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Abstract. A differential game modeling the noncooperative outcome of pollution in groundwater
is studied. Spatio-temporal objectives are constrained by a convection-diffusion-reaction equation
ruling the spread of the pollution in the aquifer, and the velocity of the flow solves an elliptic partial
differential equation. The existence of a Nash equilibrium is proved using a fixed point strategy. A
uniqueness result for the Nash equilibrium is also proved under some additional assumptions. Some
numerical illustrations are provided.
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1. Introduction. The preservation of the groundwater is a leading concern in
order to maintain the quality of water supply. Human activities and uses are the
main causes for pollution. On the one hand, when related to economic activities
such as, for instance, farming or manufacturing, the pollution often corresponds to a
productivity gain, thus to benefits. On the other hand, the contamination requires
depolluting actions in the captation wells and consequently entails cleaning costs. The
present paper is a contribution to the study of the trade-off between the benefits of the
polluting activities and the decontamination costs. Theoretical developments in the
specific context of groundwater are all the more interesting because the flow dynamics
are slow in the aquifers thus inducing a large delay before the possible evaluation of
any political decision limiting the pollution. Here moreover, we focus on nonpoint
source contaminations, such as agricultural nitrate pollution, for which the emissions
of pollutants are not directly observable by the regulator, making any control difficult
to apply, the regulator being able to measure pollution only at specific points ([25]).

The fact that aquifers are common goods contaminated by many actors is one of
the reasons that may explain why their pollution level remains high in spite of the
institutional protection attempts. Indeed, a negative externality comes into play for
the individual decisions, leading to the suboptimality of the noncooperative solution
compared to that which would have been obtained in a cooperative way. This type of
behavior is now well documented for nonspatialized models: as stated in the seminal
paper of Van Der Ploeg and De Zeeuw ([21]), the Nash open-loop equilibria lead to
a higher pollutant stock and a higher fertilizer use than in the cooperative situation;
similar results have been obtained in the framework of shallow lakes (M\"aler, Xepa-
padeas, and De Zeeuw [17], Wagener [23], and Kossioris et al. [16]). However, most of
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1668 AUGERAUD-V\'ERON, CHOQUET, COMTE, DI\'EDHIOU

the existing studies do not take into account the space dimension, whereas it is noto-
riously the main ingredient for a proper modeling of transport and diffusion processes
in the underground (see any hydrogeological monograph, e.g., Scheidegger [20]). We
thus only refer to [11] by de Frutos and Martin-Herran devoted to a time-space model
of multiregional pollution. More precisely the authors consider a discrete space ap-
proximation and provide numerical illustrations of Nash equilibria. Here rather, we
focus on the mathematical analysis.

The problem under consideration belongs to the class of infinite dimensional mul-
tiobjective control problems constrained by PDEs. There is a large literature devoted
to the corresponding Pareto strategies. The Nash strategy remains seldom addressed.
A general theory is solely developed for the case of linear PDEs. We refer to the
fundamental work of Ramos, Glowinski, and Periaux [19]), based on the adjoint for-
mulation and thus needing stronger assumptions than the one considered here for the
existence result. See also Borzi and Kanzow [6] for a focus on the elliptic setting and
Hinterm\"uller and Surowiec [15] for the extension to the so-called generalized Nash
equilibrium problems, where the set of admissible controls of each player depends on
the other players' strategies. We also mention the recent results of Araruna et al. [1]
for the Stackelberg--Nash strategy. In the particular context of water management, a
related work is the article [13] of Garc\'{\i}a-Chan, Munoz-Sola, and V\'asquez-M\'endez with
pointwise pollution sources and control, constrained by a parabolic and once again
linear PDE. A substantial difficulty of the present work relies on the nonlinearity of
the parabolic PDE governing the state unknown.

In the present paper, for the sake of the simplicity, the formulation is limited to
two players. Two polluters with two different spread policies are considered. The state
equations are given by the time and space dependent model ruling the hydrogeological
dynamics. The spread of the pollutants is modeled by a convection-diffusion-reaction
equation and the velocity of the flow by an elliptic PDE. Generic reaction terms are
assumed, including all the classical (nonlinear) isotherms. Two economic objectives
are defined.

The paper is organized as follows. The problem is presented in section 2, in-
troducing the hydrogeological state equations system and the objective functions.
Assumptions are listed in section 3, and the main result of the paper, an existence re-
sult of a Nash equilibrium, is stated. Its proof is developed in section 4, the necessary
compactness results being obtained by convexity arguments thus without unnatural
assumptions on the controls. Finally, in section 5, we derive the corresponding opti-
mality conditions using the Pontryagin's approach. This allows to prove a uniqueness
result for the Nash equilibrium. More precisely, due to the nonlinearity of the state
equation, the global result is obtained by propagation of a local in a time uniqueness
result. Finally, some numerical illustrations are provided in section 6.

2. Description of the model. We first set up the space-time domain of the
study. Pollution spreading in areas, groundwater, and water collection wells are con-
tained in a bounded domain \Omega \subset \BbbR N , where N \geq 1, with a boundary \partial \Omega assumed
\scrC 2. For practical applications N = 3. Two subdomains \Omega 1 \subset \Omega and \Omega 2 \subset \Omega are
considered. They correspond to the areas of the soil polluted by two independent
agents. The latter two are hereafter referred as Player 1 and Player 2. We assume
that \Omega 1 and \Omega 2 are such that \Omega 1 \cap \Omega 2 = \emptyset . The contamination flow rate in \Omega i is
denoted by pi(t, x), i = 1, 2, x \in \Omega i \subset \Omega , t \in (0, T ), where the time horizon T is
a given real number in (0,\infty ). Let \Omega T = (0, T ) \times \Omega . Let \chi \Omega i

be the characteristic
function of \Omega i.
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GAME THEORY AND GROUNDWATER POLLUTION CONTROL 1669

The dynamics of the pollutant in the underground is described by the state sys-
tem. For the sake of simplicity, only one pollutant is assumed of interest. Its con-
centration in the groundwater is denoted by c. Its displacement is mainly driven by
the velocity v of the mixture. A diffusion process also occurs. Due to microscopic
heterogeneities in the soil, this diffusion process may depend on v. The mass and
momentum conservation principles then lead to the following system ruling the trans-
port of the pollutant in \Omega T (see Augeraud-V\'eron, Choquet, and Comte [2] for more
details):

R\psi \partial tc+ v \cdot \nabla c - div(\psi S(v)\nabla c) =  - r(c) + p1\chi \Omega 1 + p2\chi \Omega 2  - gc+ \gamma ,(2.1)

div(v) = g, v =  - \kappa \nabla \phi .(2.2)

According to Scheidegger [20], the dispersion tensor S(v) can be written1

S(v) = SmId + Sp(v), Sp(v) = | v| 
\biggl( 
\alpha L

| v| 2
v \otimes v + \alpha T

\biggl( 
Id - 1

| v| 2
v \otimes v

\biggr) \biggr) 
,(2.3)

where Sm, \alpha L, and \alpha T are, respectively, the diffusion coefficient and the longitudinal
and transverse dispersion factors. The dispersion depends on the velocity v of the
fluid in the aquifer, which itself is related to the hydraulic head \phi according to the
Darcy law (second equation in (2.2)). The structure of the soil is described by the
porosity function \psi and by the fluid mobility tensor \kappa which rates the permeability
of the underground with the viscosity of the fluid. The eventual adsorption of the
pollutant by the soil is assumed to be a linear and instantaneous reaction, following the
arguments in Miquel and de Marsily ([18, page 251]). The corresponding retardation
factor is the real number R > 0. The other chemical reactions are resumed in the term
r(c). Classical isotherms (see, e.g., Williams [24]) are described by linear functions in
the form r(c) = kc or by Freundlich functions, r(c) = kck

\prime 
or by Langmuir functions,

r(c) = kc/(1+k\prime c), (k, k\prime ) \in \BbbR 2
+. Terms g and \gamma correspond to the other source terms.

More precisely, the function g describes the water flow rate of the external sources
and sinks and \gamma accounts for the pollutant natural load.

General boundary conditions have to be considered in order to encompass a var-
ious number of realistic situations. In order to disentangle boundary assumptions on
the two state variables, we consider two nonoverlapping decompositions of the bound-
ary \partial \Omega of \Omega : \Gamma 1 \cup \Gamma 2 = \partial \Omega with \Gamma 1 \cap \Gamma 2 = \emptyset and \Gamma 3 \cup \Gamma 4 = \partial \Omega with \Gamma 3 \cap \Gamma 4 = \emptyset .
The state system is then completed by the following initial and boundary conditions:

S(v)\nabla c \cdot n = 0 on \Gamma 1 \times (0, T ), c = 0 on \Gamma 2 \times (0, T ), c| t=0 = c0 in \Omega ,(2.4)

v \cdot n =  - \kappa \nabla \phi \cdot n =  - \kappa v1 \cdot n on \Gamma 3 \times (0, T ), \phi = \phi b on \Gamma 4 \times (0, T ),(2.5)

where we denote by n the unit exterior normal vector to the boundary \partial \Omega . Notice that
we have chosen homogeneous boundary conditions for the concentrations, only for en-
lightening the computations below. The results naturally extend to nonhomogeneous
boundary conditions.

We now describe the objectives of the two players. The set of values of the
contamination flow rate, namely, \{ pi(t, x); (t, x) \in \Omega T \} , characterizes the strategy of
Player i. In the present paper we only consider open-loop Nash equilibrium solutions

1Here u\otimes v denotes the tensor product, (u\otimes v)ij = uivj , while u \cdot v denotes the scalar product,

u \cdot v =
\sum N

i=1 uivi. Let | u| 2 = u \cdot u. The identity matrix is denoted by Id.
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1670 AUGERAUD-V\'ERON, CHOQUET, COMTE, DI\'EDHIOU

(Dockner, Feichtinger, and J{\e}rgensen [10]). The objective of each player, denoted Ji,
i = 1, 2, is given by a Bolza form as follows:

Ji(pi; p - i, c(\cdot ; p1, p2)) =  - \nu e - \rho T

\int 
\Omega 

Di(x, c(T, x; p1, p2)) dx

+

\int T

0

\biggl( \int 
\Omega 

(fi(x, pi(t, x))\chi \Omega i
(x) - Di((x, c(t, x; p1, p2))) dx

\biggr) 
e - \rho t dt,(2.6)

where c(\cdot ; p1, p2) is defined by the state problem (2.1)--(2.5). Here and after, the
notation c(\cdot ; p1, p2) is used in order to bear in mind that c defined by (2.1)--(2.5) de-
pends on p1 and p2, and thus a game situation occurs. This is a nonlocal dependency,
namely, c(\cdot ; p1, p2) : (t, x) \mapsto \rightarrow c(t, x; p1, p2), where

c(t, x; p1, p2) = c

\left(  t, x; \bigcup 
i=1,2

\{ pi(s, y) a.e. (s, y) \in (0, T )\times \Omega i\} 

\right)  .

Instantaneous welfare depends on the one hand on private benefits of the player and on
the other hand on the cost of the remediation of the environmental damage due to the
pollution. However, due to the spreading of pollutant in groundwater, a differential
game situation appears, the pollutant concentration in groundwater depending on
both players' uses.

In (2.6), function fi (i = 1, 2) is the benefit function of Player i, and Di is
the decontamination costs function he faces. Thus the term fi(x, pi(t, x))\chi \Omega i

(x)  - 
Di(x, c(t, x; p1, p2)) is the profit function of player i, i = 1, 2. An actualization pa-
rameter 0 < \rho < 1 is used to consider the net present value of the profit. Notice that
the profit is evaluated over all the time period (0, T ). Indeed, the use of the PDEs
model (2.1)--(2.5) as a constraints system allows to consider a fully adaptative strat-
egy; i.e., it allows to compute explicitly the value pi(t, x) a.e. in \Omega T . Notice also that
the space dependancy of the cost function Di, x \mapsto \rightarrow Di(x, c) may especially include
the characteristic function of a subset of the domain \Omega . So we may either consider
the pollution in the whole domain, or, in a less responsible way, we may only focus
on the pollution in the freshwater production wells (see the numerical illustrations
in section 6). The planing horizon T \in (0,\infty ) is finite. Thus in order to take into
account the decontamination cost of the pollution remaining at time T , a scrap value
is introduced: \nu e - \rho T

\int 
\Omega 
Di(x, c(T, x; p1, p2)) dx. The scraping parameter \nu , \nu \geq 0, en-

ables to weight the scrap value part in the objective Ji. Basically, the more polluted
is the groundwater at time T , the more the objective is lowered.

It remains to define the set of controls. Let p > 0 be the maximal pollutant
load that can be applied. This value exists due to saturation limits. We define the
admissible sets of control as follows for i = 1, 2:

Ei = \{ q \in L2(\Omega i \times (0, T )); 0 \leq q(t, x) \leq \=p a.e. in \Omega i \times (0, T )\} .

Now, basically, the strategy of each player for the social welfare, assuming that
the one of the other players is known, is resumed by2

max
pi\in E1

Ji(pi; p - i, c(\cdot ; p1, p2)), where p - i \in E - i is given.

But in the present paper we consider the case of a noncooperative game, that is, when
the strategy of the other player is not known.

2Here and after, we use the following convention for the indexes: x - 1 = x2 and x - 2 = x1.
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GAME THEORY AND GROUNDWATER POLLUTION CONTROL 1671

3. Mathematical assumptions and the main result. The main result of the
paper is an existence result for a Nash equilibrium. It will be further characterized
by a PDE's problem in section 5 below, then allowing a uniqueness result. We begin
by listing in the following subsection all the mathematical assumptions used in the
paper.

3.1. Mathematical assumptions. First consider the assumptions related to
the hydrogeological description thus to the state problem. For the soil porosity,
the dispersion, and the mobility tensors, we assume that there exist real numbers
(\psi  - , \psi +) \in \BbbR 2, (Sm, \alpha L, \alpha T ) \in \BbbR 3 with Sm > 0, \alpha L \geq \alpha T \geq 0 and (\kappa  - , \kappa +) \in \BbbR 2,
0 < \kappa  - \leq \kappa +, such that

0 < \psi  - \leq \psi (x) \leq \psi + a.e. x \in \Omega ,

S(v)\xi \cdot \xi \geq (Sm + \alpha T | v| ) | \xi | 2 , | S(v)\xi | \leq (Sm + \alpha L | v| ) | \xi | for all \xi \in \BbbR N ,

\kappa \xi \cdot \xi \geq \kappa  - | \xi | 2 , | \kappa \xi | \leq \kappa + | \xi | for all \xi \in \BbbR N .

Moreover, in order to ensure that the velocity v of the flow belongs to L\infty (\Omega T ), we
suppose that one of the following assumption is true:

\kappa \in (\scrC 1(\=\Omega ))N\times N and \phi b \in W 2,p(\=\Omega ) with p > N,

\kappa = \kappa \ast Id with \kappa \ast : \=\Omega \rightarrow \BbbR , \kappa \ast \in \scrC 1(\Omega ), and \phi b \in W 2,p(\=\Omega ) with p >
N

2
.

The nonnegative functions g and \gamma are assumed bounded. The retardation factor
R > 0 is a given real number. The reaction function r, possibly nonlinear, is supposed
to be concave, with a bounded derivative in \BbbR + and satisfying r(0) = 0. In particular,
there exists r+ \in \BbbR + such that

| r(x)| \leq r+ | x| for all x \in \BbbR +.

We now provide the assumptions for the initial and boundary values. Initial
condition c0 is given in H1(\Omega ) with c0(x) \geq 0 a.e. in \Omega . Functions \phi b and v1 in
(2.5) are, respectively, in H1(\Omega ) and in (L\infty (\Omega ))N , with div(v1) \in L\infty (\Omega T ) and the
compatibility condition

\int 
\Omega 
g dx =

\int 
\partial \Omega 
\kappa v1 \cdot d\sigma for the solvability of the elliptic equation

(2.2).
Finally, consider the economic part (2.6) of the problem. We already mentioned

that \nu and \rho are given real numbers satisfying \nu \geq 0 and 0 < \rho < 1. Assumptions
on benefit and damage functions are the following ones: For i = 1, 2, function fi :
\Omega \times [0, \=p] \rightarrow \BbbR is bounded and such that, for almost every x \in \Omega , p \mapsto \rightarrow fi(x, p) is
continuous and strictly concave on [0, \=p]. Function Di: \Omega \times \BbbR + \rightarrow \BbbR + is bounded
such that, for almost every x \in \Omega , c \in \BbbR + \mapsto \rightarrow Di(x, c) is a hemicontinuous and convex
function.

3.2. Main result. Consider first the state problem alone. A pair (c, \phi ), satis-
fying c \in \scrC ([0, T ];L2(\Omega )) and \phi \in L\infty (0, T ;H2(\Omega )), is a weak solution of (2.1)--(2.2),
(2.4)--(2.5) if for any test function \varphi \in H1(0, T ;H1(\Omega )) such that \varphi | t=T = 0 in \Omega and
\varphi = 0 on \Gamma 2 \times (0, T ),

(3.1)  - 
\int 
\Omega T

R\psi c\partial t\varphi dx dt - 
\int 
\Omega 

Rc0\varphi | t=0 dx+

\int 
\Omega T

\psi S(v)\nabla c \cdot \nabla \varphi dx dt

+

\int 
\Omega T

(v \cdot \nabla c)\varphi dx dt =
\int 
\Omega T

\Bigl( 
 - r(c) + p1\chi \Omega 1

+ p2\chi \Omega 2
 - gc+ \gamma 

\Bigr) 
\varphi dx dt,
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1672 AUGERAUD-V\'ERON, CHOQUET, COMTE, DI\'EDHIOU

where v =  - \kappa \nabla \phi is such that for any \theta \in L1(0, T ;H1(\Omega )) with \theta = 0 on \Gamma 4 \times (0, T )\int 
\Omega T

\kappa \nabla \phi \cdot \nabla \theta dx dt+
\int T

0

\int 
\Gamma 3

(\kappa v1 \cdot n)\theta dsdt =
\int 
\Omega T

g\theta dx dt,(3.2)

\phi = \phi b on \Gamma 4 \times (0, T ).(3.3)

The well-posedness of the latter formulation is provided by the following lemma (we
refer to Augeraud-V\'eron, Choquet, and Comte [2] for its proof).

Lemma 3.1. Let (p1, p2) be given in E1\times E2 . There exists a unique solution (c, \phi )
of (2.1)--(2.2), (2.4)--(2.5) associated to (p1, p2) in the sense (3.1)--(3.3). Moreover,

\alpha T | v| 
1
2 \nabla c \in (L2(\Omega T ))

N , c \in H1(0, T ;H - 1(\Omega )), and c \geq 0 a.e. in \Omega T .

Remark 3.2. The velocity v is an exogenous unknown since it is defined by a
PDE's problem which does not depend on p1 and p2, nor on the concentration c. The
existence of v is thus ensured by the latter result once and for all, and we will not
anymore mention this question.

Thanks to the uniqueness result in Lemma 3.1, we are allowed to simplify the
notation Ji(pi; p - i, c(t, x; p1, p2)) into Ji(pi; p - i). The players' reaction functions are
then defined as follows.

Definition 3.3 (players' reaction functions). For almost every (t, x) \in \Omega T , the
reaction functions p\ast i (t, x; p - i), i = 1, 2, are defined by

p\ast 1(t, x; p2) = argmax
q1\in E1

J1(q1; p2) for all p2 \in E2,(3.4)

p\ast 2(t, x; p1) = argmax
q2\in E2

J2(q2; p1) for all p1 \in E1.(3.5)

The existence of the reaction functions is ensured by the following result. Notice
their uniqueness that will turn out to be fundamental for some of our proofs. Lemma
3.4 is a direct consequence of the well-posedness of the optimal control problem in the
cooperative setting proved in Augeraud-V\'eron, Choquet, and Comte [3] (Theorem
2.6).

Lemma 3.4. For a given pi in Ei, i = 1, 2, there exists a unique pair of functions
(p\ast  - i, c

\ast (t, x; p\ast  - i(t, x; pi), pi)) such that p\ast  - i(t, x; pi) = argmaxq - i\in E - i
J - i(q - i; pi) and

(c\ast (t, x; p\ast  - i(t, x; pi), pi), \phi ) is the weak solution of (2.1)--(2.2), (2.4)--(2.5) associated
with the loads (p\ast  - i, pi).

The Nash equilibrium is defined as the intersection of the reaction functions.

Definition 3.5 (Nash equilibrium). The quadruplet (p\flat 1, p
\flat 
2, c

\flat , \phi ) is a Nash equi-
librium iff:

J1(p
\flat 
1; p

\flat 
2) \geq J1(p1; p

\flat 
2) for all p1 \in E1,(3.6)

J2(p
\flat 
2; p

\flat 
1) \geq J2(p2; p

\flat 
1) for all p2 \in E2,(3.7)

where c\flat = c\flat (\cdot ; p\flat 1, p\flat 2) is the solution given by Lemma 3.1 of the following problem:

R\psi \partial tc
\flat  - div(S(v)\psi \nabla c\flat ) + v \cdot \nabla c\flat =  - r(c\flat ) + p\flat 1\chi \Omega 1 + p\flat 2\chi \Omega 2  - gc\flat + \gamma in \Omega T ,

div(v) = g, v =  - \kappa \nabla \phi in \Omega T ,

S(v)\nabla c\flat \cdot n = 0 on \Gamma 1 \times (0, T ), c\flat = 0 on \Gamma 2 \times (0, T ), c\flat | t=0 = c0 in \Omega ,

v \cdot n =  - \kappa v1 \cdot n on \Gamma 3 \times (0, T ), \phi = \phi b on \Gamma 4 \times (0, T ).
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The main result of the paper is the following existence result.

Theorem 3.6. There exists a Nash equilibrium in the sense of Definition 3.5.

The latter will be completed by a uniqueness result under some additional as-
sumptions in section 5 below. We begin by proving Theorem 3.6 in the next section.

4. Proof of Theorem 3.6. The proof of Theorem 3.6 is based on a fixed
point strategy. Let (p1, p2) \in E1 \times E2. Let p\ast 1 = argmaxq1\in E1J1(q1; p2) and p\ast 2 =
argmaxq2\in E2J2(q2; p1) be uniquely defined by Lemma 3.4. Set c\ast 1(t, x) = c1(t, x; p

\ast 
1, p2),

c\ast 2(t, x) = c2(t, x; p1, p
\ast 
2). We aim at proving that the application \scrC defined by

\scrC : (p1, p2) \in E1 \times E2 \mapsto \rightarrow (p\ast 1, p
\ast 
2) \in E1 \times E2

admits a fixed point.

First of all, we prove that \scrC is continuous for the weak topology of L2(\Omega T ).
Consider a sequence (pn1 , p

n
2 )n\geq 0 of functions in E1 \times E2 such that

pn1 \rightharpoonup p1 and pn2 \rightharpoonup p2 weakly in L2(\Omega T ).(4.1)

They are associated with (p\ast ,n1 , p\ast ,n2 ) := \scrC (pn1 , pn2 ), c
\ast ,n
1 (t, x) = c(t, x; p\ast ,n1 , pn2 ), and

c\ast ,n2 (t, x) = c(t, x; pn1 , p
\ast ,n
2 ), which are, according to Lemmas 3.1 and 3.4, uniquely

defined by

p\ast ,ni = argmax
qi\in Ei

Ji(qi; p
n
 - i),(4.2)

R\psi \partial tc
\ast ,n
i  - div(\psi S(v)\nabla c\ast ,ni ) + v \cdot \nabla c\ast ,ni

=  - r(c\ast ,ni ) + p\ast ,ni \chi \Omega i
+ pn - i\chi \Omega  - i

 - gc\ast ,ni + \gamma in \Omega T ,(4.3)

S(v)\nabla c\ast ,ni \cdot n = 0 on \Gamma 1 \times (0, T ), c\ast ,ni = 0 on \Gamma 2 \times (0, T ), c\ast ,ni | t=0 = c0 in \Omega (4.4)

for i = 1, 2. We have to prove that p\ast ,ni \rightharpoonup p\ast i weakly in L2(\Omega T ), i = 1, 2, where

p\ast i = argmax
qi\in Ei

Ji(qi; p - i)(4.5)

is associated to c\ast i = ci(\cdot ; p\ast i , p - i) solution in \Omega T of

R\psi \partial tc
\ast 
i  - div(\psi S(v)\nabla c\ast i ) + v \cdot \nabla c\ast i =  - r(c\ast i ) + p\ast i\chi \Omega i

+ p - i\chi \Omega  - i
 - gc\ast i + \gamma ,(4.6)

S(v)\nabla c\ast i \cdot n = 0 on \Gamma 1 \times (0, T ), c\ast i = 0 on \Gamma 2 \times (0, T ), c\ast i | t=0 = c0 on \Omega .(4.7)

The first step for proving the desired convergence results consists in stating some
estimates that do not depend on n. Hereafter we denote by C a generic constant
which only depends on the data of the problem, namely, on the coefficients of the
PDEs (2.1)--(2.2), on the initial and boundary data in (2.4)--(2.5), on \=p, and on \Omega and
T . Due to the definition of the admissible control sets Ei, 0 \leq p\ast ,ni \leq \=p a.e. in \Omega T ,
and the following estimates thus hold true:\bigm\| \bigm\| p\ast ,ni

\bigm\| \bigm\| 
L2(\Omega T )

\leq C, i = 1, 2.(4.8)

Multiplying (4.3) by c\ast ,ni , integrating by parts over \Omega \times (0, \tau ), \tau \in (0, T ), and using
(4.4) we get

R

2

\int \tau 

0

d

dt

\int 
\Omega 

\psi 
\bigm| \bigm| c\ast ,ni

\bigm| \bigm| 2 dx dt+ \int \tau 

0

\int 
\Omega 

\psi S(v)\nabla c\ast ,ni \cdot \nabla c\ast ,ni dx dt

+

\int \tau 

0

\int 
\Omega 

(v \cdot \nabla c\ast ,ni )c\ast ,ni dx dt+

\int \tau 

0

\int 
\Omega 

r(c\ast ,ni )c\ast ,ni dx dt

 - 
\int \tau 

0

\int 
\Omega 

(p\ast ,ni \chi \Omega i
+ pn - i\chi \Omega  - i

+ \gamma )c\ast ,ni dx dt+

\int \tau 

0

\int 
\Omega 

g| c\ast ,ni | 2 dx dt = 0.(4.9)
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Our assumptions ensure that\int \tau 

0

\int 
\Omega 

\psi S(v)\nabla c\ast ,ni \cdot \nabla c\ast ,ni dx dt \geq \psi  - 

\int \tau 

0

\int 
\Omega 

(Sm + \alpha T | v| )
\bigm| \bigm| \nabla c\ast ,ni

\bigm| \bigm| 2 dx dt,\int \tau 

0

\int 
\Omega 

\bigm| \bigm| r(c\ast ,ni )c\ast ,ni

\bigm| \bigm| dx dt \leq r+

\int \tau 

0

\int 
\Omega 

\bigm| \bigm| c\ast ,ni

\bigm| \bigm| 2 dx dt,\int \tau 

0

\int 
\Omega 

g| c\ast ,ni | 2 dx dt \geq 0.

Using the Cauchy--Schwarz and Young inequalities, we get\bigm| \bigm| \bigm| \bigm| \int \tau 

0

\int 
\Omega 

(p\ast ,ni \chi \Omega i
+ pn - i\chi \Omega  - i

+ \gamma )c\ast ,ni dx dt

\bigm| \bigm| \bigm| \bigm| \leq 1

2

\int \tau 

0

\int 
\Omega 

(p\ast ,ni \chi \Omega i
+ pn - i\chi \Omega 2

+ \gamma )2 dx dt

+
1

2

\int \tau 

0

\int 
\Omega 

(c\ast ,ni )2 dx dt \leq C + C

\int \tau 

0

\int 
\Omega 

(c\ast ,ni )2 dx dt

and, since v \in (L\infty (\Omega T ))
N ,\bigm| \bigm| \bigm| \bigm| \int \tau 

0

\int 
\Omega 

(v \cdot \nabla c\ast ,ni )c\ast ,ni dx dt

\bigm| \bigm| \bigm| \bigm| \leq \psi  - Sm

2

\int 
\Omega T

\bigm| \bigm| \nabla c\ast ,ni

\bigm| \bigm| 2 dx dt+ C

\int 
\Omega T

\bigm| \bigm| c\ast ,ni

\bigm| \bigm| 2 dx dt.
Inserting the latter estimates in (4.9), we obtain

\psi  - R

2

\int 
\Omega 

\bigm| \bigm| c\ast ,ni (\tau , x)
\bigm| \bigm| 2 dx+

\int \tau 

0

\int 
\Omega 

\psi  - 

\biggl( 
Sm

2
+ \alpha T | v| 

\biggr) \bigm| \bigm| \nabla c\ast ,ni

\bigm| \bigm| 2 dx dt
\leq C

\int \tau 

0

\int 
\Omega 

\bigm| \bigm| c\ast ,ni

\bigm| \bigm| 2 dx dt+ \psi +R

2

\int 
\Omega 

| c0(x)| 2 dx+ C

for any \tau \in (0, T ). We infer from the latter relation and from the Gronwall lemma
that

(4.10)
\bigm\| \bigm\| c\ast ,ni

\bigm\| \bigm\| 
L\infty (0,T ;L2(\Omega ))\cap L2(0,T ;H1(\Omega ))

\leq C, i = 1, 2.

Now, we multiply (4.3) by a test function \varphi \in L2(0, T ;H1
0 (\Omega )). We get

| \langle \psi R\partial tc\ast ,ni , \varphi \rangle L2(0,T ;H - 1(\Omega ))\times L2(0,T ;H1
0 (\Omega ))| =

\bigm| \bigm| \bigm| \bigm| \bigm|  - 
\int T

0

\int 
\Omega 

\psi S(v)\nabla c\ast ,ni \cdot \nabla \varphi dx dt

+

\int T

0

\int 
\Omega 

( - v \cdot \nabla c\ast ,ni ) - r(c\ast ,ni ) + p\ast ,ni \chi \Omega i + pn - i\chi \Omega  - i + \gamma  - gc\ast ,ni )\varphi dx dt

\bigm| \bigm| \bigm| \bigm| \bigm| .
Since v \in (L\infty (\Omega T ))

N , r(c\ast ,ni ) is bounded in L2(\Omega T ) by r+\| c\ast ,ni \| L2(\Omega T ), p \in L\infty (\Omega T ),
and g \in L\infty (\Omega T ); the latter with (4.10) shows that the left-hand side is uniformly
bounded for any \varphi \in L2(0, T ;H1

0 (\Omega )), that is,

(4.11) \| \psi R\partial tc\ast ,ni \| L2(0,T ;H - 1(\Omega )) \leq C, i = 1, 2.

From (4.8)--(4.11), we deduce the existence of limit functions p0i \in L2(\Omega T ) and
c0i \in L2(0, T ;H1(\Omega )) and of a subsequence, not relabeled for convenience, such that

p\ast ,ni \rightharpoonup p0i weakly in L2(\Omega T ), i = 1, 2,

c\ast ,ni \rightarrow c0i in L2(\Omega T ) and a.e. in \Omega T , i = 1, 2,

c\ast ,ni \rightharpoonup c0i weakly in L2(0, T ;H1(\Omega )), i = 1, 2,
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the compactness of c\ast ,ni being established by an Aubin-type argument thanks to (4.11)
and to R\psi \geq R\psi  - > 0 (see Galusinski and Saad [12]).

Bear in mind that we aim to prove that p0i = p\ast i and c0i = c\ast i , i = 1, 2. First of all,
convergence results are sufficient (according to the Lebesgue's dominated convergence
theorem and the continuity of the application c \in \scrC (0, T ;L2(\Omega )) \mapsto \rightarrow c| t=0) to pass to
the limit in the weak formulation of (4.3)--(4.4). According to the uniqueness result
in Lemma (3.1), it means that

c01(\cdot ) = c(\cdot ; p01, p2) and c02(\cdot ) = c(\cdot ; p1, p02).(4.12)

It remains to prove that p0i = p\ast i , i = 1, 2. We will use the limit behavior of the control
problem. The difficulty is that we have no compactness result for p\ast ,ni , whereas it
appears in the nonlinear function fi. Nevertheless we can use convexity arguments.
On the one hand, according to the definition of the optimum p\ast i ,

Ji(p
0
i ; p - i) \leq Ji(p

\ast 
i ; p - i).(4.13)

On the other hand, because of the concavity of fi, we write

Ji(p
0
i ; p - i) =

\int T

0

\biggl( \int 
\Omega i

fi(x, p
0
i ) dx - 

\int 
\Omega 

Di(x, c
0
i ) dx

\biggr) 
e - \rho t dt

 - \nu e - \rho T

\int 
\Omega 

Di(x, c
0
i (T, x)) dx \geq limn\rightarrow \infty 

\int T

0

\int 
\Omega i

fi(x, p
\ast ,n
i )e - \rho t dx dt

 - 
\int T

0

\int 
\Omega 

Di(x, c
0
i )e

 - \rho t dx dt - \nu e - \rho T

\int 
\Omega 

Di(x, c
0
i (T, x)) dx.

Since c\ast ,ni \rightarrow c01 in \scrC ([0, T ];L2(\Omega )) and a.e. in \Omega T , we know, thanks to the smooth-

ness of Di, that
\int T

0

\int 
\Omega 
Di(x, c

0
i )e

 - \rho t dx dt = limn\rightarrow \infty 
\int T

0

\int 
\Omega 
Di(x, c

\ast ,n
i )e - \rho t dx dt and

that \nu e - \rho T
\int 
\Omega 
Di(x, c

0
i (T, x)) dx = limn\rightarrow \infty \nu e - \rho T

\int 
\Omega 
Di(x, c

\ast ,n
i (T, x)) dx. The latter

relation thus also reads

Ji(p
0
i ; p - i) \geq limn\rightarrow \infty 

\int T

0

\biggl( \int 
\Omega i

fi(x, p
\ast ,n
i ) dx - 

\int 
\Omega 

Di(x, c
\ast ,n
i ) dx

\biggr) 
e - \rho t dt

 - limn\rightarrow \infty \nu e
 - \rho T

\int 
\Omega 

Di(x, c
\ast ,n
i (T, x)) dx = limn\rightarrow \infty Ji(p

\ast ,n
i ; pn - i).(4.14)

By definition of the optimum p\ast ,ni , we know that Ji(p
\ast ,n
i ; pn - i) \geq Ji(qi; p

n
 - i) for any

qi \in Ei. It yields in (4.14):

Ji(p
0
i ; p - i) \geq limn\rightarrow \infty 

\Biggl( \int T

0

\Biggl( \int 
\Omega i

fi(x, qi) dx - 
\int 
\Omega 

Di(x, c(t, x; qi, p
n
 - i)) dx

\Biggr) 
e - \rho t dt

 - \nu e - \rho T

\int 
\Omega 

Di(x, c(T, x; qi, p
n
 - i)) dx

\Biggr) 
(4.15)

for all qi \in Ei. We will infer from (4.15) that Ji(p
0
i ; p - i) is an upper bound of

Ji(qi; p - i) for any qi \in Ei. Indeed, we can establish the same estimates for c(\cdot ; qi, pn - i)
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than those proved for c\ast ,ni and conclude that c(\cdot ; qi, pn - i) \rightarrow c(\cdot ; qi, p - i) in L
2(\Omega T ) and

a.e. in \Omega T . Therefore, we are able to compute the following limit:

lim
n\rightarrow \infty 

\Biggl( \int T

0

\Biggl( \int 
\Omega i

fi(x, qi) dx - 
\int 
\Omega 

Di(x, c(t, x; qi, p
n
 - i)) dx

\Biggr) 
e - \rho t dt

 - \nu e - \rho T

\int 
\Omega 

Di(x, c(T, x; qi, p
n
 - i)) dx

\Biggr) 

=

\int T

0

\Biggl( \int 
\Omega 1

fi(x, qi) dx - 
\int 
\Omega 

Di(x, c(t, x; qi, p - i)) dx

\Biggr) 
e - \rho t dt

 - \nu e - \rho T

\int 
\Omega 

Di(x, c(T, x; qi, p - i)) dx = Ji(qi, p - i).

Including this result in (4.15), we get

Ji(p
0
i ; p - i) \geq Ji(qi; p - i) for any qi \in Ei.

In particular, this inequality holds true for qi = p\ast i , that is,

Ji(p
0
i ; p - i) \geq Ji(p

\ast 
i ; p - i).(4.16)

We conclude from (4.13) and (4.16) that Ji(p
0
i ; p - i) = Ji(p

\ast 
i , p - i). Function p

0
i is then

solution of the same optimal control problem than p\ast i . The solution of this problem
being unique (Lemma 3.4) we conclude that

p0i = p\ast i ,

and the sequence p\ast ,ni converges weakly to p\ast i in L2(\Omega T ) for i = 1, 2. The continuity
of \scrC for the weak topology of L2(\Omega T )\times L2(\Omega T ) is proved.

But we also can prove the sequential compactness of the image of \scrC by going on
with the latter sequences and proving that strong convergences actually hold true:

p\ast ,ni \rightarrow p\ast i in L2(\Omega T ), i = 1, 2.

The key argument will be the strict concavity of fi. Knowing that p\ast i = p0i , (4.14)
now reads

Ji(p
\ast 
i ; p - i) \geq limn\rightarrow \infty Ji(p

\ast ,n
i ; pn - i).(4.17)

By definition of p\ast ,ni = argmaxqi\in Ei
Ji(qi; p

n
 - i), we have in particular, since p\ast i \in Ei,

Ji(p
\ast ,n
i ; pn - i) \geq Ji(p

\ast 
i ; p

n
 - i). Thus

limn\rightarrow \infty Ji(p
\ast ,n
i ; pn - i) \geq limn\rightarrow \infty Ji(p

\ast 
i ; p

n
 - i) =

\int T

0

\int 
\Omega i

fi(x, p
\ast 
i )e

 - \rho t dx dt

 - limn\rightarrow \infty 

\Biggl( \int T

0

\int 
\Omega 

Di(x; c(t, x; p
\ast 
i , p

n
 - i))e

 - \rho t dx dt

 - \nu e - \rho T

\int 
\Omega 

Di(x; c(T, x; p
\ast 
i , p

n
 - i)) dx

\Biggr) 
,(4.18)

where c(t, x; p\ast i , p
n
 - i) satisfies

R\psi \partial tc(t, x; p
\ast 
i , p

n
 - i) - div(\psi S(v)\nabla c(t, x; p\ast i , pn - i)) + v \cdot \nabla c(t, x; p\ast i , pn - i) =

 - r(c(t, x; p\ast i , p
n
 - i)) + p\ast i\chi \Omega i

+ pn - i\chi \Omega  - i
 - gc(t, x; p\ast i , p

n
 - i) + \gamma in \Omega T ,

S(v)\nabla c(t, x; p\ast i , pn - i) \cdot n = 0 on \Gamma 1 \times (0, T ), c(t, x; p\ast i , p
n
 - i) = 0 on \Gamma 2 \times (0, T ),
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with c(0, x; p\ast i , p
n
 - i) = c0 in \Omega . Following the lines of the estimates done for c\ast ,ni ,

we show that there exists a subsequence of c(\cdot ; p\ast i , pn - i) which strongly converges in
L2(\Omega T ), a.e. in \Omega T , and weakly in L2(0, T ;H1(\Omega )) to the unique solution of

R\psi \partial tc - div(\psi S(v)\nabla c) + v \cdot \nabla c =  - r(c) + p\ast i\chi \Omega i + p - i\chi \Omega  - i  - gc+ \gamma in \Omega T ,

S(v)\nabla c \cdot n = 0 on \Gamma 1 \times (0, T ), c = 0 on \Gamma 2 \times (0, T ), with c| t=0 = c0 in \Omega ,

that is,
c(\cdot ; p\ast i , pn - i) \rightarrow c(\cdot ; p\ast i , p - i) in L

2(\Omega T ) and a.e. in \Omega T .

Thanks to the hemicontinuity of Di, i = 1, 2, it follows that

(4.19) limn\rightarrow \infty Ji(p
\ast ,n
i ; pn - i) \geq Ji(p

\ast 
i ; p - i).

From (4.17) and (4.19), we get

Ji(p
\ast 
i ; p - i) = lim

n\rightarrow \infty 
Ji(p

\ast ,n
i ; pn - i).(4.20)

We can also prove that c(\cdot ; p\ast ,ni , pn - i) \rightarrow c(\cdot ; p\ast i , p - i) in L2(\Omega T ) and a.e. in \Omega T , and
according to the hemicontinuity of Di, as n\rightarrow \infty ,\int 

\Omega T

Di(x, c(t, x; p
\ast ,n
i , pn - i))e

 - \rho t dx dt\rightarrow 
\int 
\Omega T

Di(x, c(t, x; p
\ast 
i , p - i))e

 - \rho t dx dt,\int 
\Omega 

Di(x, c(T, x; p
\ast ,n
i , pn - i))e

 - \rho T dx\rightarrow 
\int 
\Omega 

Di(x, c(T, x; p
\ast 
i , p - i))e

 - \rho T dx.

Thus from (4.20) we get

lim
n\rightarrow \infty 

\int T

0

\int 
\Omega i

fi(x, p
\ast ,n
i )e - \rho t dx dt =

\int T

0

\int 
\Omega i

fi(x, p
\ast 
i )e

 - \rho t dx dt.

Function fi being continuous and strictly concave, we infer from the latter relation
and Theorem 3 in Visintin [22] that

p\ast ,ni \rightarrow p\ast i in L2(\Omega i \times (0, T )), i = 1, 2.

We have proved that \scrC is a compact application in L2(\Omega T )\times L2(\Omega T ).

Finally, the Schauder fixed point theorem applies: there exists (p\flat 1, p
\flat 
2) \in E1 \times E2

such that
\scrC (p\flat 1, p\flat 2) = (p\flat 1, p

\flat 
2).

By definition of \scrC , it satisfies\Biggl\{ 
p\flat 1 = argmaxq1\in E1

J1(q1; p
\flat 
2) then J1(p

\flat 
1; p

\flat 
2) \geq J1(q1; p

\flat 
2) for all q1 \in E1,

p\flat 2 = argmaxq2\in E2
J2(q2; p

\flat 
1) then J2(p

\flat 
2; p

\flat 
1) \geq J2(q2; p

\flat 
1) for all q2 \in E2.

Thus (p\flat 1, p
\flat 
2) is a Nash equilibrium. This ends the proof of Theorem 3.6.

5. Characterization of a Nash equilibrium by the adjoint problem: A
uniqueness result. In view of the nonlinearities in the problem, both in the ob-
jective functions and in the state equation, proving a uniqueness result for the Nash
equilibrium is a complex issue. We turn to another formulation of (3.6)--(3.7) by de-
riving the adjoint problems associated with the reaction functions given in Definition
3.3. Such a Pontryagin approach allows us to characterize a Nash equilibrium by
a PDE's problem but at the cost of some additional assumptions on the objective
functions. Notice that all the assumptions listed in subsection 3.1 remain.
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1678 AUGERAUD-V\'ERON, CHOQUET, COMTE, DI\'EDHIOU

5.1. Optimality conditions. First we derive the adjoint problem satisfied by
a Nash equilibrium.

Lemma 5.1. Assume that fi: p \in [0, \=p] \mapsto \rightarrow fi(x, p) and c \in \BbbR + \mapsto \rightarrow Di(x, c),
i = 1, 2, are \scrC 1 functions for almost every x \in \Omega . Let (p\flat 1, p

\flat 
2) be a Nash equilib-

rium defined by Definition 3.5. Let c\flat (t, x) = c(t, x; p\flat 1, p
\flat 
2). There exists (\mu \flat 

1, \mu 
\flat 
2) \in 

(L2(0, T ;H1(\Omega )))2 such that for i = 1, 2

\partial fi
\partial p

(x, p\flat i(t, x)) = \mu \flat 
i(t, x)\chi \Omega i

(x) in \Omega T ,(5.1)

R\psi \partial t\mu 
\flat 
i + v \cdot \nabla \mu \flat 

i + div(\psi S(v)\nabla \mu \flat 
i) = r\prime (c\flat )\mu \flat 

i +R\mu \flat 
i\psi \rho  - 

\partial Di

\partial c
(x, c\flat ) in \Omega T ,(5.2) \bigl( 

\psi S(v)\nabla \mu \flat 
i + \mu \flat 

i(\chi \Gamma 4
v  - \chi \Gamma 3

\kappa v1)
\bigr) 
\cdot n = 0 on \Gamma 1 \times (0, T ), \mu \flat 

i = 0 on \Gamma 2 \times (0, T ),(5.3)

R\psi \mu \flat 
i(T, x) = \nu 

\partial Di

\partial c
(x, c\flat (T, x)) in \Omega .(5.4)

Proof. The proof relies on the fact that a Nash equilibrium corresponds to an
intersection of the optimality conditions associated to the players' reaction functions
of Definition 3.3. Let \lambda 1 (resp., \lambda 2) be the adjoint variable associated with the state
variable c for the first (resp., second) reaction function. The corresponding Lagrangian
functions are, for i = 1, 2,

\scrL i(c, pi, \lambda i) = Ji(pi; p
\flat 
 - i, c) +

\int T

0

\int 
\Omega 

\bigl( 
R\psi \partial tc+ v \cdot \nabla c - div(\psi S(v)\nabla c) + r(c)

+gc - pi\chi \Omega i
 - p\flat  - i\chi \Omega  - i

 - \gamma 
\bigr) 
\lambda i dx dt.

Using the relation (v \cdot \nabla c)\lambda i = (div(vc) - cdiv(v))\lambda i, bearing in mind that div v = g,
integrating by parts, and using Fubini's theorem, we get the following form of \scrL i:

\scrL i(c, pi, \lambda i) =

\int T

0

\int 
\Omega i

fi(x, pi(t, x))e
 - \rho t dx dt - 

\int T

0

\int 
\Omega 

Di(x, c(t, x; pi, p
\flat 
 - i))e

 - \rho t dx dt

 - \nu e - \rho T

\int 
\Omega 

Di(x, c(T, x; pi, p
\flat 
 - i))) dx+

\int T

0

\int 
\Omega 

( - R\psi \partial t\lambda ic - (v \cdot \nabla \lambda i)c

+\psi S(v)\nabla c \cdot \nabla \lambda i + r(c)\lambda i) dx dt - 
\int T

0

\int 
\Omega 

(pi\chi \Omega i + p\flat  - i\chi \Omega  - i + \gamma )\lambda i dx dt

+R

\int 
\Omega 

\psi c(T, x)\lambda i(T, x) dx - R\psi 

\int 
\Omega 

c0(x)\lambda i(0, x) dx

 - 
\int T

0

\int 
\Gamma 2

(\psi S(v)\nabla c \cdot n)\lambda id\sigma dt+
\int T

0

\int 
\Gamma 1

\lambda ic(\chi \Gamma 4
v  - \chi \Gamma 3

\kappa v1) \cdot nd\sigma dt.

We compute its variations using Taylor's first order formula for the nonlinearities.
Since S(v) is symmetric, we obtain

\delta \scrL i(c, pi, \lambda i) =

\int T

0

\int 
\Omega i

\biggl( 
\partial fi
\partial p

(x, pi(t, x))e
 - \rho t  - \lambda i

\biggr) 
\delta pi dx dt

+

\int 
\Omega 

\biggl( 
R\psi \lambda i(T, x) - \nu 

\partial Di

\partial c
(x, c(T, x; pi, p

\flat 
 - i))e

 - \rho T

\biggr) 
\delta c(T, x) dx

D
ow

nl
oa

de
d 

09
/0

8/
22

 to
 1

47
.2

10
.5

0.
10

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GAME THEORY AND GROUNDWATER POLLUTION CONTROL 1679

+

\int T

0

\int 
\Omega 

\biggl( 
 - R\psi \partial t\lambda i  - v \cdot \nabla \lambda i + r\prime (c)\lambda i  - 

\partial Di

\partial c
(x, c(t, x; pi, p

\flat 
 - i))e

 - \rho t

\biggr) 
\delta c dx dt

 - 
\int T

0

\int 
\Omega 

div(\psi S(v)\nabla \lambda i)\delta c dx dt - 
\int T

0

\int 
\Gamma 2

(\psi S(v)\delta (\nabla c) \cdot n)\lambda id\sigma dt

+

\int T

0

\int 
\Gamma 1

(\psi S(v)\nabla \lambda i) \cdot n\delta cd\sigma dt+
\int T

0

\int 
\Gamma 1

\lambda i\delta c(\chi \Gamma 4
v  - \chi \Gamma 3

v1) \cdot nd\sigma dt.

Set \mu \flat 
i(t, x) = \lambda i(t, x)e

\rho t for (t, x) \in \Omega T . Canceling the Lagrangian variations with
respect to c(T, x), to the control pi, and to the state variable c, respectively, provides
the terminal condition (5.4), the optimality condition (5.1), the adjoint equation (5.2),
and the boundary conditions (5.3).

Adjoint equation (5.2) is antidiffusive. However, it is well-posed according to
its terminal condition (5.4). We define the time reversal operator \scrC T : L1(0, T ) \rightarrow 
L1(0, T ) and the functions Fi : f

\prime 
i([0, \=p]) \rightarrow [0, \=p], i = 1, 2, by

\scrC Tu(t) = u(T  - t) for t \in [0, T ],
\partial fi
\partial p

(x, Fi(y)) = y.

The existence of Fi is ensured by the strict concavity assumption on p \mapsto \rightarrow fi(\cdot , p). Using
the latter notations, the state system (2.1)--(2.4) and Lemma 5.1, a Nash equilibrium
is now characterized by the following PDE's problem.

Definition 5.2 (adjoint problem \scrP adj). Problem \scrP adj consists in finding
(c\flat , \mu \flat 

1, \mu 
\flat 
2) satisfying

R\psi \partial tc
\flat + v \cdot \nabla c\flat  - div(\psi S(v)\nabla c\flat ) =  - r(c\flat ) - gc\flat + \chi \Omega 1

F1(\chi \Omega 1
\scrC T\mu \flat 

1)

+\chi \Omega 2
F2(\chi \Omega 2

\scrC T\mu \flat 
2) + \gamma in \Omega T ,(5.5)

S(v)\nabla c\flat \cdot n = 0 on \Gamma 1 \times (0, T ), c\flat = 0 on \Gamma 2 \times (0, T ), c\flat | t=0 = c0 in \Omega ,(5.6)

R\psi \partial t\mu 
\flat 
i  - \scrC T v \cdot \nabla \mu \flat 

i  - div(\psi S(\scrC T v)\nabla \mu \flat 
i) + r\prime (\scrC T c\flat )\mu \flat 

i +R\psi \rho \mu \flat 
i

 - \partial Di

\partial c
(\cdot , \scrC T c\flat ) = 0 in \Omega T , i = 1, 2,(5.7) \bigl( 

\psi S(\scrC T v)\nabla \mu \flat 
i + \mu \flat 

i(\chi \Gamma 4
\scrC T v  - \chi \Gamma 3

\kappa \scrC T v1)
\bigr) 
\cdot n = 0 on \Gamma 1 \times (0, T ),

\mu \flat 
i = 0 on \Gamma 2 \times (0, T ), i = 1, 2,(5.8)

R\psi \mu \flat 
i | t=0 = \nu 

\partial Di

\partial c
(\cdot , c\flat | t=T ), i = 1, 2,(5.9)

where v is the solution of (2.2) and (2.5).

We state and prove the following existence result of a weak solution for problem
\scrP adj.

Proposition 5.3. There exists a weak solution (c\flat , \mu \flat 
1, \mu 

\flat 
2) of problem \scrP adj be-

longing to (\scrC ([0, T ];L2(\Omega )) \cap L2(0, T ;H1(\Omega )) \cap H1(0, T ;H - 1(\Omega )))3. Moreover, if
c \in \BbbR + \mapsto \rightarrow Di(x, c) is an increasing function a.e. in \Omega T , then \mu \flat 

i \geq 0 a.e. in \Omega T ,
i = 1, 2.

Proof. The existence result for such a system of parabolic equations coupled by
continuous and bounded nonlinearities is classical. Its proof, for instance, using a
fixed point approach after the linearization of (5.5)--(5.9), is thus not detailed. We
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1680 AUGERAUD-V\'ERON, CHOQUET, COMTE, DI\'EDHIOU

check the nonnegativity of \mu \flat 
i . Let \mu  - = sup( - \mu \flat 

i , 0). We multiply (5.7) by \mu  - , and
we integrate by parts over \Omega \tau = \Omega \times (0, \tau ) with \tau \in (0, T ). We obtain

R

2

\int 
\Omega 

\psi | \mu  - | 2 dx+

\int 
\Omega \tau 

(\scrC T v \cdot \nabla \mu \flat 
i)\mu 

 - dxdt+

\int 
\Omega \tau 

\psi  - Sm| \nabla \mu  - | 2 dx dt

+

\int 
\Omega \tau 

\bigl( 
r\prime (c\flat ) +R\psi \rho 

\bigr) 
| \mu  - | 2 dxdt+

\int 
\Omega \tau 

\partial Di

\partial c
(\scrC T c\flat )\mu  - dx dt \leq R

2

\int 
\Omega 

\psi | \mu  - 
| t=0| 

2 dx

 - 
\int \tau 

0

\int 
\Gamma 1

\Bigl( 
(\scrC T v \cdot n)\chi \Gamma 4

 - (\kappa \scrC T v1 \cdot n)\chi \Gamma 3

\Bigr) 
| \mu  - | 2 ds dt.(5.10)

Notice that \mu  - 
| t=0 = 0 because we assume here that \partial cDi is a nonnegative function.

Moreover, integrating by parts and using \scrC T v \cdot \nabla \mu \flat 
i = div(\scrC T v\mu \flat 

i)  - \mu \flat 
idiv(\scrC T v), we

compute\int 
\Omega \tau 

(\scrC T v \cdot \nabla \mu \flat 
i)\mu 

 - dxdt =

\int 
\Omega \tau 

div(\scrC T v\mu \flat 
i)\mu 

 - dx dt+

\int 
\Omega \tau 

g| \mu  - | 2 dx dt

=

\int 
\Omega \tau 

(\scrC T v \cdot \nabla \mu  - )\mu  - dx dt+

\int 
\Omega \tau 

g| \mu  - | 2 dx dt

 - 
\int \tau 

0

\int 
\Gamma 1

\Bigl( 
(\scrC T v \cdot n)\chi \Gamma 4

 - (\kappa \scrC T v1 \cdot n)\chi \Gamma 3

\Bigr) 
| \mu  - | 2 ds dt,

where
\int 
\Omega \tau 
g| \mu  - | 2 dx dt \geq 0 and\bigm| \bigm| \bigm| \bigm| \int 

\Omega \tau 

(\scrC T v \cdot \nabla \mu  - )\mu  - dx dt

\bigm| \bigm| \bigm| \bigm| \leq \int 
\Omega \tau 

\psi  - Sm

2
| \nabla \mu  - | 2 dx dt+ C

\int 
\Omega \tau 

| \mu  - | 2 dx dt

since v belongs to (L\infty (\Omega T ))
N . The other terms in (5.10) satisfy

\int 
\Omega \tau 
R\psi \rho | \mu  - | 2dxdt \geq 

0,
\int 
\Omega \tau 

\partial Di

\partial c (\scrC T c\flat )\mu  - dxdt \geq 0, and | 
\int 
\Omega \tau 
r\prime (c\flat )| \mu  - | 2dxdt| \leq r+

\int 
\Omega \tau 

| \mu  - | 2dxdt. Inserting
all the latter estimates in (5.10), we obtain

R

2

\int 
\Omega 

\psi  - | \mu  - | 2 dx+

\int 
\Omega \tau 

\psi  - Sm

2
| \nabla \mu  - | 2 dx dt \leq C

\int 
\Omega \tau 

| \mu  - | 2 dx dt

for any \tau \in (0, T ). We conclude with the Gronwall lemma that
\int 
\Omega T

| \mu  - | 2dxdt = 0;

thus sup( - \mu \flat 
i , 0) = 0 a.e. in \Omega T . This ends the proof of the result.

5.2. A uniqueness result for the Nash equilibrium. According to Lemma
5.1, the uniqueness of the Nash equilibrium will be ensured by a uniqueness result
for the solution of problem \scrP adj given in Proposition 5.3. We state and prove the
following result.

Theorem 5.4. Assume that \mu \flat 
i given in Proposition 5.3 belongs to L\infty (\Omega T ) for

i = 1, 2. Assume that the functions r\prime , Fi, and \partial cDi, i = 1, 2, are Lipschitz continu-
ous. Then the solution of problem \scrP adj is unique.

Theorem 5.4 is based on the assumption that \mu \flat 
i given in Proposition 5.3 belongs

to L\infty (\Omega T ) for i = 1, 2. We claim that it makes sense because this assumption may
hold in a variety of settings. An example is the following.

Assuming c \in \BbbR + \mapsto \rightarrow Di(x, c) is an increasing function a.e. in \Omega T , we have already
seen in Proposition 5.3 that \mu \flat 

i \geq 0 a.e. in \Omega T , i = 1, 2. Assume moreover that \kappa v1\cdot n \leq 
0 and \Gamma 4 = \emptyset (which means that pollution is trapped in the domain), or assume that
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\Gamma 1 = \emptyset . Assume that there exists \mu max \in \BbbR + such that \nu \partial cDi(x, c) \leq \mu max and
(g(t, x)  - r\prime (c) + \rho )\mu max  - \partial cDi(x, c) \geq 0 for any c \in \BbbR + and for a.e. (t, x) \in \Omega T .
Then 0 \leq \mu \flat 

i(t, x) \leq \mu max for a.e. (t, x) \in \Omega T .
For proving this boundedness result, notice that \mu \flat 

i  - \mu max solves the following
problem:

R\psi \partial t(\mu 
\flat 
i  - \mu max) - \scrC T v \cdot \nabla (\mu \flat 

i  - \mu max) - div(\psi S(\scrC T v)\nabla (\mu \flat 
i  - \mu max)) + r\prime (\scrC T c)\mu max

+r\prime (\scrC T c)(\mu \flat 
i  - \mu max) +R\psi \rho (\mu \flat 

i  - \mu max) +R\psi \rho \mu max  - \partial cDi(x, \scrC T c) = 0 in \Omega T ,

max(0, \mu \flat 
i  - \mu max)| t=0 = 0 in \Omega ,

\psi S(\scrC T v)\nabla (\mu \flat 
i  - \mu max) \cdot n+

\bigl( 
(\scrC T v \cdot n)\chi \Gamma 4

 - (\kappa \scrC T v \cdot n)\chi \Gamma 3

\bigr) 
\mu \flat 
i = 0 on \Gamma 1 \times (0, T ),

max(0, \mu \flat 
i  - \mu max) = max(0, - \mu max) = 0 on \Gamma 2 \times (0, T ),

the initial condition being given by the additional assumption on \nu \partial cDi. Then mul-
tiply the first equation by \mu + := max(0, \mu \flat 

i  - \mu max), and integrate by parts over
\Omega \times (0, \tau ), \tau \in (0, T ). Similar computations to those in the proof of the nonnegativity
of \mu \flat 

i given for Proposition 5.3 then give the result.

Proof of Theorem 5.4. The difficulty lies in the strong nonlinear coupling between
(5.5) and (5.7). It appears in particular that the nonlinearities do not allow in general
the use of the Gronwall lemma for proving the uniqueness result. Indeed, the Gronwall
lemma gives an estimate that only depends on the initial value of a functional iff this
functional only appears at the power one and uncoupled from the other unknowns in
the estimates. Here we thus begin by proving the uniqueness for small times. Then
we will check that the argument may be reiterated until the complete time interval of
study is covered.

For the Lipschitz-type assumptions in Theorem 5.4, we introduce the following
notation: If function \ell is Lipschitz continuous, we denote by \ell + the real number
such that | \ell (x)  - \ell (y)| \leq \ell +| x  - y| for any (x, y). Assume now that there exist
two solutions, (c, \mu 1, \mu 2) and (c, \mu 

1
, \mu 

2
) of problem \scrP adj. Their difference solves the

following problem:

R\psi \partial t(c - c) + v \cdot \nabla (c - c) - div(\psi S(v)\nabla (c - c)) =  - (r(c) - r(c))

 - g(c - c) +
\sum 
i=1,2

\chi \Omega i

\bigl( 
Fi(\scrC T\mu i) - Fi(\scrC T\mu i

)
\bigr) 
in \Omega T ,(5.11)

\psi S(v)\nabla (c - c) \cdot n = 0 on \Gamma 1 \times (0, T ), c - c = 0 on \Gamma 2 \times (0, T ),(5.12)

(c - c)| t=0 = 0 in \Omega ,(5.13)

R\psi \partial t(\mu i  - \mu 
i
) - \scrC T v \cdot \nabla (\mu i  - \mu 

i
) - div(\psi S(\scrC T v)\nabla (\mu i  - \mu 

i
))

+r\prime (\scrC T c)(\mu i  - \mu 
i
) +

\bigl( 
r\prime (\scrC T c) - r\prime (\scrC T c)

\bigr) 
\mu 
i
+R\psi \rho (\mu i  - \mu 

i
)

 - 
\bigl( 
\partial cDi(x, \scrC T c) - \partial cDi(x, \scrC T c)

\bigr) 
= 0 in \Omega T ,(5.14)

\psi S(\scrC T v)\nabla (\mu i  - \mu 
i
) \cdot n+ (\scrC T v \cdot n)\chi \Gamma 4

(\mu i  - \mu 
i
)

 - (\kappa \scrC T v1 \cdot n)\chi \Gamma 3
(\mu i  - \mu 

i
) = 0 on \Gamma 1 \times (0, T ),

\mu i = \mu 
i
on \Gamma 2 \times (0, T ),(5.15)

(\mu i  - \mu 
i
)| t=0 = \nu \partial cDi(x, c| t=T ) - \nu \partial cDi(x, c| t=T ) in \Omega .(5.16)

Let T0 \in (0, T ) and \tau \in (0, T0). First, multiply (5.11) by (c - c), and integrate by parts
over \Omega \tau = \Omega \times (0, \tau ). Using the Cauchy--Schwarz and Young inequalities, bearing in
mind the assumptions, we get the following estimate:
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R\psi  - 

2

\int 
\Omega 

(c - c)2| t=\tau dx+
\psi  - Sm

2

\int 
\Omega \tau 

| \nabla (c - c)| 2 dx dt

\leq 
\biggl( 

\| v\| 2\infty 
2\psi  - Sm

+ r+ + 1

\biggr) 
T0 sup

[0,T0]

\int 
\Omega 

(c - c)2| t=\tau dx

+
F 2
i,+T0

2

\sum 
i=1,2

sup
[0,T0]

\int 
\Omega 

| \mu i  - \mu 
i
| 2 dx.(5.17)

Next, multiply (5.14) by (\mu i  - \mu 
i
), and integrate by parts over \Omega \tau . Once again, using

the Cauchy--Schwarz and Young inequalities, we get the following estimate:

R\psi  - 

2

\int 
\Omega 

(\mu i  - \mu 
i
)2| t=\tau dx+ \psi  - Sm

\int 
\Omega \tau 

| \nabla (\mu i  - \mu 
i
)| 2 dx dt+

\int 
\Omega \tau 

R\psi \rho | \mu i  - \mu 
i
| 2 dx dt

+

\int \tau 

0

\int 
\Gamma 1

((\scrC T v  - \kappa \scrC T v1) \cdot n) | \mu i  - \mu 
i
| 2 ds dt

\leq 
\int 
\Omega \tau 

(\scrC T v \cdot \nabla (\mu i  - \mu 
i
))(\mu i  - \mu 

i
) dx dt+

R\psi +\nu 

2

\int 
\Omega 

| (\partial cDi(c| t=T ) - \partial cDi(c| t=T )| 2 dx

+

\biggl( 
r+ +

\| \mu i\| \infty r\prime +
2

+
(\partial cDi)+

2

\biggr) 
T0 sup

[0,T0]

\int 
\Omega 

| \mu i  - \mu 
i
| 2 dx

+

\biggl( 
\| \mu i\| \infty r\prime +

2
+

(\partial cDi)+
2

\biggr) 
T0 sup

[0,T0]

\int 
\Omega 

| c - c| 2 dx,(5.18)

where, since \scrC T v \cdot \nabla (\mu i  - \mu 
i
) = div

\bigl( 
\scrC T v(\mu i  - \mu 

i
)
\bigr) 
 - (\mu i  - \mu 

i
)div(\scrC T v),\int 

\Omega \tau 

(\scrC T v \cdot \nabla (\mu i  - \mu 
i
))(\mu i  - \mu 

i
) dx dt =

\int 
\Omega \tau 

div
\bigl( 
\scrC T v(\mu i  - \mu 

i
)
\bigr) 
(\mu i  - \mu 

i
) dx dt

 - 
\int 
\Omega \tau 

g| \mu i  - \mu 
i
| 2 dx dt =  - 

\int 
\Omega \tau 

(\mu i  - \mu 
i
)
\bigl( 
\scrC T v \cdot \nabla (\mu i  - \mu 

i
)
\bigr) 
dx dt

+

\int \tau 

0

\int 
\Gamma 1

\bigl( 
(\scrC T v  - \kappa \scrC T v1) \cdot n

\bigr) 
| \mu i  - \mu 

i
| 2 ds dt - 

\int 
\Omega \tau 

g| \mu i  - \mu 
i
| 2 dx dt

and \bigm| \bigm| \bigm| \bigm| \int 
\Omega \tau 

(\mu i  - \mu 
i
)
\bigl( 
\scrC T v \cdot \nabla (\mu i  - \mu 

i
)
\bigr) 
dx dt

\bigm| \bigm| \bigm| \bigm| \leq \psi  - Sm

2

\int 
\Omega \tau 

| \nabla (\mu i  - \mu 
i
)| 2 dx dt

+
\| v\| 2\infty 
2\psi  - Sm

T0 sup
[0,T0]

\int 
\Omega 

| \mu i  - \mu 
i
| 2 dx dt.

Using the two latter relations in (5.18), we obtain

R\psi  - 

2

\int 
\Omega 

(\mu i  - \mu 
i
)2| t=\tau dx+

\psi  - Sm

2

\int 
\Omega \tau 

| \nabla (\mu i  - \mu 
i
)| 2 dx dt

\leq 
\biggl( 
r+ +

\| \mu i\| \infty r\prime +
2

+
(\partial cDi)+

2
+

\| v\| 2\infty 
2\psi  - Sm

+ \| g\| \infty 
\biggr) 
T0 sup

[0,T0]

\int 
\Omega 

| \mu i  - \mu 
i
| 2 dx

+

\biggl( 
\| \mu i\| \infty r\prime +

2
+

1

2
(1 +R\psi +\nu )(\partial cDi)+

\biggr) 
T0 sup

[0,T0]

\int 
\Omega 

| c - c| 2 dx.(5.19)
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We pass to the sup in the sum of relations (5.17) and (5.19). We obtain

R\psi  - 

2
 - T0

\biggl( 
\| v\| 2\infty 
2\psi  - Sm

+ r+ + 1 + \| \mu i\| \infty r\prime + + (1 +R\psi +\nu )(\partial cDi)+

\biggr) 
sup
[0,T0]

\int 
\Omega 

| c - c| 2 dx

+
\sum 
i=1,2

\Biggl( 
R\psi  - 

2
 - T0

\Biggl( 
F 2
i,+

2
+ r+ +

\| \mu i\| \infty r\prime +
2

+
(\partial cDi)+

2
+

\| v\| 2\infty 
2\psi  - Sm

+ \| g\| \infty 

\Biggr) \Biggr) 

\times sup
[0,T0]

\int 
\Omega 

| \mu i  - \mu 
i
| 2 dx+

\psi  - Sm

2

\int 
\Omega T0

\left(  | c - c| 2 dx dt+
\sum 
i=1,2

| \mu i  - \mu 
i
| 2
\right)  dx dt

\leq 0.

We conclude that c = c and \mu i = \mu 
i
, i = 1, 2, a.e. in \Omega \times (0, T0) if T0 is such that

T0 < T+ :=
R\psi  - 

2
min

\Biggl\{ \biggl( 
\| v\| 2\infty 
2\psi  - Sm

+ r+ + 1 + \| \mu i\| \infty r\prime + + (1 +R\psi +\nu )(\partial cDi)+

\biggr)  - 1

;

\Biggl( 
F 2
i,+

2
+ r+ +

\| \mu i\| \infty r\prime +
2

+
(\partial cDi)+

2
+

\| v\| 2\infty 
2\psi  - Sm

+ \| g\| \infty 

\Biggr)  - 1
\right\}   

Finally, we can extend this uniqueness result in the small, for instance, from [0, T+/2]
to [0, T+] by choosing the values (c  - c)t=T+/2 = 0 and (\mu i  - \mu 

i
)t=T+/2 = 0, i =

1, 2, as new initial conditions and by using the same arguments in [T+/2, T+]. We
reiterate until covering the whole [0, T ]. The global uniqueness result of Theorem 5.4 is
proved.

6. Numerical illustrations. This last section is devoted to the presentation
of some numerical illustrations in the context of agricultural pollution due to fertil-
ization. Although we had to limit ourselves to a few examples of situations, they
help to get insight into the applicability of the previous theoretical results. We adapt
the tools developed in [8] for the numerical simulation of optimal control problems
linked with groundwater pollution. More precisely, we compute the solution of (5.5)--
(5.9) using a finite volume scheme based on a two-point flux approximation with
upwind mobilities embedded in an iterative fixed point approximation. The time and
space steps characterizing the discretization of the PDEs model have been fixed at
10 - 2.

The aquifer is figured by the parallelepiped (x, y) \in ]0, 900[2, z \in ]  - 9, 0[; the
values are given here in meters. Indeed most of the groundwater reservoirs are thin
geological formations. The players are two farmers who equally own the field above
the aquifer: ]0, 450[\times ]0, 900[ for Player 1, [450, 900[\times ]0, 900[ for Player 2. One or
two water production wells are located on the parcel on the line y = 450. We will
study the influence of their positions on the results. The duration of the experi-
ment is 100 days which corresponds to the fertilizer application period for most cereal
crops. The physical parameters have been chosen in agreement with the classical
literature (see, for instance, Bear [5]). The soil is characterized by the parameters
\kappa = 39.04 m\cdot day - 1 and \psi = 0.3. In such a shallow aquifer the fluid displace-
ment is essentially horizontal. For ensuring the interpretability of the results, the
fluid velocity equation (2.2) is completed by boundary conditions that are homoge-
neous, except at the left and right boundaries, x = 0 and x = 900, leading to a
quasi-horizontal flow from left to right (see Figure 1) with a Darcy velocity of the

D
ow

nl
oa

de
d 

09
/0

8/
22

 to
 1

47
.2

10
.5

0.
10

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1684 AUGERAUD-V\'ERON, CHOQUET, COMTE, DI\'EDHIOU

Fig. 1. Representation of the Darcy velocity in the aquifer rescaled into the hypercube [0, 1]3

for the readability.

order of 600 m\cdot year - 1. Such a value is in the low range of the usual water displace-
ment speed in porous media. It has been chosen to illustrate that the dynamics
of the underground water, even if it is very slow, has a great influence on the re-
sults.

The water diffusion is given by Sm = 9.4 \cdot 10 - 8 m2\cdot s - 1. The P\'eclet number is
thus of about 600, and the horizontal dispersion is thus dominant (see [9]). We set
\alpha L = 5 \cdot 10 - 2 m. We choose the example of nitrates fertilization. Nitrates are known
to easily leach with water: they are almost not adsorbed by the soil, and we thus set
R = 1. For the reaction term r, we use the function r(c) = 10 - 3c2. The natural input
is \gamma = 0.05 mg\cdot L - 1s - 1 and g = 0.005 s - 1. The initial condition is c0 = 5 mg\cdot L - 1.
The benefit function is the same for both farmers, namely,

f(p) =

\left\{   K1  - K2K310
 - 4e - K3 \=pe - 104p  - K2 +K2K3 if p < 0,

K1  - K2e
 - K3p if p \in [0, 2\=p],

K1  - K2K310
 - 4e - 2K3 \=p(e10

4(2\=p - p)  - 1) - K2e
 - 2K3 \=p if p > 2\=p,

with K1 = 11.7888, K2 = 8.6 \cdot 10 - 3, K3 = 50.465, and \=p = 1.5. It comes from Godart
et al. [14], where the crop yield is depending on the yield value without nitrogen
input and the asymptotic value when the input becomes important. Values of the
parameters depend on the crop species. Here we choose the example of wheat crops.
Notice that the Godard function has been modified for ensuring that the fertilizer
load p remains in the interval [0, \=p] without using a truncated function so that the
functions F1 and F2 in the adjoint problem \scrP adj are well defined. The cost functions,
on the other hand, are differentiated among farmers by a parameter that allows the
pollution cost to be distributed unequally:

Di(c) = \omega iD(c), i = 1, 2, with D(c) = 100 c2\chi wells, \omega 2 = 1 - \omega 1, \omega 1 \in [0, 1].

The other parameters in the functionals Ji, i = 1, 2, are \nu = 1 and \rho = 0.05.
The first illustrations are given in Figures 2 and 3. We chose a situation where

only geography, i.e., the position of the well(s) on the land, differentiates the farm-
ers. The cost and benefit functions are the same for both players. Consider first
the images in line 3. The first observation is that having the well in the heart
of one's property is obviously penalizing from the point of view of spreading (ob-
serve the figure in column 2). But above all, by comparing column 1 and col-
umn 2, we can see that the displacement of water in the subsoil, even if it is very
slow, has a real influence: farmer 1 is indeed very penalized because all that he
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Field 1         Field 2 Field 1    Field 2 Field 1    Field 2

Fig. 2. Influence of the position of the water production wells on the Nash equilibrium: fertilizer
load (p\flat 1, p

\flat 
2) on the line y = 450 as a function of time. Line 1: illustration of the position of the

well(s). Line 2: cooperative case. Line 3: noncooperative case, with equal distribution of the cost
between the two farmers (\omega 1 = 0.5). The blue lines figure the border of the well. The yellow line at
x = 450 m has been added to enhance the nonsymmetry of the results. The color bar gives the value
of the pollution flux on the surface.

spreads is directed toward the well (observe the figure in column 1). These con-
straints tend to decrease with time (observe the decrease of the blue area in the
figures) because we consider the problem in finite time and the exponential with
the discounting parameter \rho in Definition (2.6), even if it is small, has a real influ-
ence.

Figures 2 and 3 also compare the cooperative and noncooperative cases. The
cooperative case actually requires considering the problem in the case where one
farmer owns the entire area ]0, 900[\times ]0, 900[. The problem then comes back to the
classical optimal control problem, the aim being to maximize the functional J defined
by

J(p1, p2, c(\cdot ; p1, p2)) =  - \nu e - \rho T

\int 
\Omega 

D(x, c(T, x; p1, p2)) dx

+

\int T

0

\Biggl( \int 
\Omega 

\Biggl( 
2\sum 

i=1

fi(x, pi(t, x))\chi \Omega i
(x) - D((x, c(t, x; p1, p2))

\Biggr) 
dx

\Biggr) 
e - \rho t dt.(6.1)

Using the adjoint approach, one may compute that the solution of the latter problem
is given by

p =
\sum 
i

\chi Si
(f \prime i)

 - 1(\chi Si
\mu ),
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Fig. 3. Optimal control (cooperative case) versus game theory: comparison of the values of the
objectives for one well in the middle of the field, one well in the right part of the field, and two wells
(see the illustration of the settings in line 1 of Figure 2). The difference of the objectives values at
the last iteration is explicitly given at the top of each figure.

where \mu satisfies

R\psi \partial tc+ v \cdot \nabla c - div(\psi S(v)\nabla c) =  - r(c) - gc+ p+ \gamma in \Omega T ,

S(v)\nabla c \cdot n = 0 on \Gamma 1 \times (0, T ), c = 0 on \Gamma 2 \times (0, T ), c| t=0 = c0 in \Omega ,

R\psi \partial t\mu  - \scrC T v \cdot \nabla \mu  - div(\psi S(\scrC T v)\nabla \mu ) + r\prime (\scrC T c)\mu +R\psi \rho \mu 

 - \partial D

\partial c
(\cdot , \scrC T c) = 0 in \Omega T ,\bigl( 

\psi S(\scrC T v)\nabla \mu + \mu (\chi \Gamma 4\scrC T v  - \chi \Gamma 3\kappa \scrC T v1)
\bigr) 
\cdot n = 0 on \Gamma 1 \times (0, T ),

\mu = 0 on \Gamma 2 \times (0, T ), R\psi \mu | t=0 = \nu 
\partial D

\partial c
(\cdot , c| t=T ).

So, even in the case of homogeneous boundary conditions (where \mu \flat 
i = \chi \Omega i

\omega i\mu ), the
value of the objective J defined in (6.1) differs from the sum J1 + J2 of the objec-
tives defined in (2.6). Nevertheless, when comparing lines 2 and 3 in Figure 2, the
results in the cooperative and noncooperative cases seem very similar for the pa-
rameters chosen here. One has to compute the values of the objectives to see that
noncooperation is more profitable; see the green and red values at the last iteration
represented in Figure 3. The reader will note that we have taken advantage of Figure
3 to illustrate the convergence of the fixed point algorithm used for the calculation,
hence the representation of the values of the objectives at the different iterations
while only the value at the last iteration obviously reflects the optimal solution. We
observe a stabilization of the objectives over the iterations which illustrates the con-
vergence.

The numerical tool allows us to test the sensitivity of the model to the differ-
ent parameters involved. In this article, we chose to illustrate the influence of the
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Fig. 4. Non-symmetric repartition of the cost: Nash equilibrium. Line 1: \omega 1 = 0.3. Line 2:
\omega 1 = 0.7. The symmetric case \omega 1 = 0.5 was represented in Line 3 of Figure 2.

environmental cost distribution. Some results are given in Figure 4. Focus, for in-
stance, on the third column. The important point is that Farmer 2 is penalized
almost as much when he pays only less than one-third of the cost as when he pays
more than two-thirds. Once again, this observation allows us to point out the impor-
tance of groundwater dynamics (which here transports all the pollution to the side of
Farmer 2).

7. Conclusion. In this article the mathematical analysis of a spatial differen-
tial game of groundwater pollution is performed. The existence result for a Nash
equilibrium is stated using fixed point theory, and the uniqueness result is proved
using Pontryagin's maximum principle optimality conditions. Numerical simulations
are provided. They illustrate the difference between the cooperative and noncoop-
erative cases in various situations, in particular depending on the position of the
wells. The extension of our work to infinite horizon, that is, setting T = \infty , is a
challenging question. The interested reader may check that Theorem 3.6 is actually
a global result. The existence result of a Nash equilibrium in infinite horizon fol-
lows. Nevertheless, our uniqueness proof then falls because the well-posedness of the
adjoint problem derived through the Pontryagin's approach is not a straightforward
result. More precisely, if T = \infty , the time reversal operator introduced for dealing
with the adjoint problem is useless, and we have to tackle the antidiffusive problem
(5.1)--(5.3) completed by an appropriate transversality condition as T \rightarrow \infty . We
finally note that the latter one may be guessed. Indeed, assuming that the limit
of the time derivative of the value function as time goes to infinity is equal to zero
(this hypothesis has to be substituted to the long-time vanishing of the value func-
tion used in Bouccekine, Camacho, and Fabbri [7] because here, due to the differen-
tial game setting, the individual player optimization problems in Definition 3.3 are
not autonomous and the corresponding Hamilton--Jacobi--Bellman equations are not
stationary), Proposition 4 in Ballestra [4] holds. We thus guess that the necessary
transversality condition should have a classical form, namely, stipulating the long-
time vanishing of the integral in space of the Hamiltonian functions on the optimal
paths:

lim
T\rightarrow \infty 

\int 
\Omega 

Hi(T, c
\flat , p\flat i , \lambda i) dx = 0,
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where Hamiltonians Hi are defined by

Hi(t, c
\flat , p\flat i , \lambda 

\flat 
i)(x) =

\bigl( 
fi(x, p

\flat 
i(t, x))\chi \Omega i  - Di(x, c(t, x; p

\flat 
1, p

\flat 
2))
\bigr) 
e - \rho t

+\lambda \flat i(t, x)
\bigl( 
div(\psi S(v)\nabla c\flat ) - v \cdot \nabla c\flat  - r(c\flat ) - gc\flat + p\flat 1\chi \Omega i + p\flat 2\chi \Omega  - i

\bigr) 
(t, x)

and \lambda \flat i(t, x) = \mu \flat 
i(t, x)e

 - \rho t.
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