antidepressant treatments and potential therapeutic targets.
Chronic corticosterone treatment upregulates hippocampal miR-
34a levels associated with increased depressive phenotypes
(Yi et al., 2020). Chronic treatments with SSRI or miR-34a
antagonist counteract corticosterone-induced behavioral deficits
in concurrent with restored hippocampal structural plasticity
(Yi et al., 2020). Congruently, miRNA-16 infusion into the
DRN counteracts chronic stress-induced depression to the
same extent as chronic antidepressant treatment with fluoxetine
(Baudry et al., 2010). Emerging studies have suggested the
potential of manipulating miRNAs expression as a promising
antidepressant treatment.

Investigating posttranscriptional mechanisms in depression
increases our understanding of how individuals respond and
adapt to stress. For example, rats displaying resilience to learned
helplessness demonstrate decreased levels of some miRNAs
compared to those susceptible to the stressor (Smalheiser et al.,
2011). Of note, CREB mRNA, one of the most relevant proteins
involved in plasticity and learning (Roy et al., 2013), is a
target negatively modulated by many miRNAs (Smalheiser et al.,
2011). Furthermore, such a mechanism shed light to unravel
one of the most intriguing questions in the pharmacological
antidepressant treatment, namely why SSRI acutely increases
serotonergic transmission but takes several weeks to have
therapeutic effect on symptom relief. As aforementioned, chronic
but not acute antidepressant treatment can change the expression
of miRNAs associated with key components of the serotonergic
system that limit serotonin availability, for instance, SERT and
5-HT2C receptors. miRNAs could be a potential therapeutic
targets for tackling the etiology of depression with improved
therapeutic response.

The Potential Roles of MicroRNAs in
Anxiety
Emerging evidence shows that dysregulation of miRNAs
is involved in the stress response (Du et al., 2019),
neurodegenerative diseases, and psychiatric disorders (Ha,
2011). miRNAs can be altered by stress, glucocorticoids, and
mood stabilizers (Hunsberger et al., 2009), suggesting that
miRNAs can also be involved in the pathophysiology of anxiety
(Scott et al., 2015).

The majority of clinical studies have analyzed the expression
of circulating miRNAs. Patients with generalized anxiety have
upregulated peripheral levels of miR-633 and miR-4505, which
correlates with the symptom severity (Chen et al., 2016). Panic
disorder, on the other hand, has been associated with miR-
22, miR-138-2, miR-148a, and miR-488 (Muiños-Gimeno et al.,
2011). In animals, increased miR-34c levels in the amygdala
are associated with acute and chronic stress-induced anxiety
(Haramati et al., 2011). Moreover, Fisher 344 rats, a rat strain
that displays higher anxiety levels, have increased expression of
miR-18a and miR-124 (Uchida et al., 2008). miR-18a is known to
inhibit the translation of glucocorticoid receptor (GR), whereas
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miR-124 reduces the GR expression levels (Uchida et al., 2008).
Congruently, the expression levels of miR-18a are significantly
correlated with the cortisol, corticotropin-releasing factor (CRF),
and interleukin-6 (IL-6) plasma levels in humans (Wang et al.,
2017a). miR-124-3p, on the other hand, is elevated, while GRs are
decreased in the hippocampus of animals submitted to chronic
corticosterone administration, an animal model used to mimic
chronic stress (Wang et al., 2017b).

Studies also suggest the potential role of miRNAs in the
treatment of anxiety. Chronic fluoxetine treatment elicits its
antidepressant and anxiolytic effects in mice via increasing
miR-16 levels in the serotonergic raphe nuclei, thus reducing
the expression of serotonin transporter and increasing the
bioavailability of serotonin in the synaptic cleft (Author et al.,
2010). Therefore, miRNAs are involved in the pathogenesis
of anxiety and depression are found to mediate anxiolytic
drug treatments.

Effects of MicroRNA on Microbiota
Composition
The gut microbiota comprises approximately 10–100 trillion
microorganisms, including 100–200 bacterial species and about
2–4 million genes (Ursell et al., 2012). Host genetic, diet,
and diseases are key factors that can shape the microbiota
composition of the host in the mammals (Thursby and Juge,
2017). Recent studies suggest the participation of miRNAs in
modulating the gut microbiota composition (Singh et al., 2012).
Some miRNAs can regulate bacterial gene transcription, affect
bacterial growth and modulate the gut microbiota composition
(Singh et al., 2012; Liu et al., 2016). Liu et al. (2016) have
identified that miRNAs are abundant in mouse and human fecal
samples and present within the extracellular vesicles in the gut
lumen. Moreover, depletion of the DICER enzyme (miRNA-
processing enzyme) in mice leads to exacerbated colitis and
disturbed microbiota (Liu et al., 2016). On the other hand,
when wild-type mice receive fecal miRNA transplantation from
healthy mice, it restores fecal microbes and ameliorates colitis
(i.e., inflammation of the colon), showing miRNAs influence gut
health (Liu et al., 2016).

The gut microbiome has played a pivotal role in mediating
the crosstalk between the gut and the brain. The gut-brain axis
represents a critical communication system that, when disturbed,
can lead to different immune, metabolic, and psychiatric
disorders (Dinan and Cryan, 2017). Accumulated research has
identified the importance of the gut-brain axis and various
microbial-regulated molecular targets in the gut and the brain.
Furthermore, it has been recently proposed that miRNAs
are crucial signaling molecules to facilitate this bi-directional
communication (Moloney et al., 2019).

MicroRNAs can have functional roles similar to hormones,
influencing cellular function at a great distance from their
original secretory sites (Bayraktar et al., 2017). miRNAs are a
constitutive component of murine and human feces derived from
host epithelium. They are detectable in feces and are essential
for maintaining a normal gut microbiota (Liu et al., 2016). The
microbiome regulates behaviors and physiology influenced by

miRNAs (Foster et al., 2017). On the other hand, in germ-
free (GF) mice, social interaction changes the expressions of
miRNA in the amygdala, thus confirming the linkage between a
functioning microbiome and sociability, suggesting that miRNA
could influence behaviors modulated by the gut microbiome
(Stilling et al., 2018). Another brain region influenced by miRNA
is the hippocampus. A study has shown that inhibition of
miR-124 in the mouse hippocampus improves performance in
the Morris Water Maze task and a spontaneous alternation
in the closed elevated plus-maze test (Malmevik et al., 2016),
demonstrating the critical role of specific miRNAs on regulating
behaviors associated with the hippocampus.

The gut microbiota can control gene expression in the
brain through a miRNA network and targeted miRNAs (Chen
et al., 2017). In silico analysis reveals that miR-294-5p targets
the pathway associated with kynurenine metabolism and that
genes related to this pathway are differentially expressed in GF
mice devoid of all microbiota (Moloney et al., 2017). In the
GF mice, it is found that miRNAs in the prefrontal cortex
(PFC) and amygdala are sensitive to the presence of a gut
microbiome. Upon recolonization, the expressions of some of
these miRNAs are normalized. In the amygdala, miR-183-5p and
miR-182-5p are decreased in GF mice, whereas expression is
subsequently restored upon recolonization (Stilling et al., 2018).
These miRNAs have been implicated in the amygdala response
to fear and stress (Meerson et al., 2010). For example, miR-
183-5p is increased in the circulation of depressed patients after
antidepressant treatment (Bocchio-Chiavetto et al., 2013).

To date, there is evidence showing that a microbial product
of Bacteroides fragilis lipopolysaccharide can act as a neurotoxin
via induction of a series of miRNAs targeting genes that
regulate synaptic plasticity, amyloidogenesis, and inflammatory
signaling in the brain (Zhao et al., 2021). Also, other metabolites
produced by the intestinal microbiota, such as tryptophan,
butyrate, acetylcholine, norepinephrine, serotonin, dopamine can
influence miRNA activity. They indirectly regulate astrocyte
function and blood-brain-barrier integrity and even alter human
behavior by disrupting normal neurotransmitter levels (Parker
et al., 2020). Taken together, these data suggest that miRNAs
are potentially involved in neuronal function and, hence, the
pathologies of neurological disorders.

MODULATION OF MicroRNA AND
MICROBIOTA FOR THE TREATMENT OF
DEPRESSION AND ANXIETY

Clinical studies have demonstrated the potential involvement
of miRNA in modulating the antidepressant effect of probiotics
in adults. A 4-week intervention with Lactobacillus gasseri
probiotic improves depression symptoms, sleep quality, and
bowel habits in adults with chronic stress and changes the
miRNAs levels in the blood (Nishida et al., 2017). Moreover,
as previously addressed, rodent studies further illustrate the
role of microbiota in modulating miRNA expression and
mood regulation. Microbiota depletion and recolonization
bidirectionally influence the miRNA expression in the limbic
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system (Hoban et al., 2017). Probiotic administration, therefore,
could be an effective treatment option.

A recent study examined how postnatal stress influences the
affective behaviors of adolescent rodents and their microbiota
composition (Karen et al., 2021). Daily maternal separation
from postnatal day 5 to 10 induces anxiety- and depression-
like behaviors and reduced gut microbiota diversity and richness
(Karen et al., 2021). On the other hand, Lactobacillus paracasei
supplementation alleviates anxiety-like behavior and normalizes
stress-induced adrenocorticotropic hormone and corticosterone
levels in rats (Karen et al., 2021). Comparisons between groups
that have undergone maternal separation with and without
administration of the probiotic showed that animals that received
probiotics had a decrease in miR-132 and an increase in miR-124a
levels (Karen et al., 2021). The potential antidepressant effects of
probiotics are mediated by miRNA requires further investigation.

Emerging studies suggest that microbiota and microRNA
modulation can be adjunct treatment strategies for depression
and anxiety (Li et al., 2020). Physical exercise, which is known
to have antidepressant and anxiolytic effects, can increase the
number of beneficial microbial species (Mailing et al., 2019).
A study has showed that 1 h of wheel running increases the
relative abundance of Lachnospiraceae, a family of bacteria
known to increase the synthesis of butyrate in the intestine,
which is negatively correlated with anxiety-like behavior in adult
C57Bl/6J mice (Kang et al., 2014). Butyrate is a short-chain fatty
acid related to upregulated brain-derived neurotrophic factor
(BDNF) expression in the rodent hippocampus and frontal cortex
(Monda et al., 2017). Similar to exercise, butyrate also seems
to increase neuroplasticity and has antidepressant effects by
boosting serotonin levels (Monda et al., 2017). In addition, it
has been reported that regular physical exercise can change the
levels of miRNAs (Bye et al., 2013). Aerobic exercise increases the
expression of miR-223 while reducing TLR4, MyD88, and NF-κB
levels (Qu et al., 2020). Mice exposed to chronic stress have shown
increased hippocampal levels of miR-223, which are reduced by
8 weeks of treadmill running (Qu et al., 2020). Moreover, 4 weeks
of treadmill running increases the expression levels of miR-129-1-
3p, miR-144-5p, and miR-10b-5p in the hippocampus (Fernandes
et al., 2018). Eight weeks of antidepressant treatment leads to
increased plasma levels of miR-144-5p in patients with depression
or anxiety compared to their pre-treatment baseline levels (Wang
et al., 2015). Taken together, changes in microbiota and, hence,
miRNA expression can contribute to the antidepressant effect of
physical exercise.

Diet is another factor that can modulate microbiota and
miRNAs (Kang et al., 2014). Obese subjects have increased
plasma levels of miR-155 (López et al., 2018), which are also
increased in the plasma of depressed patients (Wang et al.,
2018). Interestingly, miR-155 is related to the syntheses of
pro-inflammatory cytokines, such as TNF-α, interleukin-6 (IL-
6), and monocyte chemoattractant protein-1 (MCP1) (Migita
et al., 2017). Mice fed with a high-fat diet decreases miR-137
levels in the cortex (Geekiyanage and Chan, 2011), whereas
miR-137 deficiency leads to anxiety-like behavior and altered
synaptic transmission and plasticity (Yan et al., 2019). Likewise,
postmortem miR-137 levels are downregulated by 25% in the

PFC of depressed patients with suicidal behavior (Smalheiser
et al., 2012). High-fat diet-induces anhedonia-like behavior
and decreases circulating leptin levels, which depend on gut
microbiota composition (Hassan et al., 2020). Leptin is a
hormone involved in regulating energy homeostasis and is
associated with reduced depression and anxiety (Lu et al., 2006).

Taken together, these data suggest that the gut-miRNA
crosstalk mediates antidepressant and anxiolytic effects and could
as well be used as a target for new intervention strategies.

LIMITATIONS AND FUTURE
PERSPECTIVES

Emerging evidence has demonstrated the critical roles of miRNAs
and the microbiota on psychiatric disorders, although the
investigation of how they interact with each other on disease
onset is still in infancy. miRNAs can mediate physiological
responses in distal organs which are far apart from their
production sites. Epigenetic factors have been proposed to
modulate microbiota composition (Liu et al., 2016; Bayraktar
et al., 2017). Notably, accumulated evidence from studies
using GF mice has indicated that microbiota composition
could influence miRNA expression patterns, suggesting direct
interaction between gut microbiota and miRNA and their role in
depression- and anxiety-like behavior (Chen et al., 2017; Hoban
et al., 2017).

This interaction has been also supported by findings reporting
the effects of antidepressant and anxiolytic treatments on
regulating miRNA expression in the brain (Song et al., 2019)
and microbiota composition (Lukić et al., 2019). Future studies
identifying detailed mechanism underlying this interaction
will help to understand more about the pathophysiology of
depression/anxiety and pave the way for new therapeutic targets.

FIGURE 1 | MicroRNAs implicated in depression and anxiety. miRNA levels in
brain regions involved in depression (green) and anxiety (red). ↓ (Decreased
levels) and ↑ (Increased levels). Created with Mind the Graph.
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The development of new genetic animal models with
knockout, knockdown, or overexpression of specific miRNAs
will help to understand the importance of specific miRNAs
and their targets on depression and anxiety. However, some
miRNAs are present at chromosomes and necessary for
embryonic development, making an experimental model of total
miRNA depletion unfeasible (Hime et al., 2021). In addition,
the multiplicity of targets for individual miRNA has created
challenges in understanding the relationship between a single
miRNA and a target protein (Liang and Li, 2007). However,
up and downregulation of miRNAs in varied brain regions
is a feasible alternative (Higuchi et al., 2016), whereas the
combination of GF animals with structure-specific miRNA
depletion could be alternative experimental approach.

Another alternative to this limitation is the use of non-
mammalian models that extend our understanding of the
molecular pathologies in human disease (Camkurt et al.,
2017). Even though Caenorhabditis elegans and Drosophila
melanogaster are evolutionarily distant from human physiology,
and most pre-clinical drug tests are performed in rodents,
these invertebrate model systems provide alternative approaches
to conduct complementary research exploring common
epigenetic mechanisms and biochemical processes that linked
to neuropsychiatric pathologies (Camkurt et al., 2017).

The clinical investigation of the crosstalk between miRNA
and the gut microbiota, and their relationship with mental
disorders have specific challenges. One question is to which
extent changes of circulating miRNAs represent its changes
in central miRNA levels (Jin et al., 2013). Moreover, studies
would have to be well controlled because miRNA levels are
affected by lifestyle factors, including diet, exercise, drug abuse,
and medical conditions, imposing a significant challenge to
form homogeneous groups (Jin et al., 2013). As summarized
in Figure 1, psychiatric illnesses such as depression and
anxiety are linked to altered miRNA expression in specific
brain regions associated with mood regulation, such as the
mPFC, hippocampus, DRN, and amygdala. Identifying these
changes in circulation can help to develop new and more
objective diagnostic tools for psychiatric disorders, as well as
understanding the roles of aforementioned miRNAs in the
relevant brain regions.

Understanding more about the interaction between
miRNAs and the gut microbiota can deepen our knowledge

in neuropathologies underlying depression and/or anxiety.
The crosstalk between miRNAs and gut microbiota in
psychopathologies could provide better understanding of
the molecular pathways disrupted in these disorders and
eventually pave the way for developing new therapeutic and
diagnostic approaches.

CONCLUSION

Accumulated studies have demonstrated that gut microbiota can
influence miRNAs expression in different brain regions related to
depression and anxiety, suggesting the potential role of specific
miRNAs as an emerging treatment for depression and anxiety.
The modulation of microbiota contributes to the mechanisms
underlying antidepressant treatments, and comprehending the
gut-brain axis leads to a more in-depth understanding of the
neuropathology underlying depressive and anxiety disorders.
Nonetheless, investigating the mechanisms through which the
gut microbiota interacts with miRNAs in the brain is still in
its infancy. Although probiotics, physical exercise, and diet
intervention could contribute to future treatment strategies,
further studies are needed to validate their therapeutic effects
on clinical populations with depression, anxiety, and other
psychiatric conditions.
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