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a b s t r a c t 

Reliable patient-specific ventricular repolarization times (RTs) can identify regions of functional block 

or afterdepolarizations, indicating arrhythmogenic cardiac tissue and the risk of sudden cardiac death. 

Unipolar electrograms (UEs) record electric potentials, and the Wyatt method has been shown to be ac- 

curate for estimating RT from a UE. High-pass filtering is an important step in processing UEs, however, 

it is known to distort the T-wave phase of the UE, which may compromise the accuracy of the Wyatt 

method. The aim of this study was to examine the effects of high-pass filtering, and improve RT esti- 

mates derived from filtered UEs. We first generated a comprehensive set of UEs, corresponding to early 

and late activation and repolarization, that were then high-pass filtered with settings that mimicked the 

CARTO filter. We trained a deep neural network (DNN) to output a probabilistic estimation of RT and a 

measure of confidence, using the filtered synthetic UEs and their true RTs. Unfiltered ex-vivo human UEs 

were also filtered and the trained DNN used to estimate RT. Even a modest 2 Hz high-pass filter imposes 

a significant error on RT estimation using the Wyatt method. The DNN outperformed the Wyatt method 

in 62 . 75% of cases, and produced a significantly lower absolute error ( p = 8 . 99 E − 13 ), with a median 

of 16 . 91 ms, on 102 ex-vivo UEs. We also applied the DNN to patient UEs from CARTO, from which an 

RT map was computed. In conclusion, DNNs trained on synthetic UEs improve the RT estimation from 

filtered UEs, which leads to more reliable repolarization maps that help to identify patient-specific repo- 

larization abnormalities. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Accurate mapping of ventricular activation and repolarization 

ime (RT) can help identify arrhythmogenic regions of the heart, 

egions that are more prone to afterdepolarizations or suscepti- 

le to conduction block ( Verduyn et al., 1997; Wang et al., 2016 ).

an and Moe showed that factors supporting ventricular fibrilla- 

ion increased the dispersion of RT, regardless of whether the av- 
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rage RT increased or decreased ( Han and Moe, 1964; Han et al., 

964 ). Coronel et al. (2009) showed that one of the main factors 

overning the occurrence of reentry is the restitution characteris- 

ics of the tissue. Later, by considering the intervals between lo- 

al RT and activation time (AT), Child et al. (2015) were able to 

dentify tissue vulnerable to reentry without the need to induce 

he arrhythmia, a metric which was referred to as the reentry vul- 

erability index (RVI). Although the RVI metric has been shown 

o be reliable ( Martin et al., 2018 ), its accuracy is limited by the

uality of the underlying RT maps. Furthermore, through modeling 

atient-specific pathologies, a “digital twin” of the patient heart is 

reated, which can be used to explore pathological mechanisms, as 

ell as to suggest and test optimized treatments ( Arevalo et al., 

016; Corral-Acero et al., 2020 ). The repolarization abnormalities 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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uggested by the RT map, together with the structural abnormal- 

ties accessible by imaging technologies, can be used for creating 

uch “digital twin”, with which functional pathologies could be 

dentified and treated. 

Electro-anatomical mapping systems (EAMs) are a common 

linical tool to record unipolar and bipolar electrograms from sites 

n the surfaces of the ventricles in vivo, the endocardium via a 

emoral catheter insertion, and the epicardium via a percutaneous 

ubxiphoid puncture ( Sacher et al., 2010 ). The EAM’s localization 

rovides the position of the electrode in order to direct it through 

he vascular system and to specific sites in the ventricles. Unipo- 

ar electrograms (UEs) measure extracellular potentials which are 

omposed of the inverse distance weighted potentials produced 

y the cells comprising the tissue. Transmembrane action poten- 

ial timings can be estimated from a UE via the Wyatt method 

 Wyatt et al., 1981 ) where AT is the instant of steepest negative

lope during the QRS phase, and RT is the moment of steepest pos- 

tive slope during the T-wave. The Wyatt method for estimating RT 

as been validated in several studies ( Coronel et al., 2006; Fran- 

one et al., 2007; Orini et al., 2018; Potse et al., 2009 ), and, hence,

an be considered as a reliable method for estimating RT from UEs. 

lectrode localization and reliable UEs offer a method for imaging 

entricular RT maps. 

However, for several EAMs currently used in clinics, acquired 

Es are subject to filtering by default. In the case of the CAR- 

O® EAM (Biosense-Webster, Diamond Bar, CA) that is considered 

n this article, a band-pass filter is built into the acquisition sys- 

em. This filtering is necessary in order to remove high-frequency 

oise, correct for baseline wander, reduce powerline interference, 

nd minimize far field components ( Stevenson and Soejima, 2005 ). 

he lowest frequency for the high-pass component of the CARTO 

lter is 0.05 Hz, but this has little effect on baseline wander caused 

y factors such as respiration (typically 0.2–0.5 Hz in patients aged 

65 Rodríguez-Molinero et al., 2013 ). Such low frequency devia- 

ions in the signal can lead to errors in measurements from the 

soelectric line and gradients, and large deviations in the signal 

an lead to amplifier saturation ( Kugelstadt, 2005 ), hence, a higher- 

requency high-pass filter is typically applied. Although these de- 

iations can be filtered by post-processing, real-time signals with 

inimal noise are important during procedures, which means that 

he signals are generally filtered at acquisition. High-pass filtering 

s known to distort the T-wave morphology of a UE ( Stevenson and 

oejima, 2005 ), yet to the best of our knowledge, there is still a

ack of detailed study on its effects on RT estimation. 

Activation mapping procedures are a source of electrograms, 

hich are regularly performed with EAMs due to their clinical im- 

ortance ( Bhakta and Miller, 2008 ). Although the acquisition pro- 

edure is not primarily intended for research studies, it gives rise 

o a large set of simultaneously recorded bipolar and unipolar elec- 

rograms from across the ventricles that could be used for fur- 

her studies, such as constructing patient RT maps. Ethically, ex- 

sting data should be reused if results can be obtained suitably 

ithout subjecting patients to further inconvenience and risk. The 

euse of clinical data for different studies and multi-center collab- 

ration is beneficial for research, with reduced time and cost for 

ata collection and more widely available data. This is particularly 

mportant in the case of the epicardial data acquired via a percu- 

aneous subxiphoid puncture procedure, which is not commonly 

reformed. However, although activation mapping relies mainly on 

ipolar electrograms, high-pass filtered UEs (default 2 Hz) assist in 

he annotation, for example by improving the detection of lower- 

mplitude local signals, where a high-pass filter with a frequency 

2 Hz is sometimes used ( Stevenson and Soejima, 2005 ). While 

uch a filter may improve the activation map quality, it can intro- 

uce aforementioned unintended effects for RT estimation. Using 
2 
nverse filtering to obtain the original signal is not an option given 

he acquisition noise, especially for recursive filters. 

A deep neural network (DNN) can learn a complex non-linear 

apping between input and output data, and in our case, to pre- 

ict the true RT from filtered signals. However, DNNs usually re- 

uire a large amount of training examples with known labels. The 

ack of known RT labels makes applying DNN on clinical applica- 

ions particularly challenging, but this can be resolved by using 

ynthetic data from physiologically-informed mathematical models 

 Corral-Acero et al., 2020 ), as well as from data augmentation tech- 

iques for machine learning ( Bizopoulos and Koutsouris, 2019 ). 

In this article, we first study and highlight the error in estimat- 

ng RT from a filtered UE using synthetic UEs filtered with the de- 

ault CARTO high-pass filter. As the main focus of the article, we 

resent our method to recover the RT from filtered UEs using a 

NN trained with synthetic UEs based on a comprehensive range 

f AT, RT and patient variability. We show that our trained DNN 

erforms better with ex-vivo human UEs compared to the Wyatt 

ethod. Finally, the trained DNN is applied to clinically recorded 

Es, from which an RT map is computed. 

. Materials and methods 

.1. Clinical and ex-vivo UEs 

.1.1. Clinical patient UEs acquired by CARTO 

We obtained 18 CARTO datasets with UEs recorded from both 

he ventricular endocardium and epicardium. The patients were 17 

ale and 1 female with age 40 . 5 ± 15 . 29 (mean ± standard devia-

ion (s.d.)), all without structural heart disease. Their pathologies 

ere 11 idiopathic ventricular fibrillation, 4 Brugada syndrome, 

 hypertrophic cardiomyopathy, 1 laminopathy and 1 arrhythmo- 

enic right ventricular cardiomyopathy. UEs were 2500 ms in du- 

ation, and recorded at a sampling frequency of 1 kHz, with res- 

lution of 0.003 mV. The mapping protocol was approved by the 

nstitutional review board, and all patients gave written informed 

onsent before the EP procedures. 

UEs were selected for analysis if the signal-to-noise ratio was 

 10 dB, where the signal and noise power spectral densities were 

omputed over the frequency intervals 1–40 Hz and 40–100 Hz, 

espectively. We also required that the cross-correlation between 

uccessive beats was > 0 . 9 , and that the variation of cycle length

etween successive beats was no more than 20 ms. This proce- 

ure permitted 14 . 6% of the UEs, providing 7764 UEs in total. The 

hree electrogram beats of each electrogram were then averaged to 

ampen any acquisition fluctuations. 

The UEs showed variation in amplitudes, likely caused by differ- 

ng contact during sequential acquisition. We normalized the am- 

litude by first shifting the UE such that its minimum point follow- 

ng the AT was at 0 mV, and the UE was then scaled such that the

agnitude of the activation slope, the portion of the signal from 

he maximum before the AT to the minimum after, was set to 1mV. 

e also shifted all UEs to start at their AT, and clipped the UEs af-

er 600 ms. The UEs were known to be filtered, even though the 

lter settings were not available to us. Numerical testing led us to 

ssume that the high-pass filtering frequency was 2 Hz, the default 

onfiguration of the system; for more details see Appendix A . 

.1.2. Ex-vivo patient UEs 

Experimental UEs were obtained from three explanted human 

earts, one diagnosed as hypertrophic, another with prior myocar- 

ial infarction, and one healthy. Procurement and use of human 

onor hearts with informed consent from family members were 

pproved by the National Biomedical Agency and in a manner con- 

orming to the declaration of Helsinki. Donor hearts were procured 
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Fig. 1. Panel (a): The reference signals of our 18 patients characterized by two (ar- 

bitrary units (a.u.)) parameters, form an envelope (blue shade) as well as a hull 

(enclosed by blue lines). Sub-panels: analysis of the PCA-reduced subspace of the 

reference signals, with the two-dimensional PCA coordinates indicated in the leg- 

end. (b) Sample signals showing that changing the x -axis of the reduced space cor- 

responds to a change of downward slope of the reference signal. (c) Sample signals 

showing that changing the y -axis of the reduced space corresponds to a change in 

the duration of the reference signal. (d) Sample signals from within the envelope. 

(e) Sample signals from the hull but not in the envelope. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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t the Bordeaux University Hospital and transported in ice cold car- 

ioplegia to the laboratory. 

The aorta was cannulated and the heart perfused in Langendorff

ode with Tyrode’s solution containing (mM) NaCl, 128; NaHCO 3 , 

8; NaH 2 PO 4 , 0.5; MgCl 2 , 0.7; glucose, 11; KCl, 4.7; CaCl 2 , 1.5. The

olution was oxygenated with 95% / 5% O 2 /CO 2 and kept at pH 7.4,

emperature 37 ◦C. An epicardial electrode sock (108 electrodes) 

as attached to the heart and UEs recorded during sinus rhythm at 

 kHz (BioSemi, the Netherlands), referenced to an electrode in the 

ortic root. Sock channels in which electrodes were in good contact 

ith minimal noise were immediately evident on visual inspection 

nd used in this study. 

.2. Synthetic patient UEs 

Since we did not have a set of ground-truth measurements of 

Ts for the CARTO-acquired UEs, we needed to generate a large set 

f synthetic data. For this, we constructed a comprehensive set of 

E morphologies, corresponding to early and late, activation and 

epolarization. 

First, patient-specific reference signals which formed the basis 

f the UE models, were computed using the data from each of the 

8 patients (2.2.1) . Then, in order to create a patient population 

rom our cohort of only 18 patients, we used a data augmentation 

echnique to generate new reference signals, each corresponding to 

 new patient physiology (2.2.2) ; this has the effect of interpolating 

etween the patient’s physiologies. From these reference signals, a 

ide range of UEs were computed (2.2.3) , which were used to train 

 DNN. 

.2.1. UE model 

Our method for generating patient-specific UE morphologies 

as based on the UE model described in Potse et al. (2009) and 

alidated in Orini et al. (2018) . This model creates a UE as the dif-

erence between a local action potential with known AT and RT, 

nd a global reference signal characterized by global conduction 

roperties. The model first fit action potential templates with ATs 

nd RTs estimated from the CARTO UEs at sites across the ven- 

ricles. We used the sigmoid-based function and parameters pub- 

ished in Orini et al. (2018) , given by the following: 

P i (t) = A 

1 

1 + e −βAT (t−τAT i 
) 

·
(

1 − 1 

1 + e −βRT (t−τRT i 
) 

)
− V rest , (1) 

here τAT i 
and τRT i 

are the AT and RT, respectively, and the param- 

ters βAT = 0 . 25 and βRT = 0 . 02 control the slope of the activation

nd repolarization of the action potential. We fixed the parameters 

 = 1 and V rest = 0 since our UEs were normalized. 

A reference signal was calculated for the patient as the average 

f the set of action potentials. That is, 

ef (t) = 

1 

N 

N ∑ 

i =0 

AP i (t) . (2) 

inally, a UE signal with a given AT and RT was computed by the 

ollowing, omitting the scaling terms used in Orini et al. (2018) : 

E i = Ref (t) − AP i (t) , (3) 

.2.2. Augmented reference signals 

To model a population of patients rather than a few specific 

atients, we performed data augmentation to increase the num- 

er of reference signals with Principal Component Analysis (PCA) 

 Bishop, 2006 ). PCA finds a linear projection to a low-dimensional 

ubspace of the reference signals such that the variances of dat- 

points are maximized on the preserved axes. Particularly, the 

xplained variance ratio , defined by the percentage of preserved 

ummed variances over the total summed variances, shows how 
3 
uch information of the datapoints have been preserved using the 

ow-dimensional representation. By sampling new datapoints from 

he subspace and inverting the projection, new reference signals 

ould then be generated. 

Since the explained variance ratios for preserving one and two 

imensions with the largest variances were 98% and 99% , respec- 

ively, we projected the 600-dimensional reference signals to only 

wo dimensions. The two-dimensional representation of our 18 pa- 

ients points formed an enclosed envelope-shaped boundary (blue 

haded region in Fig. 1 (a)), defining a particular region to sample 

alid synthetic reference signals from. 

The two dimensions of the PCA-reduced subspace, as shown in 

ig. 1 , correspond to the duration and the downward slope of the 

eference signals, respectively. We also noticed that signals sam- 

led from the hull, but not in the envelope (the purple dots in 

anel (a) of Fig. 1 and the signals in panel (e)), showed a mor- 

hological feature not present in our data. Therefore, we chose 

o draw 32 samples uniformly from the enveloped region (black 

ots in panel (a)), and inversely transformed these samples to the 

00-dimensional original space, to form an augmented set of ref- 

rence signals so that our PCA-augmented patient cohort had a 
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niform distribution in the durations and the downward slopes 

f the reference signals. This data augmentation technique im- 

roved the generality of the training data and made training a DNN 

ossible. 

.2.3. Computing UEs from the augmented reference signals 

For each of the 32 augmented reference signals, we then com- 

uted 625 UEs over a range of 25 ATs and 25 RTs using the 

odel described in Section 2.2.1 , yielding 20,0 0 0 UEs for the train-

ng dataset. For very extreme RTs, the morphologies of the UEs 

hanged very little. Hence, to avoid any redundancy in the mor- 

hologies, the range of RT was restricted such that the absolute 

mplitude of the T-wave was within 50% of the amplitude of the 

eference signal. Similarly, the AT range was a non-linear distribu- 

ion centered at the mid-point of the upstroke of the reference sig- 

al with a width of 60 ms , where fewer points occurred near the 

dges of the distribution. The RT of each UE was estimated via the 

yatt method, which was considered to be the true RT. Each set 

f computed UEs was then filtered, where the details of the filter 

re described in Appendix A . 

We normalized the training UEs in the same way as the CARTO 

Es. The UEs were then also clipped such that each started at the 

T and had a duration of 600 ms. Note that given the normalized 

onvention of our DNN, we estimated RT relative to AT, and hence, 

ore accurately, the time associated with RT should be referred to 

s activation recovery interval (ARI), i.e. the interval between AT 

nd RT. However, we are interested in the location of the point of 

epolarization within the signal rather than the particular timing, 

nd so, we refer to the point as RT (local RT). 

.2.4. Synthetic patient UEs validation 

The morphologies of the training UEs are assumed to be physi- 

logically realistic. Although the reference signals described above 

ere based on CARTO patient datasets, having only filtered CARTO 

atasets available for constructing the reference signals meant we 

ould only approximate the input AT and RT distributions. Com- 

aring the morphologies of the training UEs with the CARTO UEs 

sed to construct the UE model would therefore indicate whether 

ach of the CARTO UEs was well represented in the training set, 

nd that the model is able to produce physiologically-reasonable 

orphologies. In our case, the UE model requires only a general 

istribution of AT and RT, but not necessarily accurate estimations. 

.3. A DNN to estimate RT distribution 

After examining the morphologies of synthetic raw and filtered 

Es, we noticed a consistent deformation of the morphology, and 

hus decided to use a DNN to estimate the RTs from filtered UEs. 

Performing a regression task that maps a 600 ms signal to a 

ingle point value (RT) would unavoidably provide undesirable re- 

ults that fall out of the range of 0 to 600 ms. Instead, we for-

ulated our problem as a classification task, where the predic- 

ion target was the t th class among 500 classes corresponding to 

T = 50 , 51 , . . . , 549 ms. This way, the DNN was not only guaran-

eed to predict RT in a valid range, but also produced a probabilis- 

ic prediction representing the uncertainty of the prediction. 

Our architecture for the DNN was a multi-layer percep- 

ion classification network which followed recommendations of 

oodfellow et al. (2016) , and is illustrated in Fig. 2 . We started

ith a simple fully-connected layer that took an input of size 600 

nd produced a hidden layer of size n h , where n h was a param-

ter to determined. To help generalize the DNN, we introduced a 

ropout layer that randomly switched off nodes with a probability 

f 50% to prevent over-fitting, where 50% is a simple choice recom- 

ended by Srivastava et al. (2014) . The next layer was a Rectified 

inear Unit (ReLU), which provided a necessary nonlinearity to the 
4 
etwork, and has been successfully applied in many modern DNNs 

 Goodfellow et al., 2016 ). This was then followed by another fully- 

onnected linear unit with input size n h from the activation layer. 

o allow for more complexity in the network, this middle section 

onsisting of a dropout, a ReLU and a fully-connected layer, formed 

 repeated section. The output of the final fully-connected layer 

as fed back to the dropout layer at the start, where the parame- 

er cp determined the number of these repeated components, and 

he output size of the final fully-connected layer in the repeated 

ection was 500. Finally, a softmax layer was added to produce a 

00-dimensional vector as the DNN output. This output acted as 

he probability distribution for our RT estimation, representing the 

robabilities of RT falling between 50 to 549 ms after AT. 

To establish the hyper-parameters n h and cp, we trained the 

NN using a 10-fold cross-validation on our synthetic data, which 

eant for each of the 10 splits, 9 folds of data were used as the

raining set, while the remaining fold was used as the validation 

et. We ensured that the training and validation sets in each split 

id not share signals coming from the same patient. The optimum 

 h and cp were then used to train the DNN on the full training 

et. We used a one-hot encoding to transform the ground-truth RT 

nto a 500-dimensional vector with the corresponding entry be- 

ng 1 and others being 0. We computed cross entropy between the 

round-truth RT and the DNN output as the loss. An AdaMax op- 

imizer ( Kingma and Ba, 2014 ) with a learning rate of 0.001 was

sed to update the weights of the DNN layers. 

The DNN was implemented in Python using the PyTorch pack- 

ge (version 1.2.0) ( Paszke et al., 2019 ), and configured to run 

n a graphical processing unit (GPU) via CUDA (version 10.2). 

t took around 2h for each split to train on the Nvidia Quadro 

40 0 0 GPU. 

.4. RT and confidence estimation from DNN output 

After having obtained the probability distribution from the out- 

ut of the DNN, additional steps were needed for the final RT es- 

imation since the probability distribution contained one or more 

eaks. An additional problem was the occurrence of singular spikes 

ith large probability but narrow distribution. These likely resulted 

rom over-fitting the DNN, where the corresponding RT prediction 

as supported by only a few training examples. We overcame this 

ith the assumption that our probability distribution could be ap- 

roximated by a Gaussian Mixture Model (GMM) ( Bishop, 2006 ), 

n which data samples were assumed to be drawn from N GMM 

eighted Gaussian distributions. The mean and the variance of 

ach Gaussian represents an estimated RT and the estimation un- 

ertainty. Weights of N GMM 

Gaussians represent votes by the GMM, 

ll of which sum up to 1. Selecting the mean of the Gaussian 

ith the highest weight amounts to selecting the most likely 

T estimation suggested by the probability distribution outputted 

rom the DNN, therefore moderating the impact of the spikes 

ppropriately. 

Specifically, we drew 10 0 0 samples from each probability dis- 

ribution using a Monte Carlo approach, and used a GMM to fit 

rawn samples. The choice of N GMM 

was made by using the algo- 

ithm in Appendix B , and the mean, variance, and weight of each 

aussian distribution in the GMM were optimized to maximize the 

ikelihood of these samples using the expectation-maximization 

ethod. The estimated RT was chosen as the mean of the Gaussian 

istribution with the maximal weight, and the s.d. of the proba- 

ility distribution provided a confidence interval (CI) for the esti- 

ation. The PCA and GMM were implemented by the scikit-learn 

ackage (version 0.22) ( Pedregosa et al., 2011 ). 
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Fig. 2. The architecture of the DNN. The input is a UE of duration n in = 600 ms, and the output is a n out = 500 -dimension probabilistic distribution (Prob.). 

Fig. 3. Standard UE morphologies for given ATs and RTs, where the raw signals are shown in orange and the filtered signals in blue. AT increases from left to right, and RT 

increases from top to bottom. The corresponding RTs estimated using the Wyatt method (WM) are shown as vertical bars for each signal. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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. Results 

.1. Filtering impact on RT estimation using the Wyatt method 

We start by demonstrating the qualitative effects of filtering to 

T estimation with respect to different UE morphologies. 

Nine different synthetic UE Raw 

and UE Filtered UE morphologies 

ith different combinations of AT and RT are shown in Fig. 3 . 

he UE Raw 

were high-pass filtered giving UE Filtered (in blue) (see 

ppendix A for filtering details). 

In each case, for the UE raw 

(in orange), the peak and area of the 

RS interval of the UE is correlated with AT, and the peak and area

f the T-wave are inversely correlated with the RT, which is consis- 

ent with Orini et al. (2018) and Potse et al. (2009) . The ST segment

f UE Filtered following the activation is elevated for the early AT and 

epressed for the late AT. The filtering tends to attenuate the am- 

litude of the T-waves, but the QRS phase of the UE is generally 

naffected. In several cases, the T-wave becomes biphasic, except 

or panel (f), where the biphasic T-wave becomes positive. For this 
5 
ase, the true RT prediction lies on the upstroke of the T-wave in 

E Raw 

, yet the peak in UE Filtered . 

The UE Filtered with early RTs all show new positive deflections 

ear the end of the signal that are not present in the UE Raw 

. For

he case of early AT in panel (a), this leads to a spurious RT pre-

iction, and the largest RT error of the set. Panels (b) and (c) show 

hat as AT increases, the predictions are unaffected by the filter- 

ng. However, in the presence of noise, the deflection could also be 

isinterpreted as the RT. 

In Fig. 4 we show a comprehensive overview of RT estimation 

rror by the Wyatt method for the high-pass filters of frequencies 

.5 Hz, 1 Hz, 2 Hz and 4 Hz, which are the four lowest frequency

ettings available for the CARTO high-pass filter after 0.05 Hz. The 

rror was defined as the RT estimated from UE Filtered minus the 

T estimated from UE Raw 

. The mean of the set of 18 patient error 

aps is shown for each UE Filtered arranged according to its AT and 

T. The distribution of errors can be seen in the box plot below it. 

For all four of the frequencies that we studied, the errors were 

ostly negative. The frequency 0.5 Hz was the smallest that we 
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Fig. 4. Effects of filtering on RT estimation errors for the four lowest CARTO high- 

pass filter frequencies after 0.05 Hz: 0.5 Hz, 1 Hz, 2 Hz (default) and 4 Hz. Top : 

Over- (red) and under- (blue) estimation of RT (ms) from filtered UEs with the Wy- 

att method. Bottom : Box plots showing the error distribution (Error dist.) of RT 

estimated from filtered UEs for each high-pass filter frequency. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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Table 1 

Absolute ms error in RT prediction across all 10-fold splits on 

synthetic UEs for parameters n h and cp. The minimum error in 

bold is our architecture choice. 

n h 

140 150 160 

1 3 . 182 ± 3 . 103 2.733 ±2.701 2 . 913 ± 2 . 861 

cp 2 2 . 999 ± 3 . 028 2 . 865 ± 3 . 518 2 . 749 ± 3 . 731 

3 3 . 593 ± 4 . 918 2 . 946 ± 4 . 102 3 . 072 ± 4 . 4 4 4 

Fig. 5. The distributions of RT estimation errors for the testing ex-vivo UEs when 

computed using our DNN (absolute error mean = 31 . 47 ms, median = 16 . 91 ms, s.d. = 

44 . 59 ms) and the Wyatt method (WM) (absolute error mean = 143 . 05 ms, median = 

182 . 0 ms, s.d. = 120 . 25 ms). 
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tudied, which yielded errors with median −6 . 25 ms and interquar- 

ile range (IQR) 3 . 06 ms . In the case of the 1 Hz frequency filter, the

rrors were again mostly negative with median −11 . 5 ms and IQR 

 . 75 ms , but exhibited outliers up to 108 ms . The 2 Hz frequency

s the default CARTO frequency and is the focus of this study. The 

edian error was −29 . 5 ms with IQR 33 . 34 ms . The magnitude of

T estimation errors ranged up to 212 ms , for example for early 

T and early RT, and for late AT and mid RT, which correspond to 

anels (a) and (f) of Fig. 3 , respectively. The 4 Hz frequency was 

he largest that we studied, yet the CARTO system has the option 

f high-pass frequencies up to 30 Hz . For 4 Hz , the median and IQR 

ere −29 . 38 ms and 71 . 58 ms , with errors ranging up to a magni-

ude of 248 ms . 

.2. UE model validation 

We measured the ability of the UE model to reproduce the 

ARTO training UEs that were used to build the model. A measure 

as calculated for each CARTO UE as the maximum correlation co- 

fficient between the CARTO UE and each training UE. The mean of 

hese correlation coefficients across the 7764 UEs was 0.911 with 

.d. 0.069. This generally high correlation shows that the training 

Es were able to represent physiological UEs. 

.3. DNN validation performance 

To decide the architecture of the DNN, we trained DNNs with 

idden layers n = { 50 , . . . , 150 , 160 } and for components cp =
h 

6 
 1 , 2 , 3 } . In the setting of 10-fold cross-validation as described in

he method, we took the mean of the absolute validation errors 

rom all 10 splits, and the epoch corresponding to the minimum 

f these averaged errors was considered the optimum epoch. The 

NN was then trained with the full training set for this optimum 

umber of epochs. The validation error for the particular architec- 

ure was then calculated as the absolute error between the true 

T and the DNN-predicted RT. Table 1 shows the mean absolute 

rror and s.d. for network architectures applied to the validation 

et across all 10-fold splits. The architecture with the minimum er- 

or (in bold) from our experiments, which corresponds to n h = 150 

nd cp = 1 , was used for our DNN, for which the optimum number

f epochs was 4900. 

.4. DNN testing performance and its applications 

.4.1. Ex-vivo UEs 

The performance of the DNN was evaluated on the ex-vivo hu- 

an UEs described in Section 2.1.2 . As we had the unfiltered UEs, 

rue RTs were computed using the Wyatt method, and the filter in 

ppendix A was applied to the ex-vivo UEs to form the testing set. 

e then applied our DNN-based method to the 102 filtered testing 

Es to obtain the RT and CI estimation, and also the Wyatt method 

or comparison. 

Our DNN-based method outperformed the Wyatt method in 

2 . 75% of cases, and had significantly lower absolute errors than 

he Wyatt method (with 31 . 47 ± 44 . 59 ms compared to 143 . 05 ±
20 . 25 ms, t -test reporting p = 8 . 99 E − 13 ), with the distribution

f errors for both methods shown in Fig. 5 . Using the Wyatt 

ethod, RT was overestimated in three-quarters of the ex-vivo 
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Fig. 6. Four examples of raw ex-vivo testing UEs (orange), that were filtered (blue), 

and their corresponding RT predictions using the Wyatt method (WM, diamonds), 

the DNN probability distribution (red solid line), the predicted RT (dashed red line) 

and the CI (red shaded area). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. CARTO filtered UEs (blue) and the corresponding RT prediction using Wyatt 

method (WM, diamond), the DNN probability distribution (red solid line), the pre- 

dicted RT (dashed red line) and the CI (red shaded area). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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Es, whereas using our method, there was no systematic bias to- 

ards over- or under-estimation of RT. 

The RT predictions of the ex-vivo UEs had relatively small CIs, 

ith mean 12 . 49 ms and s.d. 21 . 34 ms. Among all the RT predic-

ions, 21 . 57% were within 1 CI and 37 . 25% were within 2 CIs of the

rue RT. 

Examples of the DNN applied to four UEs with different AT and 

T combinations are shown in Fig. 6 . In each case, the filtered sig-

al UE Filtered that formed the DNN input, and the probability dis- 

ribution DNN Prob . produced by the DNN, are shown, alongside the 

T estimation RT DNN and its CI. Fig. 6 also displays the correspond- 

ng raw signal UE Raw 

, and the true RT, RT WM(true) . For direct com- 

arison, the Wyatt method prediction RT WM 

from UE Filtered is also 

hown. Compare these examples with panels (a), (g), (e) and (f) 

n Fig. 3 . The DNN prediction RT DNN outperformed RT WM 

from the 

ltered UE in all cases. In the cases of panels (a) and (d), RT WM 

as a particularly poor estimation with errors of ≈ 180 ms, which 

s consistent with the regions of largest error in the 2 Hz panel in

ig. 4 . 

.4.2. Clinical CARTO UEs 

We applied the trained DNN to epicardial CARTO UEs of a pa- 

ient (male, 51, idiopathic ventricular fibrillation). The mean RT of 

he 1572 UEs that we tested was 310 . 45 ms with s.d. 94 . 47 ms .

hese UEs exhibited far more noise and variability than the ex- 

ivo UEs. Consequently, the DNN predictions had a larger CI, with 

ean 44 . 83 ms and s.d. 51 . 29 ms . Additionally, the probability dis- 

ributions showed alternative predictions with less confidence. 

Although the true RT is not known for these UEs, we were able 

o recognize examples of UEs that exhibit the morphologies shown 

n the catalog summarized in Fig. 3 , and saw that the predicted 

alue was in agreement with the region of the predictions in the 

atalog. Fig. 7 shows four examples of CARTO UEs normalized as 

escribed in Section 2 ; compare these morphologies with panels 

a), (c) (d) and (e) of Fig. 3 . The panels in the top row of Fig. 7 both
7 
redict RT ≈ 200 ms but also an alternative lower-probability pre- 

iction around 400 ms . These alternatives reduce the certainty of 

he prediction and cause the CI to become wider. The GMM cor- 

ectly selected the highest peak as the RT estimation when the 

istribution contained multiple peaks as in these panels. 

To show the potentials of our methods, we generated a ven- 

ricular ARI map, by projecting the RT estimated using the DNN to 

he CARTO epicardial mesh and interpolating using Gaussian kernel 

moothing. The anterior and posterior views are shown in Fig. 8 . 

he electrode locations are indicated in the maps as points, which 

how a reasonable distribution, where the mean closest-nearest- 

eighbor distance was 1 . 86 mm . The corresponding CI was also 

apped to the epicardial mesh, and is shown beneath the ARI 

ap. From this map, clinically relevant features can be analyzed 

irectly, for example, the magnitudes of the spatial repolarization 

radients of this map were distributed with median 2 . 79 ms mm 

−1 

nd IQR 4 . 89 ms mm 

−1 . 

. Discussion 

.1. The impacts of filtering on UEs 

We highlighted the consequence of erroneously applying the 

yatt method to estimate RT from filtered UEs. We showed that 

ven a modest cut-off frequency can have significant adverse ef- 

ects on RT as computed by the Wyatt method. The filtering tends 

o have little effect on the QRS phase of the UE that is typically 

omposed of higher frequencies, but the T-wave phase, composed 

f lower frequencies, becomes distorted. We showed that a UE fil- 

ered by a high-pass filter can lead to a noticeable error when esti- 

ating RT with the Wyatt method, depending on both the AT and 

T of the UE. 

Choosing a less impacting lower high-pass filter frequency is 

n option for the CARTO acquisition system. However, when us- 

ng a high-pass filter frequency of 0 . 05 Hz , baseline wander still 
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Fig. 8. Ventricular epicardial ARI map (top row), and corresponding CI map (bottom 

row). The marked points indicate the electrode positions. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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ersists due to effects such as respiration (0.2–0.5 Hz in patients 

ged ≥ 65 Rodríguez-Molinero et al., 2013 ). Without imposing a 

igher-frequency filter, the resulting large deviations in amplitude 

an lead to measurement error and amplifier saturation. 

Although high-pass filtering is known to distort the T-wave, 

uring activation mapping procedures, a high frequency ( � 2 Hz ) 

igh-pass filter can be used to eliminate far-field components of 

Es that can obscure low-amplitude recordings from abnormal re- 

ions ( Stevenson and Soejima, 2005 ). Such procedures provide a 

eliable and extensive source of retrospective UEs, which would be 

ppropriate for reuse in further RT studies if the filtering was min- 

mal (given that the data was acquired reliably and it is suitable for 

he intended study). However, CARTO’s highly-distorting, yet seem- 

ngly low default filter frequency of 2 Hz led us to believe that the 

ffects of filtering could be overlooked. In addition, the datasets 

ppeared to give no details of the filter setting used at acquisi- 

ion, hence, without direct confirmation from the acquisition team, 

hese settings could not be known. 

We have seen several studies that consider UEs that appear to 

xhibit distortions similar to the filtered UEs in our catalog, sug- 

esting that the effects of filtering are under-acknowledged in the 

eld. For example, Yang et al. (2018) used CARTO UEs in their 

tudy, where they presented an example UE with an ST elevation, 

hich could be exaggerated by filtering. Although this may not be 

he case, the article provides no information about the filter set- 

ings that were used. In another example, Potse et al. (2014) con- 

tructed detailed models that were tuned to recreate recorded 

Es. They were able to capture the activation phase of the sig- 

al, but their recorded UEs exhibited features characteristic of fil- 

ered UEs, such as an ST elevation, that their recreated UEs were 

ot able to capture. In several cases, their recorded and recreated 

E comparisons resembled examples from our catalog in Fig. 3 . 
8 
he authors recognized the consistent ST-segment mismatch, but 

uggested that this difference was due to underestimation of the 

all thickness. If filtering was an issue, repeating the study with 

inimally-filtered UEs should produce a better match of the repo- 

arization phase of the UEs. 

Even if filter settings are known, trying to reverse the filter re- 

ies on amplifying low-amplitude components of the signal, which 

ould also amplify signal noise. Mizuhiki et al. (2020) overcame 

his issue by first averaging signals with their close neighbors to 

ttenuate any noise before reverse-filtering, but given the spar- 

ity of the CARTO data, the spatial morphological variation was 

oo large for this to be an option. For some patients, the option 

f re-performing a clinical procedure with broader filter settings 

or future studies exists. Endocardial recordings are frequently per- 

ormed and new minimally-filtered data could be analyzed. How- 

ver, the percutaneous subxiphoid puncture that yields the epi- 

ardium data ( Sacher et al., 2010 ) is an invasive procedure and is 

ot routine. This makes the epicardial data uncommon and hard to 

btain, and hence, any existing epicardial data is very valuable. 

.2. A DNN approach to estimate the RT distribution from filtered UEs 

We adopted a DNN to learn the mapping from different com- 

inations of AT and RT to the resulting filtered UE morphology. By 

atching the morphology of the signal, the DNN was able to cap- 

ure ground-truth RT, which, in our training set, was calculated by 

he Wyatt method. However, the labeling of RT is independent of 

he DNN architecture, thus, other RT estimation methods can also 

e applied. 

The key to applying the DNN successfully was to perform su- 

ervised learning over a large variety of training data. However, 

e had access to only a small number of CARTO datasets to use 

s training examples, and of these their true RTs were not known. 

odeling tools allowed us to generate a virtual patient cohort of 

ynthetic yet physiologically-realistic UEs, across a range of clin- 

cally observed AT and RT. The DNN was, thus, trained with the 

ynthetic UEs. 

The ATs and RTs from each of the CARTO UE datasets were used 

o model the patient, from which a set of synthetic UEs could 

e computed. Although not in exact accordance with the model 

n Potse et al. (2009) , our validation step showed that the UEs 

evertheless proved sufficiently physiological to form the train- 

ng dataset. These UEs depended on the model’s reference signal 

hat characterizes patient-specific electrophysiology. To ensure a 

easonable electrophysiological variability in the training set from 

nly 18 patients, we generated a larger set of synthetic reference 

ignals sampled uniformly from a two-dimensional PCA-reduced 

ubspace of the reference signals, which we constrained to lie 

ithin the envelope of the measured points representative of our 

atient characteristics. In this way, we generated an augmented set 

f synthetic data representative of a larger patient group, conse- 

uently improving the generality of our training data. The train- 

ng example UEs were generated for each reference signal, where 

he “true” RTs were first calculated from these raw UEs using the 

yatt method before the UEs were filtered. Since each synthetic 

E was computed from an associated action potential template, it 

ould be straightforward to annotate RT directly from the action 

otential, rather than from the UE with the Wyatt method. How- 

ver, we chose to estimate RT with the Wyatt method since this 

llowed us to apply the exact same setting in the ex-vivo testing 

Es for evaluation. 

We treated the RT estimation problem as a multi-class classi- 

cation problem, which produces a probabilistic estimation of RT 

rom the morphology of the UE, rather than just a single value 

rediction. From this, we could ensure that the RT estimations fell 
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ithin the time range of the UEs, and we could also obtain a mea-

ure of confidence in our prediction. 

We chose to create synthetic UEs to mimic the 1 kHz sampling 

requency of the CARTO UEs. Hence, the true RT was approximated 

o the nearest millisecond, and the distribution output from the 

NN had the same resolution. This works well as a proof of con- 

ept, but our method can accommodate UEs with a higher sam- 

ling frequency. The dimension of output distribution can be in- 

reased, and a more refined true RT can be calculated from higher- 

esolution synthetic UEs. But in order to make the DNN applica- 

le to CARTO UEs, these higher-resolution UEs would need to be 

ownsampled as inputs to the DNN to match the CARTO sampling 

requency. 

.3. Performance of the DNN approach 

The testing performance on the ex-vivo UEs (3.4.1) showed that 

he DNN was clearly able to outperform the Wyatt method in 

2 . 75% of the 102 filtered UEs, giving an absolute error with mean

6 . 91 ms and s.d. 44 . 59 ms. In the case of CARTO UEs, the true

T was not known as only filtered UEs were available. However, 

ur CI map provides an indication of the DNN’s ability to interpret 

he signal, based on whether the input morphology is well repre- 

ented in the training data. The generally low values of the CI map 

ndicates that the morphologies interpreted are fairly typical and 

hat the DNN is certain of its RT predictions. The DNN can still 

e improved by more rigorously optimizing the DNN architecture 

hoices, and implementing the true details of the CARTO filter. Fur- 

hermore, given that CARTO has a discrete set of 8 possible high- 

ass frequencies, a natural extension of this tool is to build a more 

omprehensive DNN using UEs filtered by the entire spectrum of 

 discrete CARTO high-pass frequencies. In this way, the exact fre- 

uency of the filter used in the acquisition would not be needed. In 

ddition, the DNN could be trained with more diverse CARTO UEs, 

athologies and noise settings in order to make the predictions 

ore robust. A more extensive set of training UEs would also re- 

uce the CI. As a future development, uncertainty measures which 

orrelate with the regression error will be better CI candidates. 

As seen in the raw UEs in the catalog ( Fig. 4 ), the morpholo-

ies of the UEs were regular, and could be categorized according to 

heir ATs and RTs. In addition, we were able to mimic the effects of 

he filtering ( Appendix A ), which were consistent and predictable. 

he DNN considers the morphology of the entire signal, and uses 

his extra regular information to make an informed RT estimation. 

egardless of the filtering, this is a major benefit over the Wyatt 

ethod, since the estimation does not depend on a local feature 

hat can be easily influenced by artifacts. For the DNN, the error 

nduced by such artifacts is dampened by the morphology of the 

est of the signal. If the rest of the signal is also distorted, this is

eflected by a wide CI. 

Although the purpose of the DNN was to overcome the distor- 

ion in CARTO UE morphologies by filtering, we emphasize that 

he method is not restricted to CARTO-acquired UEs, and that the 

ame methodology can also be applied to other signal interpreta- 

ion problems. In the simplest case, by re-annotating the training 

ata, the method can be used to identify features other than RT, 

or example the peak or end of the T-wave. Furthermore, some 

cquisition-related issues other than filtering can also be modeled, 

earned and then corrected for as we have done here. For example, 

oss of contact between the electrode and the ventricle during ac- 

uisition results in a signal with a diminished amplitude, but it can 

e learned if this feature is consistent. Similarly, abnormal physio- 

ogical conditions naturally lead to abnormal UEs. For example, ST 

levation is commonly seen in UEs in particular regions in patients 

ith Brugada syndrome ( Mizusawa and Wilde, 2012 ), and record- 
9 
ngs in or near regions of scar are atypical, yet, to some extent, 

hese effects are consistent and predictable. 

.4. The computation of RT maps 

We presented an example of an RT (ARI) map in Fig. 8 that 

as computed from CARTO UEs using the DNN. These UEs were 

cquired originally for AT map construction, hence, this example 

emonstrates how the CARTO acquisition system can be extended 

o generate both AT and RT maps from the same data without 

ompromising the quality of the AT map. Since the UE recordings 

ere acquired sequentially, the recordings did not always corre- 

pond to the same beat. Variability in the cycle length could lead 

o spurious variations in the RT estimations. Although this is not an 

ssue for individual RT estimations, our UE selection process miti- 

ated this factor in order to compare local estimations in the map. 

he quality of an interpolated map from UE features relies heavily 

n the spatial density of the recording sites and the quality of the 

ocal UEs. The recording sites are typically focused on regions of 

nterest to reduce the procedure time, rather than dense uniform 

ampling. Although we had a reasonable spread of electrode sites, 

arger interpolation error is expected in regions of sparser elec- 

rodes. It is likely that the uninteresting regions are well behaved, 

nd such behavior is captured sufficiently by the sparser sampling. 

A major obstacle to reliable RT maps is the lack of a sim- 

le method to validate the RT map spatially. Although a de- 

ailed overview of expected ventricular activation patterns is avail- 

ble ( Durrer et al., 1970 ), the activation pattern can vary signifi- 

antly between individuals, and the equivalent for repolarization is 

till under debate and much less understood ( Chauhan et al., 2006; 

owan et al., 1988; Franz et al., 1987; Opthof et al., 2014, 2016, 

017; Yuan et al., 2001 ). The CI map is representative of the qual-

ty of the UE; a low CI shows certainty to the estimations at the 

ndividual electrode sites, which are independent of the mapping 

echniques. Since minimizing the uncertainty has been part of the 

ntuition behind the mapping procedure, the CI map could also be 

sed to improve the efficiency in the catheter mapping process for 

onstructing high-quality maps ( Feng et al., 2017 ). Additionally, by 

ombing interpolation error with the CI, although not a validation, 

n assurance of the quality of the RT map can be established. 

The RT maps themselves can then be used to investigate ven- 

ricular electrophysiological abnormalities, in particular, via effec- 

ive refractory period (ERP), which is a phase where a new action 

otential cannot be initiated in a previously excited cell. This can 

ead to regions of block, which play an important role in the on- 

et of pro-arrhythmic re-entrant circuits ( Mines, 1913 ). Clinically, 

RP testing is time-consuming and highly impractical for generat- 

ng maps. As the procedure duration is statistically correlated with 

he procedural complication rate ( Cheng et al., 2018 ), such lengthy 

nvasive testing with uncertain clinical impact would be ethically 

nacceptable. In general, RT has been shown to approximate ERP 

ell ( Chinushi et al., 2001; Lee et al., 1992 ). Although, there are

cenarios where RT may lead to unreliable ERP estimations, for ex- 

mple where post-repolarization refractoriness occurs, for patholo- 

ies where this is uncommon, RT maps provide the most practical 

ay of approximating ERP maps. 

. Limitations 

Unfortunately, the full details of the CARTO filter were not avail- 

ble to us, and hence, throughout the article we used the filter 

escribed in Appendix A . Furthermore, the only obtainable filter 

etails were the high- and low-pass frequencies of the filter used 

uring acquisition, but the details of the filtering were not dis- 

losed in the CARTO datasets. 



P. Langfield, Y. Feng et al. Medical Image Analysis 72 (2021) 102075 

6

w

A

b

t

T

w

B

D

e

t

a

t

r

D

d

C

i

o

a

S

W

L

J

d

v

L

H

m

-

A

f

p

p

f

n

d

f

F

G

A

o

u

o

w

s

g

I

[

0  

t

s

I

f

C

2

A

R

A  

B

B

B  

C  

C  

C  

 

C  

C  

C  

C  

 

 

 

 

 

 

C  

D  
. Conclusions 

Filtering of UEs is often necessary, but the distortion of the T- 

ave caused by the filter is significant even with light filtering. 

lthough the reliability of the Wyatt method in estimating RT has 

een shown by previous studies, the presence of filtering can lead 

o errors larger than 210 ms for a high-pass frequency of just 2 Hz. 

his margin of error should be considered when estimating RT 

ith the Wyatt method from UEs that are known to be filtered. 

ut despite the UE filtering, the RT can still be accessed via our 

NN-based method that estimates RT with a significantly lower 

rror than the Wyatt method. By considering the morphology of 

he entire UE, our DNN approach is more robust than the Wy- 

tt method, and can also provide a measure of estimation uncer- 

ainty. This leads to more reliable RT estimations and more accu- 

ate patient-specific RT maps. 
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ppendix A 

We studied a range of filter settings by considering the effects 

f the filter on synthetic UE morphologies that were constructed 

sing the model in Section 2.2.1 . The reference signal was based 

n the data from one particular patient, and the AT and RT ranges 

ere chosen to display morphologically different features. These 

ignals were then filtered, producing a catalog of UE morpholo- 

ies. Specifically, we tested high-pass Butterworth, Chebychev I and 

I, elliptical (Cauer) and Bessel filters, with orders in the range 

1,8], and the set of possible CARTO high-pass frequency options: 

 . 05 , 0 . 5 , 1 , 2 , 4 , 8 , 16 , 30 Hz ; the filter was then implemented using

he Scipy function lfilter ( Virtanen et al., 2020 ). 
10 
We found that the set of morphologies that most closely re- 

embled the CARTO morphologies was a 2 Hz order-2 Chebychev 

I filter. The synthetic electrograms were generally minimally ef- 

ected by a lowpass filter even at frequencies much lower than the 

ARTO choices, hence we opted to apply only a high-pass filter at 

 Hz. The minimum attenuation in the stopband was 5 dB. 

ppendix B 

Algorithm 1: Pick the best N GMM 

for the given samples. 

Data : Samples 

Result : The best choice of N GMM 

N GMM 

:= 1 ; 

Fit the samples with GMM with N GMM 

components; 

while True do 

Fit the samples with GMM with N GMM 

+ 1 components; 

C rit erion 1 := Bayesian Criterion Information of the GMM 

with N GMM 

+ 1 components is less than that of the GMM 

with N GMM 

components; 

C rit erion 2 := No CI of any two components in GMM with 

N GMM 

+ 1 components is overlap; 

if C rit erion 1 and C rit erion 2 are both True then 

N GMM 

:= N GMM 

+ 1 ; 

else 

Return N GMM 

; 

end 

end 

Return N GMM 

; 
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