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Impaired hippocampal neurogenesis in vitro is modulated by
dietary-related endogenous factors and associated with
depression in a longitudinal ageing cohort study
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Environmental factors like diet have been linked to depression and/or relapse risk in later life. This could be partially driven by the food
metabolome, which communicates with the brain via the circulatory system and interacts with hippocampal neurogenesis (HN), a form
of brain plasticity implicated in depression aetiology. Despite the associations between HN, diet and depression, human data further
substantiating this hypothesis are largely missing. Here, we used an in vitro model of HN to test the effects of serum samples from a
longitudinal ageing cohort of 373 participants, with or without depressive symptomology. 1% participant serum was applied to human
fetal hippocampal progenitor cells, and changes in HN markers were related to the occurrence of depressive symptoms across a 12-year
period. Key nutritional, metabolomic and lipidomic biomarkers (extracted from participant plasma and serum) were subsequently tested
for their ability to modulate HN. In our assay, we found that reduced cell death and increased neuronal differentiation were associated
with later life depressive symptomatology. Additionally, we found impairments in neuronal cell morphology in cells treated with serum
from participants experiencing recurrent depressive symptoms across the 12-year period. Interestingly, we found that increased neuronal
differentiation was modulated by increased serum levels of metabolite butyrylcarnitine and decreased glycerophospholipid, PC35:1(16:0/
19:1), levels – both of which are closely linked to diet – all in the context of depressive symptomology. These findings potentially suggest
that diet and altered HN could subsequently shape the trajectory of late-life depressive symptomology.
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INTRODUCTION
Major depressive disorder (MDD) is a debilitating condition that
significantly impacts upon the physical, emotional and social
wellbeing of individuals and their relatives [1]. Moreover, MDD
is highly prevalent across all age ranges and consequently
represents a major financial burden globally [2]. Given the
devastating consequences of MDD, late-life depression, in
particular, is an important public health concern, increasing
the risk of morbidity and suicide, decreasing physical, cognitive
and social functioning, and increasing self-neglect in later life -
all of which are subsequently associated with increased
mortality [3].
Importantly, late-life depression has also been consistently

associated with an increased risk of cognitive decline (CD) and
dementia [4, 5] both of which also significantly increase in risk in

later life [6]. Furthermore, these conditions are often comorbid [7],
and, therefore, treating one condition could consequently
alleviate the associated symptoms of the other(s). Thus, late-life
depression could also represent a target for preventing or
alleviating CD and/or dementia [8].
Unfortunately, the development and implementation of effec-

tive pharmacological treatments for MDD is struggling to keep
pace with the growth of its prevalence [9] and to better target
MDD, we need to go beyond pharmacological intervention and
seek other methods of modifying depression risk. One relevant
avenue is environmental and lifestyle modification, in particular
diet, which has been associated with depression in later life [10].
Indeed, several epidemiological studies have demonstrated how a
higher adherence to the Mediterranean diet was associated with a
reduced MDD prevalence in ageing populations [11, 12]. However,
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as yet it is unclear how exactly diet could influence depression
outcomes on a biological level [13].
One relevant biological process associated with depression

[14, 15] that is also modulated by diet [16, 17], is adult hippocampal
neurogenesis (HN; the birth of new neurons derived from stem cells
present in the hippocampus [18, 19]). Evidence to support an
important role for HN in depression aetiology stems from research
showing how chronic stress exposure (a risk factor for depression)
supresses HN [20, 21], which, importantly, correlates with hippo-
campal volume and is notably required for antidepressant drugs to
be effective in rodent models of depression [22, 23].
However, currently it is impossible to test the effects of diet on

neurogenesis in live humans, and one option is to use an in vitro
readout of human HN [24–27]. The main concept and relevance of
this in vitro assay stems from the fact that the hippocampal
neurogenic niche is in close vicinity to blood vessels, allowing
direct communication with the systemic environment [28]. As
such, HN is responsive to systemic and peripheral modulators like
stress, inflammation and diet [16, 29] - all cues extrinsic to the
brain and delivered via the blood. This idea is further supported
from several lines of research. For example, Villeda and colleagues
(2011), in their in vivo parabiosis model, demonstrate that ageing
blood in young animals can indeed decrease HN [30, 31], while
specific blood factors have been shown to transfer the beneficial
effects of exercise on HN and cognition in rodents [32, 33]—all
emphasising a role for modulation of HN by blood-borne factors.
Therefore, here we set out to study the effect of the systemic

environment on the hippocampal neurogenic process in partici-
pants with and without depressive symptomology, using an
in vitro cellular HN assay. Specifically, we used serum samples
taken at inclusion of a longitudinal ageing cohort to: (i) determine
whether changes in the neurogenic process are associated with
depressive symptomology and chronicity across a 12-year period,
(ii) explore the relationship between CD and depressive sympto-
mology and the impact this may have on neurogenesis, and (iii)
ascertain whether nutritional, metabolomic, and lipidomic bio-
markers could modulate these HN outcomes.

METHODS AND MATERIALS
Cohort and study design
Serum samples were from participants of the Three-City (3C) cohort [34],
specifically, from a case-control study on CD (n= 373) nested within the
3C-Bordeaux centre as described before [35]. Briefly, at baseline, fasting
blood samples and sociodemographic, lifestyle and clinical measures were
collected from all participants. Follow-up visits were performed every two
to three years over 12 years during which depressive symptomology were
assessed (Fig. 1A). The 3C study protocol was approved by the Consultative
Committee for the Protection of Persons participating in Biomedical
Research at Kremlin-Bicetre University Hospital (Paris, France). For further
detail, see Table 1 and Supplementary Materials.

Depressive symptomology outcomes
Depressive symptomatology was evaluated using the Centre for Epide-
miologic Studies Depression (CES-D) scale [36, 37]. Scores of ≥17 in men
and of ≥23 in women were used as indicators of clinically relevant
depressive symptomatology [38]. Additionally, to assess symptom
chronicity, cases were further categorised based on whether a high
depressive symptomology was detected once (i.e., single occurrence) or
multiple times (i.e., recurrent symptoms) across the study. To retain a
maximum number of participants with depressive symptomology,
participants that had symptoms at baseline were retained in all analyses,
and baseline depressive symptomology was controlled for in all analyses.
For further detail, see Supplementary Materials.

Nutritional variables
The concentrations of 23 nutritional biomarkers (i.e., 12 fatty acids, 6
carotenoids, 25(OH)D, alpha and gamma tocopherol, retinol, transthyretin)
were determined in total plasma as previously described [39–41]. The

metabolite and lipid data were extracted from serum using a large-scale,
quantitative multi-metabolite platform and shotgun MS lipidomics,
respectively, as described previously [42, 43]. For a full list of all nutritional
variables, see Table 2.

Cell line and culture conditions
We used the immortalised human fetal hippocampal multipotent
progenitor cell line HPC0A07/03 (HPC; ReNeuron Ltd, UK) as described
before [27]. HPCs were cultured in medium (constitution as previously
described [27]) and grown on tissue culture flasks, incubated at 37 °C, with
5% CO2 and saturated humidity. Cells were routinely passaged at 80%
confluency before being plated for experiments. For further detail,
see Supplementary Materials and Fig. S1.

In vitro neurogenesis assay
HPC0A07/03C cells were treated with participant serum during their
proliferation and differentiation, as previously described [27]. As detailed in
Fig. 1B, 1% serum was added to the cell culture during both proliferation
(48 h) and differentiation (7 days) before being fixed in 4% paraformalde-
hyde and stained for proliferation and differentiation specific markers,
respectively. For further detail, see Supplementary Materials.

Immunocytochemistry
Cell count, progenitor cell integrity, proliferation, cell death and
differentiation were visualised using 4′,6-diamidino-2-phenylindole (DAPI),
Nestin and SRY-Box Transcription Factor 2 (SOX2), Ki67, cleaved caspase-3
(CC3), doublecortin (DCX), and microtubule-associated protein 2 (MAP2)
using immunocytochemistry, as previously described [27, 44]. For further
detail, see Supplementary Materials and Fig. S2.

Image analysis
All immunostainings were quantified using the unbiased, semi-automated
CellInsight NXT High Content Screening platform and Studio Cell Analysis
Software (ThermoScientific), as previously described [27, 44]. For further
detail, see Supplementary Materials.

Neurite outgrowth
To quantify the neurite outgrowth and branching of neuronal cells after
differentiation, automated neurite outgrowth analyses were performed.
Images were acquired using the CellInsight (as above) and analysis was
performed using the web-based Columbus Analysis System (Perkin Elmer)
and the CSIRO Neurite Analysis 2 method, as previously described [45]. For
protocol details, see Supplementary Materials.
All experiments, immunocytochemistry, and image analyses were

performed by an experimenter blinded to depressive status. All experi-
ments were carried out in technical triplicates.

Statistical analysis
Data analyses were conducted using SPSS Statistics 26 and R software
(version 3.6.3). Logistic and linear regression models were used to study the
association between HN readouts and depressive symptomology, and
nutrient, metabolomic, and lipidomic biomarkers, respectively. Additionally,
mediation and moderation analyses were conducted using the PROCESS
macro, as previously described [46], to (i) more fully explore the relationship
between neurogenesis, diet and depressive symptomology, and (ii)
determine (where relevant) how key risk factors (e.g., CD, hippocampal
volume, stress and inflammation) may influence the relationship between
neurogenesis and depressive symptomology. All models were primarily
adjusted for age, gender, education, and CD status, and in case of
association, further adjustment was performed by including baseline
depression status and relevant potential confounders (Tables 1–2). False
discovery rate correction was applied to account for multiple testing
throughout and all models were bootstrapped enhanced to obtain robust
estimates of standard errors. For further detail, see Supplementary Materials.

RESULTS
Cohort characteristics
Table 1 details the characteristics of our sample. Specifically,
participants were on average 76 years old at baseline, 66% were
female and 29% had a secondary school education or higher.
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Within our sample, 8% of participants reported depressive
symptomology at baseline, which increased to 30% across the
duration of the study. Of this 30%: 18% experienced symptoms at
a single timepoint (2% at baseline only), while the remaining 12%
repeatedly reported symptoms (5% including baseline).
To start, we determined the association between individual HN

markers and depressive symptomology reported at any timepoint,
irrespective of chronicity. Only altered apoptosis during prolifera-
tion (i.e., %CC3- and %Ki67/CC3-positive cells; highlighted in blue
in Table 1) and neuronal differentiation (i.e., %MAP2-positive cells
and associated morphology; all highlighted in purple in Table 1)
were significantly associated with depressive symptoms.

A drive towards hippocampal stem cell differentiation may be
associated with depressive symptomology
As depicted in Fig. 2A–C, decreased baseline levels of %Ki67/CC3-
positive cells (i.e., dying proliferating cells; p= 0.02) and increased
baseline levels of %MAP2-positive cells (i.e., young neurons; p=
0.002) were significantly associated with depressive symptomol-
ogy within our sample across the 12-year period.
Having found that a decrease in the apoptosis of proliferating

cells and an increase in neuronal differentiation was associated
with depressive symptomology overall, we next sought to
determine whether these HN outcomes would change depending
on symptom chronicity.

Fig. 1 Cohort, study design and cellular assays. A Three City (3C) cohort and study design: The 3C cohort is a French population-based
cohort that started in 1999–2000 and consists of male and female community dwellers aged >65 years (n= 9294). Participants from the 3C
study were recruited from three French cities: Bordeaux (n= 2104), Dijon (n= 4931), and Montpellier (n= 2259), and specifically, a subsample
nested within the 3C-Bordeaux cohort (n= 373) was used for this study. At baseline (0y), face-to-face interviews were conducted to collect
sociodemographic and lifestyle characteristics, medical information, cognitive testing, blood pressure, and anthropometric measurements
from all participants. Additionally, fasting blood samples were collected for constitution of a biobank; the serum samples of which were used
for the metabolomics, lipidomics and the in vitro cellular assays, whereas the plasma samples were used to extract the nutritional biomarker
data. Follow-up visits were performed every 2 to 3 years over a 12-year period and assessed depressive symptomology and cognitive decline.
Cases were classified as all participants that reported high depressive symptomology (i.e., ≥17 in men and of ≥23 in women on the CES-D
scale) at any timepoint (including at baseline) across the 12-year study period, whereas controls were all participants that did not report
experiencing high depressive symptomology. In vitro neurogenesis cellular assays: B Proliferation assay: 24 h after seeding, cell medium was
replaced with fresh medium containing 1% serum and 1:100 penicillin streptomycin (PenStrep; 10,000 U/mL) and was subsequently left to
incubate for 72 h before being fixed in 4% paraformaldehyde (PFA), stained and proliferation specific markers quantified. C Differentiation
assay: after 48 h of proliferation in the presence of 1% serum and 1:100 PenStrep (same as proliferation assay), cells were washed and treated
with another serum supplementation, this time in medium absent of 4-hydroxytamoxifen (4-OHT) and growth factors: epidermal growth
factor (EGF) and basic fibroblast growth factor (FGF), to allow cells to spontaneously differentiate. Serum-treated cells and were subsequently
left to differentiate for a further 7 days before being fixed in 4% PFA, stained, and differentiation specific markers quantified. Cognitive decline
status definition: Participants were classified as either cognitively stable or with accelerated cognitive decline based on their average
performance in five neuropsychological tests (i.e., the Mini-Mental State Examination, the Benton Visual Retention Test, the Isaac’s Set Test,
and the Trail-Making Test part A and part B) across five follow-up visits across the 12-year study duration. (1) Serum samples used for the
metabolomics, lipidomics and in vitro assays are aliquots taken from the same batch. 3C three city, M male, F female, y years, h hours, 4-OHT 4-
hydroxytamoxifen, CES-D Epidemiologic Studies Depression scale. Image created using BioRender software.
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Table 1. Participant characteristics and in vitro neurogenesis readouts as stratified by depressive symptomology and chronicity (n= 373).
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Reduced proliferative cell death is associated with a single
occurrence of depressive symptomology but is confounded by
hippocampal volume
As shown in Fig. 2D, participants classified as experiencing
depressive symptoms at a single timepoint across the study had
significantly reduced baseline levels of %CC3-positive cells during
proliferation (i.e., overall cell death; p= 0.03), in addition to a
specific reduction in %Ki67/CC3 (i.e., dying proliferating cells; p=
0.04; Fig. 2E). However, when controlling for hippocampal volume,
these associations no longer held (Fig. 3F).

Increased neuronal differentiation and impaired neuronal cell
morphology is associated with recurrent depressive
symptomology but is modified by cognitive decline
Unlike a single occurrence of depressive symptomology, we found
that increased baseline levels of %MAP2-positive cells were
significantly associated with experiencing recurrent depressive
symptoms across the course of the study (p= 0.02; Fig. 2H).
Additionally, although not reaching statistical significance, we also
observed a decrease in the level of %Ki67-positive cells (i.e., overall
proliferation) for participants with recurrent depressive symptoms
(p= 0.07; Fig. 2G). Moreover, although participants with recurrent
depressive symptomology had more %MAP2-positive cells, mor-
phological analyses revealed a significantly impaired morphology,
such that these MAP2-positive cells had a reduced total neurite
length (p= 0.003), fewer number of neurites (p= 0.005) and a less
complex degree of neurite branching (p= 0.006) (Table 1).
Interestingly, in our fully adjusted model, we found a significant

interaction between %MAP2 and CD amongst those with recurrent
depressive symptoms (p= 0.01), revealing that these changes in %
MAP2 were only associated with recurrent depressive symptomol-
ogy in those also diagnosed with CD (p= 0.02; Fig. 2I).

Thus far, we have shown that a potential drive towards
hippocampal stem cell differentiation may be associated with
late-life depressive symptomology, and that CD can modify the
association of %MAP2 in participants experiencing recurrent
depressive symptoms. No differences in any other individual
neurogenesis readout, i.e., %Nestin-, %SOX2-, %CC3-(during
differentiation) or %DCX-positive cells, were observed between
groups (Table 1). Moreover, we found no difference in the neurite
morphology of %DCX- and %MAP2-positive cells between
depressive symptomology (overall), or a single depressive episode,
and controls (Table 1). Additionally, principal component analyses
revealed no differences in the overall neurogenic profiles between
groups (Supplementary Materials).
Next, as detailed in Table 2, we assessed whether nutritional

status could modulate these changes in %CC3 (prol), %Ki67/CC3
and %MAP2.

Neuronal differentiation mediates the relationship between
PC35:1(16:0/19:1) and depressive symptomology, while
the association between metabolite butyrylcarnitine and
depressive symptomology is modified by neural differentiation
As shown in Fig. 3, reduced serum levels of lipid PE034:3(16:1/
18:2) (p= 0.02) and increased serum levels of metabolite
butyrylcarnitine (p= 0.007) were both independently associated
with increased baseline levels of %CC3-positive cells during
proliferation in a fully adjusted model (Fig. 3A). Additionally,
we also found a negative association between serum levels of
lipid PE034:3(16:1/18:2) and baseline %Ki67/CC3 (p= 0.008;
Fig. 3B). Moreover, reduced plasma levels of transthyretin (p=
0.006; Fig. 3C), and serum levels of glycerophospholipid,
phosphatidylcholine [PC]35:1(16:0/19:1) (p= 0.047; Fig. 3D) were
both independently associated with increased %MAP2.

Table 1. continued

Values represent mean (SD) or N (%) of non-missing values. Characteristics (and associated values) in bold are covariates, all of which are controlled for in
relevant models. # Also adjusted for in further analyses where relevant. FDR correction was applied to control for multiple testing. Cellular readouts expressed
as a percentage relative to neural (DAPI) cell number. Cell line: HPC0A07/03; Passage number: P15-21; Technical replicates: n=3.
ApoE-ε4 allele ε4 for the apolipoprotein E gene, HDL high-density lipoprotein, LDL low-density lipoprotein, BMI body mass index, CVD cardiovascular disease,
DAPI 4′,6-diamidino-2-phenylindole, SOX2 sex determining region Y (SRY)-box 2, CC3 cleaved caspase 3, DCX doublecortin, MAP2 microtubule-associated
protein 2, SD standard deviation.
*p < 0.05; **p < 0.01, ***p < 0.001.
aEstimated using logistic regressions controlling for age, gender, education, and cognitive decline status. Cognitive decline status definition: Participants were
classified as either cognitively stable or with accelerated cognitive decline based on their average performance in five neuropsychological tests (i.e., the Mini-
Mental State Examination, the Benton Visual Retention Test, the Isaac’s Set Test, and the Trail-Making Test part A and part B) across five follow-up visits across
the 12-year study duration [35].
bEducation was based on the highest level of attainment and considered dichotomously: either as no or primary level education only or as secondary/high
school level and above.
cApoE genotype was considered dichotomously: presence of at least one ε4 allele.
dBlood pressure ≥140/90mmHg or antihypertensive medication use.
eGlucose ≥7.2 mmol/L or antidiabetic medication use.
fFasting plasma total cholesterol ≥6.2 mmol/L or lipid-lowering medication use.
gHistory of cardiovascular or cerebrovascular disease.
hIncludes all antihypertensive drugs, calcium channel blockers, diuretics, beta-blockers, and drugs acting on the renin-angiotensin system.
iIncludes all antidiabetic drugs except insulin.
jIncludes all statins, fibrates, or bile acid sequestrants.
kIncludes all psycholeptics and psychoanaleptics—antidepressants, psychostimulants, and nootropics.
lPractice and intensity of physical exercise was assessed using a physical activity questionnaire for the elderly [100]. Regular exercise was classified as doing
sport regularly or having at least one hour of leisure or household activity per day. Described in detail in [101].
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Table 2. Associations between participant characteristics, nutritional data and altered in vitro neurogenesis readouts.
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While we found that several nutritional measures were
associated with HN in our sample, only metabolite butyrylcarnitine
and lipid PC35:1(16:0/19:1) were also associated with depressive
symptomology. Specifically, we found a significant positive
association between butyrylcarnitine levels (p= 0.049), and a
negative association between PC35:1(16:0/19:1) levels (p= 0.045),
and depressive symptoms.
To understand the relationship(s) more fully between this

metabolite and phospholipid, our HN outcomes, and depressive
symptomology, mediation analyses were subsequently performed.
As depicted in Fig. 3E, we found a significant indirect effect of
serum PC35:1(16:0/19:1) levels (ab=−0.08 [−0.19; −0.01]; p=
0.04) on depressive symptomology as mediated through %MAP2
levels.
While we found no significant indirect effect of butyrylcarnitine

levels on depressive symptomology as mediated through %CC3,
we did however find a significant interaction between %MAP2
and this metabolite (p= 0.04). Therefore, we performed a simple
moderation analysis and found that those with higher levels of %
MAP2 (i.e., <46%, p= 0.03; <58%, p= 0.01) and increased levels of
butyrylcarnitine were more likely to have depressive symptoms
(p= 0.005; Fig. 3F).

DISCUSSION
Using serum samples from a longitudinal, population-based
ageing cohort, we provide evidence to support that blood-borne
factors, via the systemic milieu of participants, influence the fate
of hippocampal progenitor cells in vitro, notably in association
with late-life depressive symptomology. We demonstrate that
both reduced baseline levels of apoptotic, proliferating cells (i.e.,
%Ki67/CC3-positive cells) and increased baseline differentiation
(i.e., %MAP2-positive cells) are independently associated with
the occurrence of depressive symptomology across a 12-year
period in later life. Moreover, these neurogenesis outcomes
appear to be context-specific regarding the chronicity and
recurrence of depressive symptoms. For example, reduced
proliferative cell apoptosis was uniquely associated with
experiencing depressive symptomology at a single timepoint,
whereas increased neuronal differentiation was a hallmark of
recurrent symptomology within our cohort. Furthermore, we
demonstrated that these alterations in neurogenesis were
modulated by metabolomic and lipidomic biomarkers, i.e.,
butyrylcarnitine and PC35:1(16:0/19:1), and that diet could thus
play an important role in regulating the neurogenic process in
humans.

Table 2. continued

Participant characteristics and nutritional related data in bold are covariates, all of which are controlled for in relevant models. # Also adjusted for in further
analyses where relevant. FDR correction was applied to control for multiple testing. Cell line: HPC0A07/03; Passage number: P15-21; Technical replicates: n= 3.
ApoE-ε4 allele ε4 for the apolipoprotein E gene, HDL high-density lipoprotein, LDL low-density lipoprotein, BMI body mass index, CVD cardiovascular disease,
DAPI 4′,6-diamidino-2-phenylindole, SOX2 sex determining region Y (SRY)-box 2, CC3 cleaved caspase 3, DCX doublecortin, MAP2 microtubule-associated
protein 2, SD standard deviation.
*p < 0 .05; **p < 0.01; ***p < 0.001.
aEstimated using linear regressions controlling for age, gender, education, and cognitive decline status. Cognitive decline status definition: Participants were
classified as either cognitively stable or with accelerated cognitive decline based on their average performance in five neuropsychological tests (i.e., the Mini-
Mental State Examination, the Benton Visual Retention Test, the Isaac’s Set Test, and the Trail-Making Test part A and part B) across five follow-up visits across
the 12-year study duration [35].
bApoE genotype was considered dichotomously: presence of at least one ε4 allele.
cBlood pressure ≥140/90 mmHg or antihypertensive medication use.
dGlucose ≥7.2 mmol/L or antidiabetic medication use.
eFasting plasma total cholesterol ≥6.2 mmol/L or lipid-lowering medication use.
fHistory of cardiovascular or cerebrovascular disease.
gIncludes all antihypertensive drugs, calcium channel blockers, diuretics, beta-blockers, and drugs acting on the renin-angiotensin system.
hIncludes all antidiabetic drugs except insulin.
iIncludes all statins, fibrates, or bile acid sequestrants.
jIncludes all psycholeptics and psychoanaleptics—antidepressants, psychostimulants, and nootropics.
kPractice and intensity of physical exercise was assessed using a physical activity questionnaire for the elderly [100]. Regular exercise was classified as doing
sport regularly or having at least 1 h of leisure or household activity per day. Described in detail in [101].
lA Mediterranean diet score was generated by adding the scores for each food group considered to be part of the Mediterranean diet [102].
mMetabolites quantified within our sample. Only those with a significant association with HN are displayed. Full list of 853 metabolites available upon request.
nLipids we previously identified as being associated with cognitive decline in our sample [42].
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The hippocampus has been implicated in learning and memory
[47, 48], stress responsivity [49, 50] and emotional regulation [51]
factors all associated with, and often altered in, MDD [52, 53]. The
hippocampus is also unique in that it contains one of the niches
within the human brain where neurogenesis occurs [54]. Our
present in vitro data suggest that depressive symptoms are not
only associated with reduced hippocampal volume—one of the
most replicated neuroimaging findings in MDD research [55], but
also that HN may play a key role in the pathogenesis and/or
progression of depression.

In the context of our work, we found a specific decrease in the
number of dying proliferative cells during the earlier, proliferation
phase of the neurogenic process, without a concomitant decrease
in overall cell death. We also observed a subsequent increase in
the number of neurons during differentiation, which may be a
‘knock-on’ effect of the changes occurring in the earlier stages of
the neurogenic process. Taken together, this suggests that
neuronal cells might be pushed towards differentiation in late-
life depression, which, importantly, is not attributable to
antidepressant medication here, as previously described [56–58].

(A) 

Associa�on between the hippocampal neurogenic process and overall depressive symptomology 
across the 12-year study dura�on 

(C) Increased baseline levels of neuronal differen�a�on are 
associated with an increased odds of depressive symptomology  

(B) Reduced baseline levels of prolifera�ve cell death are 
associated with an increased odds of depressive symptomology

**

Control 
(n=262) 

Depressed 
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Depressed 
(n=111) 
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(n=262) 

Associa�on between the hippocampal neurogenic process and depressive symptom chronicity  

Single occurrence of depressive symptomology 

(D) Reduced baseline levels of cell death during prolifera�on are 
associated with an increased odds of a single occurrence of 
depressive symptomology

Single episode 
(n=66) 
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(n=45) 

Control 
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(i) (ii) 

(E) Reduced baseline levels of dying prolifera�ng cells are 
associated with an increased odds of a single occurrence of 
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(i) (ii) 

0.74 ± 0.05
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Interestingly, an increase in peripheral levels of MAP2 in bipolar
depression has recently been reported as well [59], while one
post-mortem study also showed an increase in pyramidal
neuronal density in the CA1 in chronic MDD [60]. However, it is
notable that the literature predominately reports a reduction in all
neurogenesis-associated readouts in depression [61], although,
these findings primarily stem from end-stage tissue samples from

young-to-middle aged MDD patients; therefore, it is difficult to
extrapolate these results to that of our own.
Our most exciting finding is that despite our unique sample and

study, with prominent differences in time (12-year follow-up),
approach and measures (cellular changes vs. depressive sympto-
matology), some specificity persisted nevertheless between our
HN outcomes and the chronicity and/or recurrent nature of

(F) A single occurrence of depressive symptomology is confounded by total hippocampal volume

(H) Increased baseline levels of neuronal differen�a�on are 
associated with an increased odds of recurrent depressive 
symptomology 

(ii) (i) 

(n=66) 
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(n=45) 
Control 
(n=262

Caseness

44.3 ± 1.13 45.4 ± 1.82 50.0 ± 1.15 

(I) Neuronal differen�a�on, as associated with recurrent depressive symptomology, is modified by cogni�ve decline status

Recurrent depressive symptomology

(G) Reduced baseline levels of prolifera�on may be associated 
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depressive symptomology. For example, the observed drive
towards neuronal differentiation was unique to experiencing
recurrent depressive symptoms within our cohort. Moreover,
although we observed an increase in MAP2 neurons in our in vitro
assay from participants with recurrent symptoms, the morphology
of these neurons was significantly impaired; they had fewer,
shorter neurites and a less complex branching pattern—a finding
that has previously been reported in stress models [62, 63], in
older individuals with psychological distress [64], and in the
context of late-life depression [65]. Furthermore, several clinical
studies have reported synaptic dysfunction in MDD, albeit in the
prefrontal cortex, which may be one functional biological
consequence of these observed morphological changes [66],
of which MAP2 plays a key role [67]. However, whether the
increased number of differentiating cells is a causal or adaptive
response to these morphological impairments requires further
substantiation.
One of the potentially wider functional implications of the

changes in HN observed for those with recurrent depressive
symptomology could relate to cognitive capacity [68]. Indeed,
while neurogenesis was associated with recurrent depressive
symptoms in our sample, this was only found in a subset of
these participants, i.e., those that subsequently developed CD,

highlighting the complex relationship between CD and depression
particularly in later life. Our data suggest that either recurrent
depressive symptoms could here represent a consequence, or
concomitant event, of CD (and altered HN), or that altered HN
could potentially modulate cognitive reserve, or exacerbate
cognitive impairment in, those already suffering with recurrent
depressive symptoms. Pertinently, an association between altered
HN and CD has consistently been reported in rodent models [69],
in addition to the recognised overlap between depression, CD
and dementia for which neurogenesis may be an important
mediator [61].
In the context of a single episode of depressive symptomology,

although we observed a negative association with proliferative
cell death, this was confounded by hippocampal volume. More
specifically, reduced hippocampal volume increased the risk of a
single depressive episode—a finding consistently reported in the
literature [55]. Interestingly, we also observed a positive relation-
ship between total hippocampal volume and this HN-associated
outcome, potentially representing a compensatory response to
loss of volume. However, mediation analyses did not support that
the relationship between hippocampal volume and a single
depressive episode was modulated by reduced proliferative cell
death in our sample, although we are mindful that insufficient

Fig. 2 Relationship between the hippocampal neurogenic process and depressive symptomology and chronicity across the 12-year
study duration. A Model 1: Association between baseline proliferative cell death (i.e., %Ki67/CC3) and neuronal differentiation (i.e., %MAP2)
and depressive symptomology using logistic regression. Reduced baseline levels of %Ki67/CC3-positive cells (OR 0.23 [95% CI; 0.08 to 0.69]; p
= 0.02) and increased %MAP2-positive cells (OR 1.06 [95% CI; 1.01 to 1.11]; p= 0.002) were both independently associated with depressive
symptomology across the 12-year study period in a fully adjusted model. Model adjusted for age, gender, education, cognitive decline status,
baseline depression, plasma glucose levels and total hippocampal volume. *p < 0.05; **p < 0.01. B (i) Baseline levels of %Ki67/CC3-positive cells
stratified by caseness for depressive symptomology. Cases, i.e., those scoring positive for depressive symptomology at least once across the
12-year study (including at baseline), had significantly reduced levels of baseline levels of %Ki67/CC3-positive cells (M= 0.74 (0.05) vs. M=
0.56 (0.05)). Cellular readout expressed as a percentage relative to neural cell number. Cell line: HPC0A07/03; Passage number: P15-21;
Technical replicates: n= 3; Data represents mean ± SEM. *p < 0.05. (ii) Representative immunostaining demonstrating %Ki67/CC3-positive cells
for representative case and control. Images taken at x10 objective; scale bar represents 100 µm. C (i) Baseline levels of %MAP2-positive cells
stratified by caseness for depressive symptomology. Cases had significantly increased levels of baseline %MAP2-positive cells (M= 44.3 (1.13)
vs. M= 47.7 (1.09)). Cellular readout expressed as a percentage relative to neural cell number. Cell line: HPC0A07/03; Passage number: P15-21;
Technical replicates: n= 3; Data represents mean ± SEM. **p < 0.01. (ii) Representative immunostaining demonstrating %MAP2-positive cells
for representative case and control. Images taken at x10 objective; scale bar represents 100 µm. D (i) Baseline levels of %CC3-positive cells
stratified by caseness for a single occurrence of depressive symptomology. Cases, i.e., those scoring positive for depressive symptomology
only once across the 12-year study duration (including baseline), had significantly reduced levels of baseline levels of %CC3-positive cells
(M= 1.02 (0.10) vs. M= 1.32 (0.06)). Cellular readout expressed as a percentage relative to neural cell number. Cell line: HPC0A07/03; Passage
number: P15-21; Technical replicates: n= 3; Data represents mean ± SEM. *p < 0.05. (ii) Representative immunostaining demonstrating %CC3-
positive cells during proliferation for representative case and control. Images taken at x10 objective; scale bar represents 100 µm. E (i) Baseline
levels of %Ki67/CC3-positive cells stratified by caseness for a single occurrence of depressive symptomology. Cases had significantly reduced
levels of baseline levels of %Ki67/CC3-positive cells (M= 0.53 (0.07) vs. M= 0.70 (0.03)). Cellular readout expressed as a percentage relative to
neural cell number. Cell line: HPC0A07/03; Passage number: P15-21; Technical replicates: n= 3; Data represents mean ± SEM. *p < 0.05. (ii)
Representative immunostaining demonstrating %Ki67/CC3-positive cells during proliferation for representative case and control. Images
taken at x10 objective; scale bar represents 100 µm. F Important risk factors for a single occurrence of depressive symptomology: Model 2:
Effect of baseline overall cell death and proliferative cell death on a single occurrence of depressive symptomology using logistic regression.
Baseline levels of %CC3-positive cells during proliferation (OR 0.72 [95% CI; 0.53 to 0.91]; p= 0.03) and %Ki67/CC3-positive cells (OR 0.60 [95%
CI; 0.35 to 0.98]; p= 0.04) were both associated with a single occurrence of depressive symptomology across the study period in a partially
adjusted model (controlling for age, gender, education, and cognitive decline). However, these neurogenesis readouts were no longer
significant in a fully adjusted model (controlling for age, gender, education, cognitive decline status, baseline depression,
hypercholesterolemia, antecedents of cardiovascular disease, total hippocampal volume, cortisol levels and vitamin D supplementation)
and were confounded by hippocampal volume (OR 0.98 [95% CI; 0.98 to 0.99]; p= 0.04). *p < 0.05. G (i) Baseline levels of %Ki67-positive cells
(during proliferation) stratified by caseness for recurrent depressive symptomology. Cases, i.e., those scoring positive for depressive
symptomology repeatedly across the 12-year study period, had a trend for reduced levels of baseline levels of %Ki67-positive cells during
differentiation (M= 79.5 (1.14) vs. M= 81.6 (0.44)). Cellular readout expressed as a percentage relative to neural cell number. Cell line:
HPC0A07/03; Passage number: P15-21; Technical replicates: n= 3; Data represents mean ± SEM. *p < 0.05. (ii) Representative immunostaining
demonstrating %Ki67-positive cells during proliferation for representative case and control. Images taken at x10 objective; scale bar
represents 100 µm. H (i) Baseline levels of %MAP2-positive cells stratified by caseness for recurrent depressive symptomology. Cases had
significantly increased levels of baseline %MAP2-positive cells (M= 50.3 (1.48) vs. M= 44.8 (0.70)) relative to controls. Cellular readout
expressed as a percentage relative to neural cell number. Cell line: HPC0A07/03; Passage number: P15-21; Technical replicates: n= 3; Data
represents mean ± SEM. *p < 0.05. (ii) Representative immunostaining demonstrating %MAP2-positive cells for representative case and
control. Images taken at x10 objective; scale bar represents 100 µm. I %MAP2-positive cell density, as associated with recurrent depressive
symptomology, was modified by cognitive decline. Model 3.A: There was a significant interaction between %MAP2 and cognitive decline in
participants with recurrent depressive symptomology (OR 1.07 [95% CI; 1.004 to 1.03]; p= 0.01). Model3.B: Further analyses revealed that %
MAP2 was only associated with recurrent depressive symptomology in participants that also had cognitive decline (OR 1.08 [95% CI; 1.01 to
1.14]; p= 0.02). Models 3.A-B adjusted for age, gender, education, baseline depression, glucose levels, IL6 plasma levels, and regular physical
exercise. *p < 0.05. CC3 cleaved caspase 3, MAP2 microtubule-associated protein 2, IL interleukin, OR odds ratio, P passage, M mean.
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power upon sample stratification may have limited these analyses
[70]. Future work should seek to explore the relationship more
fully given that our understanding of the molecular and cellular
processes contributing to hippocampal volume loss (and the role
that HN plays) are not well-established [71, 72] and that this may
represent an important predictive biomarker for depression and
its associated recovery [73].

Given that the strongest risk factors for late-life depression are
related to environmental and/or sociodemographic characteristics
[74], it is unsurprising that in the context of a single, possibly,
acute depressive episode that demographic factors such as
education (which attributed most to the outcome) would be
more relevant. Alterations in neurogenesis, in the context of
depression, may only be relevant under more chronic forms of
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exposure, and/or, more importantly, in the presence of other key
risk factors for depression – as we have demonstrated in the
context of recurrent depressive symptomology. Meaningfully, we
did find a negative relationship between cortisol levels (a
biomarker for depression [75]) and a single episode of depressive
symptomology, although this does contradict the literature
predominately supporting a positive association [76]. However, it

is noteworthy that in community-dwelling older adults, both
hypo- and hypercortisolism have been associated with increased
depressive symptomology and that hypocortisolism was present
only in those with more health problems [77]. In our cohort
we observed a similar outcome: those with a single bout of
depressive symptomology also presented poorer health outcomes
(i.e., increased hypercholesterolemia and antecedents of
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cardiovascular disease, Table 1). Poorer health status may there-
fore represent an additional burden in this subgroup, possibly
leading to chronic stress and a blunted stress response.
Based on our findings that specific HN markers are associated

with depression, we next sought to determine whether nutri-
tional, metabolomic and/or lipidomic biomarkers could be
modulating these outcomes, given the association between diet
and neurogenesis [16, 17]. Interestingly, not only did we find that
both metabolite butyrylcarnitine (a member of the acylcarnitines)
and glycerophospholipid, PC35:1(16:0/19:1), were associated
with depressive symptomology – findings that have previously
been reported in clinical populations [78, 79] but that they also
specifically modulated neuronal differentiation within our
sample. For example, we show that reduced levels of PC35:1
(16:0/19:1) were associated with increased differentiation, which
in turn increased the risk of late-life depressive symptoms.
Moreover, we find that the positive association between
butyrylcarnitine levels and depressive symptomology is modified
by differentiation, such that those individuals with higher levels
of both butyrylcarnitine and neuronal differentiation are at the
greatest risk.
Importantly, PCs are major components of the cell membrane,

are involved in cell signalling and metabolism, and play a critical
role in neurotransmission and synaptic plasticity [80, 81], while
acytylcarnitines are required for β-oxidation and tricarboxylic acid
cycle activity [81, 82]. Indeed, several studies demonstrate that the
transition from neural stem cell to a neuronal lineage is
accompanied by increased mitochondrial biogenesis, and a
downregulation of glycolysis and fatty acid oxidation [81]. Thus,
β-oxidation and lipogenesis play a critical role in neurogenesis and
the dysregulation of these metabolic pathways could significantly
impair the process. Our findings potentially support that there
may be a metabolic dysregulation of neurodifferentiation in the
context of late-life depression, given that we observe alterations in
both butyrylcarnitine and PC35:1(16:0/19:1). Furthermore, these
endogenously derived factors are closely related to diet [83, 84].

For example, the precursor of butyrylcarnitine is butyric acid, a
short chain fatty acid whose main source is the microbial
fermentation of dietary fibres in the gut [83]. Therefore, dietary
modification in later life could represent a potential therapeutic
target for depression.
Additionally, we also found that plasma levels of transthyretin –

a biomarker for malnutrition [85] was negatively associated with
neuronal differentiation. Malnutrition has consistently been
associated with depression [86, 87], cognitive decline and/or
dementia [88, 89], and plays an important role in altering brain
plasticity, particularly during early life [90]. Interestingly, malnutri-
tion is associated with increased apoptosis and immune system
activation [91, 92], which might represent the mechanism of
action by which overall nutrient deficiency alters neurogenesis.
Moreover, we found a negative association between cell death
during proliferation and (PE0)34:3(16:1/18:2) – an ether phospho-
lipid that forms a key component of the lipid membrane and lipid
rafts [93]. Ether phospholipids, together with cell death, not only
plays a critical role in neurotransmission and synaptic plasticity
[80], but has also been implicated in the pathogenesis of
depression [79]. However, the precise mechanisms involved in
how these nutritional factors influence HN outcomes remain to be
elucidated, falling outside the scope of this study. Moreover, we
are mindful that in our sample, neither transthyretin or PE034:3
(16:1/18:2) levels were significantly associated with depressive
symptomology and more work is needed to substantiation these
findings in the context of depression.
Of note, consistent with previous research [94, 95], we did find a

positive association between inflammation (i.e., plasma levels of
IL6) and recurrent depressive symptomology, which could
potentially represent another mechanism of action for this
particular subgroup. Given that cytokines, like IL6, are important
regulators of HN [96], it is possible that increased neuronal
differentiation (as a potential consequence of altered neuronal
apoptosis) may be associated with immune system dysfunction in
chronic instances of late-life depression. However, we found no

Fig. 3 Relationship between the hippocampal neurogenic process, nutritional biomarkers, metabolites and lipids, and depressive
symptomology. A Association between lipid and metabolite levels and cell death during proliferation. (i) Model 4: Association between lipid
and metabolite levels and baseline levels of cell death during proliferation using linear regression. Baseline serum levels of lipid PEO34:3(16:1/
18:2) (ß=−0.13 [95% CI; −0.41 to −0.04] 0.09; p= 0.02), and baseline serum levels of metabolite butyrylcarnitine (ß= 0.15 [95% CI; 0.01 to
0.06] 0.01; p= 0.007) were both associated with baseline %CC3-positive cell levels during proliferation in a fully adjusted model. Model
adjusted for age, gender, education, cognitive decline status, baseline depression. (a) Increments are the estimates expressed as a 1-standard
deviation increase. *p < 0.05; **p < 0.01. Scatterplot showing (ii) negative relationship between baseline serum levels of lipid PEO34:3(16:1/
18:2) and %CC3-positive cells during proliferation at baseline (pink), and (iii) positive relationship between baseline serum levels of metabolite
butyrylcarnitine and %CC3-positive cells during proliferation at baseline (purple). B Association between lipid levels and proliferative cell
death. (i) Model 5: Association between lipid levels and baseline levels of proliferative cell death using linear regression. Baseline serum levels
of lipid PEO34:3(16:1/18:2) (ß=−0.27 [95% CI; −0.49 to −0.07] 0.10; p= 0.008) were associated with baseline %Ki67/CC3-positive cell levels
during proliferation in a fully adjusted model. Model adjusted for age, gender, education, cognitive decline status, baseline depression,
hippocampal volume, and Mediterranean diet score. (a) Increments are the estimates expressed as a 1-standard deviation increase. **p < 0.01.
Scatterplot showing (ii) negative relationship between baseline serum levels of lipid PEO34:3(16:1/18:2) and %Ki67/CC3-positive cells during
proliferation at baseline (pink). C Association between nutritional biomarker levels and differentiation. (i) Model 6: Association between
nutritional biomarker levels and baseline levels of neuronal cell differentiation using linear regression. Reduced plasma levels of transthyretin
(ß=−0.22 [95% CI; −0.28 to −0.49] 0.01; p= 0.006) were associated with increased baseline %MAP2-positive cell levels in a fully adjusted
model. Model adjusted for age, gender, education, cognitive decline status, baseline depression, zeaxanthin levels, arachidonic acid levels,
retinol levels and cell passage number. (a) Increments are the estimates expressed as a 1-standard deviation increase. **p < 0.01. (ii) Scatterplot
showing negative relationship between baseline plasma transthyretin levels and %MAP2-positive cells at baseline (pink). D Association
between lipid levels and differentiation. (i) Model 7: Association between lipid levels and baseline levels of neuronal cell differentiation using
linear regression. Reduced serum levels of lipid PC35:1(16:0/19:1) (ß=−2.77 [95% CI; −5.52 to −0.08] 0.01; p= 0.047) were associated with
increased baseline %MAP2-positive cell levels in a fully adjusted model. Model adjusted for age, gender, education, cognitive decline status,
baseline depression, PC32:2(14:0/18:2) levels, PC34:3(16:1/18:2) levels and cell passage number. (a) Increments are the estimates expressed as a
1-standard deviation increase. *p < 0.05. (ii) Scatterplot showing negative relationship between baseline serum levels of lipid PC35:1(16:0/19:1)
and %MAP2-positive cells at baseline (pink). E There was a significant indirect effect of baseline serum levels of lipid PC35:1(16:0/19:1) on
depressive symptomology through baseline %MAP2-positive cell levels (ab=−0.08 [−0.19; −0.001]). The mediator (i.e., %MAP2-positive
levels) accounted for 24% of the total effect (PM= 0.24). F The association between metabolite butyrylcarnitine and depressive symptomology
was modified by neuronal differentiation. (i) There was a significant interaction between serum levels of metabolite butyrylcarnitine and %
MAP2-positive cell levels (b= 0.005; SE= 0.002; p= 0.04). (ii) Interaction plot revealing that the positive association between serum levels of
metabolite butyrylcarnitine and depressive symptomology was only significant for participants that had %MAP2 levels greater than 47% in
our sample (p= 0.02). CC3 cleaved caspase 3, MAP2 microtubule-associated protein 2.
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statistical evidence to support that the relationship between
neuronal differentiation and recurrent depression was modulated
by IL6 levels in our sample.
The strength of our work lies in the use of a well-characterised

prospective cohort to evaluate the impact of nutrition (including
metabolomics and lipidomics) on in vitro neurogenesis measures
in the trajectory of late-life depressive symptomology. However,
our study also has limitations. First, our HN measures are only
proxy measures of in vitro neurogenesis; therefore, might not
mirror those in vivo. It is also unclear whether these observed HN
changes are causal or adaptive, given that this was a cross-
sectional evaluation of neurogenesis. Moreover, we recognise that
our assay does not reconstitute the neurogenic niche in its
entirety, and future work should expand the model to include
other important HN regulators such as microglia [97], particularly
given the important association between depression and (neuro)
inflammation, which could ultimately affect the outcomes
presented herein [95, 98]. Finally, it would be profitable for future
research to also extend the assay’s duration to monitor synaptic
formation and plasticity (considering our morphological findings),
and to adopt a longitudinal approach and compare HN markers
and overall neurogenic profiles at multiple time points to
understand the impact of the hippocampal neurogenic process
more fully across the trajectory of late-life depression.
In summary, given that there are currently no methods of

quantifying HN in living humans, our assay presents a powerful
tool to better understand the relationship between diet,
neurogenesis, and depression. More work is now needed to more
fully understand how these metabolites/lipids can modulate HN in
the context of depression, but we have shown that HN, modulated
by butyrylcarnitine and PC35:1(16:0/19:1), is associated with late-
life depressive symptomology, and that we can distinguish
between HN-associated outcomes and symptom chronicity. Our
work is particularly important given that current treatment options
for depression are often limited [99], and, thus, diet may represent
a promising way via which the burden imposed by this
debilitating condition could be alleviated.
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