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Abstract. Despite the rapid development of computational hardware, the

treatment of large and high dimensional data sets is still a challenging prob-
lem. The contribution of this paper to the topic is twofold. First, we propose a
Gaussian mixture model in conjunction with a reduction of the dimensionality

of the data in each component of the model by principal component analy-
sis, which we call PCA-GMM. To learn the (low dimensional) parameters of

the mixture model we propose an EM algorithm whose M-step requires the

solution of constrained optimization problems. Fortunately, these constrained
problems do not depend on the usually large number of samples and can be
solved efficiently by an (inertial) proximal alternating linearized minimization
algorithm. Second, we apply our PCA-GMM for the superresolution of 2D and
3D material images based on the approach of Sandeep and Jacob. Numerical

results confirm the moderate influence of the dimensionality reduction on the
overall superresolution result.
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1. Introduction. The motivation for this work was superresolution of 3D mate-
rial images taken within the project ITN MUMMERING. Superresolution aims at
reconstructing high resolution images from low resolution ones. Here a common
assumption is that the low resolution image is generated by y = Ax + ϵ, where ϵ
is some noise and A is a possibly unknown superresolution operator. Since this
is an ill-posed inverse problem, methods addressing this task usually incorporate
some prior information. One approach for solving the problem is based on Gaussian
Mixture Models (GMMs). Usually, the GMM approximates the distribution of the
patches of natural images and its parameters are learned from some given data, see
also [7].

In literature, there exist several approaches to tackle superresolution by GMMs.
Zoran and Weiss [32] proposed to use the negative log-likelihood function of a GMM
as regularizer of the inverse problem by estimating the high resolution image xH

given the low resolution one xL by solving

argmin
xH

∥AxH − xL∥2 − λ
∑
i∈I

log p(xH,i),

where p is the probability density function of the GMM and (xH,i)i∈I are the patches
in xH . For a special choice of λ, the solution of this problem can be interpreted as
the maximum a postiori (MAP) estimator of xH under the prior assumption that
the distribution of the patches in xH is given by the GMM. This method is called
expected patch log likelihood (EPLL) and it can be applied for several inverse
problems. Various accelerations and an efficient implementation of EPLL were
developed in [23]. However, EPLL requires that the operator A is known, which is
usually not the case for the superresolution task. Therefore, we prefer the alternative
approach of Sandeep and Jacob [26], which does not require any knowledge about
the operator A. While for EPLL the GMM describes only the distribution of the
patches from the high resolution image, in [26] the idea is to use a joint GMM,
which describes the distribution of pairs of high and low resolution patches. Having
learned a joint GMM, each high resolution patch is estimated separately from the
low resolution patch and the joint GMM using the minimal mean squared error
estimator. For a more detailed description of the method proposed by Sandeep and
Jacob [26], we refer to Section 5.

However, any of these models requires the estimation of the parameters of a
GMM using the patches of the images as data points. For this, the maximum
likelihood (ML) estimator is used, which corresponds to minimizing the negative
log likelihood function. The standard method to find the ML estimator is the
expectation maximization (EM) algorithm [4, 8]. Unfortunately, the EM algorithm
for GMMs becomes very slow as the number of data points becomes large and high
dimensional, which is the case for our superresolution task, particularly if we have
to deal with 3D images.

To overcome these performance issues, we reduce the dimension of the data
points. The standard method for dimensionality reduction is the principal com-
ponent analysis (PCA) [24]. The main assumption of the PCA is that the high
dimensional data points are approximately located in a lower dimensional affine
subspace. In this paper, we combine the GMM with a PCA by adding the min-
imization term of the PCA and the negative log likelihood function of the GMM
on the dimensionality reduced data points. We rewrite this minimization problem
again as the negative log likelihood function of a Gaussian mixture model which
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has additional constraints on the parameters. We call this model PCA-GMM. This
representation allows in particular, to use a different PCA for each component of
the GMM. We derive an EM algorithm with a special M-step for finding a minimizer
of our objective function. The M-step requires solutions of maximization problems
with contraints on the Stiefel manifold. Fortunately, these problems do no longer
depend on the large number of sampling points and they can be efficiently solved
by the (inertial) proximal alternating linearized minimization algorithm (PALM)
for which some convergence results can be ensured. The idea to couple parameter
learning with dimension reduction is not new. So the authors of [3, 14] propose
directly a GMM with constraint covariance matrices. It is based on an extension
of the PCA, which was proposed in [28] to replace the affine space in the PCA
by the union of finitely many affine spaces using a mixture model of probabilistic
PCAs. The relation to our approach is analyzed in a remark in Section 3. Using
our new PCA-GMM model within the superresolution model of Sandeep and Jacob
[26], we provide numerical examples of 2D and 3D material images. For making the
examples reproducible, we provide the code online1.

The paper is organized as follows: in Section 2 we briefly review the two main
ingredients for our model, namely GMMs and PCA. We derive our PCA-GMM
model in Section 3. In Section 4, an EM algorithm with a special constrained op-
timization task in the M-step is proposed for minimizing the objective function.
The solution of the constrained minimization problem via (inertial) PALM is inves-
tigated. The superresolution method using the PCA-GMM model is described in
Section 5. Finally, Section 6 shows numerical examples of superresolution based on
our PCA-GMM model on 2D and 3D images. Conclusions are drawn in Section 7.

2. Preliminaries. In this section, we briefly revisit the two building blocks of our
approach, namely Gaussian mixture models and principal component analysis. We
need the following notation. By SPD(n) ⊂ Rn,n we denote the cone of symmetric
positive definite n×n matrices, by O(n) the group of orthogonal n×n matrices, by

St(d, n) :=
{
U ∈ Rn,d : UTU = Id

}
, n ≥ d,

the Stiefel manifold and by ∆K := {α = (αk)Kk=1 ∈ RK
≥0 :

∑K
k=1 αk = 1} the

probability simplex. We write 1n for the vector with all n components equal to 1.
Further, we denote by ∥ · ∥F the Frobenius norm.

Gaussian Mixture Models. The (absolutely continuous) n-dimensional normal
distribution N (µ,Σ) with mean µ ∈ Rn and positive semi-definite covariance matrix
Σ ∈ SPD(n) has the density

(1) f(x|µ,Σ) = (2π)−
n
2 |Σ|− 1

2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Note, that not all multivariate normal distributions are absolutely continuous, in
particular, the covariance matrix is not necessarily invertible. However, for the
rest of the paper, we focus on normal distributions with positive definite covariance
matrices, which are invertible. A Gaussian mixture model (GMM) is a probability
distribution with probability density function

p(x) =

K∑
k=1

αkf(x|µk,Σk), α ∈ ∆K .

1https://github.com/johertrich/PCA_GMMs
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For samples X = {x1, ..., xN}, the maximum likelihood (ML) estimator of the pa-
rameters α = (αk)Kk=1, µ = (µk)Kk=1 and Σ = (Σk)Kk=1 of a GMM can be found by
minimizing its negative log-likelihood function

L(α, µ,Σ|X ) = −
N∑
i=1

log
( K∑

k=1

αkf(xi|µk,Σk)
)

for α ∈ △K , µk ∈ Rn, and Σk ∈ SPD(n), k = 1, . . . ,K.
In the following, we use the notation ϑ := (µ,Σ) to address the parameters of

a Gaussian distribution. A standard minimization algorithm for finding the ML
estimator of the parameters αk and ϑk = (µk,Σk), k = 1, . . . ,K of a GMM is the
so-called EM algorithm [4, 8] detailed in Alg. 1.

Algorithm 1 EM Algorithm for Mixture Models

Input: x = (x1, ..., xN ) ∈ Rn×N , initial estimate ϑ(0).
for r = 0, 1, ... do

E-Step: For k = 1, ...,K and i = 1, . . . , N compute

β
(r)
i,k =

α
(r)
k f(xi|ϑ(r)

k )∑K
j=1 α

(r)
j f(xi|ϑ(r)

j )

M-Step: For k = 1, ...,K compute

α
(r+1)
k =

1

N

N∑
i=1

β
(r)
i,k ,

ϑ
(r+1)
k = argmax

ϑk

{ N∑
i=1

β
(r)
i,k log(f(xi|ϑk))

}
.

end for

For Gaussian density functions (1), the iterates ϑ
(r+1)
k , k = 1, . . . ,K, i.e. the

maximization in the M-Step of Alg. 1 can be simply computed by

µ
(r+1)
k =

∑N
i=1 β

(r)
ik xi∑N

i=1 β
(r)
ik

=
1

Nα
(r+1)
k

m
(r)
k ,

(2)

Σ
(r+1)
k =

∑N
i=1 β

(r)
ik (xi − µ

(r+1)
k )(xi − µ

(r+1)
k )T∑N

i=1 β
(r)
ik

=
1

Nα
(r+1)
k

C
(r)
k − µ

(r+1)
k (µ

(r+1)
k )T,

(3)

where

m
(r)
k =

N∑
i=1

β
(r)
ik xi and C

(r)
k =

N∑
i=1

β
(r)
ik xix

T
i .

Principal Component Analysis. In many applications, the dimension of the
data is huge such that dimensionality reduction methods become necessary. The
working horse for dimensionality reduction is the principal component analysis
(PCA). Given data samples X = {x1, ..., xN} in Rn, the classical PCA finds the
d-dimensional affine space {U t + b : t ∈ Rd}, 1 ≤ d ≪ n having smallest squared

Inverse Problems and Imaging Volume 16, No. 2 (2022), 341–366



PCA-GMMs for Superresolution 345

distance from the samples by minimizing

P (U, b) =

N∑
i=1

∥(UUT − In)(xi − b)∥2

for b ∈ Rn and U ∈ St(d, n). It is not hard to check that the affine subspace
goes through the offset (bias) b = x̄ := 1

N (x1 + . . .+ xN ) so that we can reduce our
attention to the minimization with respect to U ∈ St(d, n), i.e., to the consideration
of

P (U) =

N∑
i=1

∥(UUT − In)yi)∥2, yi = xi − x̄.

Note, that a minimizer can be derived explicitly as the matrix Û , whose columns
are given by the eigenvectors corresponding to the d largest eigenvalues of the

empirical covariance matrix
∑N

i=1 yiy
T
i . This minimizer is not unique, since it holds

P (UV ) = P (U) for any orthogonal matrix V ∈ O(d).

3. PCA-GMM model. In this section, we propose a GMM which incorporates
a dimensionality reduction model via PCA. More precisely, we want to consider
Gaussian distributions only on smaller subspaces of the original data space.

A first idea would be to couple the GMM and the PCA model in an additive way
and to minimize for data samples X = {x1, ..., xN} in Rn the function

(4) F (U,α, ϑ) = L
(
α, ϑ|Xlow

)
+

1

2σ2
P (U) , σ > 0

for U ∈ St(d, n), α ∈ △K , µk ∈ Rd, and Σk ∈ SPD(d), k = 1, . . . ,K, where

Xlow := {UTy1, . . . , U
TyN}, yi = xi − x̄.

It is important that the negative log-likelihood function L acts with respect to ϑ
only on the lower dimensional space Rd. The function F can be rewritten as

F (U,α, ϑ) = −
N∑
i=1

(
log
( K∑

k=1

αkf
(
UTyi|ϑk

))
− 1

2σ2
∥(UUT − In)yi)∥2

)

= −
N∑
i=1

(
log
( K∑

k=1

αkf
(
UTyi|ϑk

)
exp

(
− 1

2σ2 ∥(UUT − In)yi)∥2
)))

.(5)

However, knowing that the samples were taken from K different Gaussian distri-
butions it makes more sense to reduce the dimension individually for each distri-
bution. Based on the reformulation (5) and using the notation U = (Uk)Kk=1 and
b = (bk)Kk=1, we propose to minimize the following PCA-GMM model:

(6) F (U,b, α, ϑ) subject to α ∈ ∆K , Uk ∈ St(d, n),Σk ∈ SPD(d), k = 1, . . . ,K,

where bk ∈ Rn, µk ∈ Rd and

F (U,b, α, ϑ) := −
N∑
i=1

log

( K∑
k=1

αkf(UT
k yik|ϑk) exp

(
− 1

2σ2 ∥(In − UkU
T
k )yik∥2

))
,

(7)

yik := xi − bk, k = 1, . . . ,K, i = 1, . . . , N.

Clearly, if Uk = U and bk = x̄ for all k = 1, . . . ,K, we get back to model (4).
The next lemma shows that our PCA-GMM model can be rewritten as a GMM

model whose parameters incorporate those of the PCA.

Inverse Problems and Imaging Volume 16, No. 2 (2022), 341–366
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Lemma 3.1. Let µ ∈ Rd, Σ ∈ SPD(d), U ∈ St(d, n), b ∈ Rn and let f be the
Gaussian density function (1). Then the following relation holds true:

f
(
UT(x− b)|µ,Σ

)
exp

(
− 1

2σ2 ∥(In − UUT)(x− b)∥2
)

= (2πσ2)
n−d

2 f(x|µ̃, Σ̃),(8)

where

Σ̃ =
(

1
σ2 (In − UUT) + UΣ−1UT

)−1 ∈ SPD(n),(9)

µ̃ = Σ̃UΣ−1µ + b ∈ Rn.(10)

Proof. 1. First of all, we verify that the matrices Σ̃ are well defined, i.e. that
1
σ2 (In − UUT) + U(Σ)−1UT is invertible. Let Ũ ∈ Rn,(n−d) such that V := (U |Ũ)
is an orthogonal matrix. Then we obtain

V TΣ̃−1V = V T( 1
σ2 (In − UUT) + UΣ−1UT)V

= 1
σ2 (In − V TUUTV ) + V TUΣ−1UTV.

Since (V TU)T = UTV = (Id|0), this is equal to

V TΣ̃−1V = 1
σ2

(
0 0
0 In−d

)
+

(
Σ−1 0

0 0

)
=

(
Σ−1 0

0 1
σ2 In−d

)
(11)

and the last matrix is invertible.
2. We have to show that

(2π)−
d
2 |Σ|− 1

2 exp
(
− 1

2σ2
∥(In − UUT)(x− b)∥2

− 1

2
(UT(x− b) − µ)TΣ−1(UT(x− b) − µ)

)
= (2π)−

n
2 |Σ̃|− 1

2 exp
(
− 1

2
(x− µ̃)TΣ̃−1(x− µ̃)

)
= (2π)−

n
2 |Σ̃|− 1

2 exp
(
− 1

2
xTΣ̃−1x + µ̃TΣ̃−1x− 1

2
µ̃TΣ̃−1µ̃

)
.

Straightforward calculation together with the observation that UTΣ̃U = Σ and
hence UTΣ̃−1U = Σ−1 gives

1

2σ2
∥(In − UUT)(x− b)∥2 +

1

2
(UT(x− b) − µ)TΣ−1(UT(x− b) − µ)

=
1

2
xT
(

1
σ2 (In − UUT) + UΣ−1UT

)
x

−
(

1
σ2 b

T(In − UUT) + (µT + bTU)Σ−1UT
)
x

+
1

2
(UTb + µ)TΣ−1(UTb + µ) + 1

2σ2 b
T(In − UUT)b

=
1

2
xTΣ̃−1x− µ̃TΣ̃−1x +

1

2
µ̃TΣ̃−1µ̃.

Finally, we see by (11) that |Σ̃|−1 = σ−2(n−d)|Σ|−1 .

By Lemma 3.1, we can rewrite our objective function F in (7) with ϑ̃ = (µ̃, Σ̃)
defined by (9) and (10) with corresponding indices as

F (U,b, α, ϑ) = −
N∑
i=1

log
( K∑

k=1

αkf(xi|ϑ̃k)
)

+ (n− d) log(
√

2πσ2)

= L(α, ϑ̃|X ) + (n− d) log(
√

2πσ2).(12)
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Up to the constant this is a negative log-likelihood function of a GMM. However,
when minimizing this function, we have to take the constraints (9) and (10) into
account. More precisely, our model in (6) can be rewritten as PCA-GMM model:

(13) F(U,b, α, ϑ) := L(α, ϑ̃|X ) subject to Uk ∈ St(d, n), α ∈ ∆K , Σk ∈ SPD(d),

where

(14) Σ̃k =
(

1
σ2 (In−UkU

T
k )+UkΣ−1

k UT
k

)−1
, µ̃k = Σ̃kUΣ−1

k µk+bk, k = 1, . . . ,K.

The choice of µk and bk is redundant. This can be seen as follows, for any µk

and bk, define µ̂k = 0 and b̂k = µ̃k. Then, it holds

Σ̃k =
(

1
σ2 (In − UkU

T
k ) + UkΣ−1

k UT
k

)−1
, µ̃k = Σ̃kUΣ−1

k µ̂k + b̂k, k = 1, . . . ,K

such that F(U, b̂, α, ϑ̂) = F(U,b, α, ϑ). Consequently, in the M-step of the EM
algorithm in Section 4.1 we obtain that the update for the mean µ is given by
µk = 0.

Remark 1 (Different component dimensions). So far the dimension d is the same
for all components k = 1, ...,K. But by some simple adjustments, the PCA-GMM
model can also be rewritten with Uk ∈ St(dk, n), µk ∈ Rdk and Σk ∈ SPD(dk),
where the dk are not necessarily equal for all k. However, to keep the notations
as simple as possible, we will restrict our analysis to the case that dk = d for
k = 1, ...,K. Nevertheless, all the results of this paper can be derived analogously
for other choices of dk.

Remark 2 (Learning σ). The function F in (4), resp. (7), (12) is strictly decreasing
in σ. Thus it does not make sense to minimize F with respect to σ.

However, the function F = F − n−d
2 log(2πσ2) in (13) can be optimized with

respect to σ. To keep the M-step of the EM algorithm simple, we associate to
each summand in the mixture model an own σk, k = 1, . . . ,K such that Σ̃ in (14)
becomes

Σ̃k =
(

1
σ2
k

(In − UkU
T
k ) + UkΣ−1

k UT
k

)−1
.

In this case, we use the notation σ = (σk)Kk=1.

Related Work. There are several relations of the PCA-GMM model to other
models proposed in the literature, in particular to mixtures of probabilistic PCAs
(MPPCA) [28], high dimensional data clustering (HDDC) [3] and high-dimensional
mixture models for unsupervised image denoising (HDMI) [14]. In the following,
we shortly review these methods and comment on similarities and differences to the
PCA-GMM model.

For understanding the relation to other models, we first need the following re-
formulation of the covariance matrices Σ̃ from the PCA-GMM model. We have as
in (11) for matrices Σ̃ of the form (9) and an orthogonal matrix V = (U |Ũ) that

V TΣ̃V =

(
Σ 0
0 σ2In−d

)
,

Inverse Problems and Imaging Volume 16, No. 2 (2022), 341–366
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so that {
Σ̃ =

(
1
σ2 (In − UUT) + UΣ−1UT

)−1
: U ∈ St(d, n), Σ ∈ SPD(d)

}
=

{
QT

(
diag(λ) 0

0 σ2In−d

)
Q : Q ∈ O(n), λ ∈ Rd

>0

}
.(15)

As outlined in Remark 2, the σ can either be fixed a priori, or optimized within
the EM algorithm, as later outlined in Section 4.1, simultaneously with the other
parameters.

In [28], Tipping and Bishop propose mixture models of probabilistic PCAs (MP-
PCA), which are GMMs of the form

p(x) =

K∑
k=1

αkf(xi|µ̃k, Σ̃k),(16)

where

Σ̃k = UkU
T
k + σ2

kIn, Uk ∈ St(dk, n).

Here, the parameters σk are optimized simultaneously with the αk and Uk via the
EM algorithm. Hence, skipping the index, instead of minimizing over (15), they
minimize over sets of the form{

QT

(
(1 + σ2)Id 0

0 σ2In−d

)
Q : Q ∈ O(n)

}
.(17)

Since this form of the covariance matrices is very restrictive, Bouveyron, Girard and
Schmid generalized MPPCA in [3] to a model called high dimensional data clustering
(HDDC). Again, they minimize a special GMM (16), but here the covariances are
given by

Σ̃k = Ukdiag(λk)UT
k + σ2

kIn, Uk ∈ St(dk, n), λk ∈ Rdk
>0.

As for the MPPCA, the parameters are optimized via the EM algorithm. For
deriving it, it is important that the parameters σk are not fixed a priori but are
optimized within the EM algorithm. Skipping the index, instead of minimizing over
(15) or (17), this corresponds to a minimization over{

QT

(
diag(λ) + σ2Id 0

0 σ2In−d

)
Q : Q ∈ O(n), λ ∈ Rd

>0

}
.(18)

In contrast to (15), where the diagonal values λ are required to be strictly greater
than 0, the diagonal values λ + σ2 in (18) are automatically strictly greater than
σ2. Consequently, the PCA-GMM model is more general than HDDC. Note that
HDDC model contains the so-called mixture factor analysis [20] as a special case.
Here also the alternating expectation conditional maximization algorithm [21] is
applicable [31], which is an improved version of the EM algorithm.

Finally, Houdard, Bouveyron and Delon proposed in [14] a model selection algo-
rithm for the dimensions dk. For this, they propose a model called HDMI, where
the only difference to HDDC is, that σ is a priori fixed. They derive as an inter-
mediate step a corresponding EM algorithm in [14, Proposition 2]. Unfortunately,
the M-step only ensures that λ > −σ21d and not λ > 0, such that the calculations
appear to be not fully correct. However, the final model selection algorithm again
ensures that λ > 0 such that this seems not to be a problem in [14].

Inverse Problems and Imaging Volume 16, No. 2 (2022), 341–366
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4. Minimization algorithm. We propose to minimize F in (13) based on the EM

algorithm, where we have to take the special structure of µ̃k ∈ Rn and Σ̃k ∈ SPD(n)
in (14) into account to work indeed in the lower d-dimensional space. This requires
the solution of a special inner minimization problem within the M-Step of the EM
algorithm. We describe the EM algorithm for our PCA-GMM model in Subsec-
tion 4.1. In particular, we will see that the M-Step of the algorithm requires the
minimization of functions Gk(U, b), k = 1, . . . ,K, of the same structure. We prove
that these functions have indeed a global minimizer. In particular, these functions
do not depend on the large number of input data xi, i = 1, . . . , N . Therefore it
turns out that the E-step of the algorithm is the most time consuming one. We
propose to find at least a local minimizer of G by the (inertial) proximal alternating
linearized minimization (PALM) in Subsection 4.2 and provide convergence results.

4.1. EM Algorithm for PCA-GMM. For our setting, we obtain a special EM
algorithm described in Algorithm 2. Note that the E-Step of Algorithm 2 requires

only the mean and covariance matrix in ϑ
(r)
k , k = 1, . . . ,K with respect to the

smaller space Rd.

Algorithm 2 EM Algorithm for PCA reduced Mixture Models

Input: X = (x1, ..., xN ) ∈ Rn,N , initialization U(0), b(0), α(0), ϑ(0) = (µ(0),Σ(0)).
for r = 0, 1, ... do

E-Step: For k = 1, ...,K and i = 1, . . . , N compute

β
(r)
i,k =

α
(r)
k f(xi|ϑ̃(r)

k )∑K
j=1 α

(r)
j f(xi|ϑ̃(r)

j )

=

α
(r)
k

(σ
(r)
k )n−d

exp

(
− 1

2(σ
(r)
k )2

∥(In − U
(r)
k (U

(r)
k )T)y

(r)
i,k ∥2

)
f
(

(U
(r)
k )Ty

(r)
i,k |ϑ

(r)
k

)
∑K

j=1

α
(r)
j

(σ
(r)
j )n−d

exp

(
− 1

2(σ
(r)
j )2

∥(In − U
(r)
j (U

(r)
j )T)y

(r)
i,k ∥2

)
f
(

(U
(r)
j )Ty

(r)
i,k |ϑ

(r)
j

)
,

y
(r)
i,k = xi − b

(r)
k .

M-Step: For k = 1, ...,K compute

α
(r+1)
k =

1

N

N∑
i=1

β
(r)
i,k ,

(U
(r+1)
k , b

(r+1)
k , σ

(r+1)
k , ϑ

(r+1)
k ) = argmax

U,b,µ,Σ

N∑
i=1

β
(r)
ik log(f(xi|ϑ̃k))

subject to Uk ∈ St(d, n),Σk ∈ SPD(d)

with ϑ̃k = (µ̃k, Σ̃k) as in (14).

end for

A convergence analysis of the EM algorithm via Kullback-Leibler proximal point
algorithms was given in [5, 6], see also [16] for a nice review. The authors showed
that the objective function decreases for the iterates of the algorithm. Hence we
obtain the following corollary.

Corollary 1. For the iterates
(
U(r),b(r), α(r), ϑ(r)

)
r
generated by Algorithm 2 the

objective function F is decreasing.
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The interesting step is the second M-Step which requires again the maximization
of a function. Based on (2) and (3) we can prove the following proposition.

Proposition 1. Assume that n + 1 of the points xi, i = 1, ..., N are affinely inde-
pendent.

Further, let f be the Gaussian density function (1) and βi ∈ R≥0, i = 1, . . . , N .
and let σ2 be fixed.
i) For fixed σ2, a solution of

argmax
U,b,µ,Σ

N∑
i=1

βi log(f(xi|ϑ̃))(19)

with ϑ̃ = (µ̃, Σ̃) of the form (10) and (9) is given by

µ̂ = 0, Σ̂ =
1

α
ÛTSÛ, and b̂ =

1

α
m,

where

m =

N∑
i=1

βixi, C =

N∑
i=1

βixix
T
i , α =

N∑
i=1

βi, S = C − 1

α
mmT,

and

(20) Û ∈ argmin
U∈St(d,n)

G(U).

Here

G(U) := − 1

σ2
tr(UTSU) + α log(|UTSU |).(21)

ii) If σ is learned, we have

σ̂2 = 1
α(n−d)

(
tr(S) − tr(ÛTSÛ)

)
,

and G from (21) is replaced by

G(U) := (n− d) log
(
tr(S) − tr(UTSU)

)
+ log(|UTSU |).(22)

Note that α in the proposition is defined in another way than in the first M-
step, more precisely, the factor 1

N is skipped. Before presenting the proof of the
proposition, we give the following remark.

Remark 3. By definition of C in Proposition 1 we have that

S =

N∑
i=1

βi(xi − 1
αm)(xi − 1

αm)T.

Since n + 1 of the points xi, i = 1, ..., N , are affinely independent, S is symmetric
positive definite. In particular, it holds for G from (21) or (22) that G(U) > −∞
for any U ∈ St(d, n). Further, since the function G is continuous and the Stiefel
manifold is compact, we can conclude, that G has a global minimizer.

Proof of Proposition 1. i) Let σ be fixed. Using (8), we have for fixed U and b, as
in the classical GMM, see (2) and (3), that the maximizer in (19) with respect to

Inverse Problems and Imaging Volume 16, No. 2 (2022), 341–366



PCA-GMMs for Superresolution 351

µ and Σ fulfills

µ =
1

α

N∑
i=1

βiU
T(xi − b) =

1

α
(UTm− αUTb),

Σ =
1

α

N∑
i=1

βi

(
UT(xi − b) − µ

) (
UT(xi − b) − µ

)T
=

1

α

N∑
i=1

βi

(
UT(xi −

1

α
m)

)(
UT(xi −

1

α
m)

)T

=
1

α
UTSU.

By Lemma 3.1, the negative objective function in (19) is given by

2G̃(U, b) = G1(U, b) + G2(U, b) + α log(|Σ|) + const,(23)

G1(U, b) = 1
σ2

N∑
i=1

βi(xi − b)T(In − UUT)(xi − b) + α(n− d) log(σ2)(24)

G2(U, b) =

N∑
i=1

βi

(
UTxi − (UTb + µ)

)T
Σ−1

(
UTxi − (UTb + µ)

)
.

In the following, we use const as a generic constant which has values independent
of µ,Σ, U and b. The linear trace operator tr : Rd,d → R fulfills xTAy = tr(AxyT)
and in particular xTUUTx = tr(UTxxTU). Using this property we obtain

G2(U, b) = tr
(

Σ−1
N∑
i=1

βi

(
UTxi − (UTb + µ)

) (
UTxi − (UTb + µ)

)T
︸ ︷︷ ︸

=Σ

)
= tr(I).

Thus, the only term in (23) which depends on b and U is G1. Further, minimizing
G1 is equivalent to minimizing

g1(U, b) :=

N∑
i=1

βi(xi − b)T(In − UUT)(xi − b).

For fixed U , we can minimize g1 with respect to b by setting the gradient to 0. Since
g1 is convex in b this is equivalent for being a global minimizer. This yields

0 =

N∑
i=1

βi(In − UUT)(b− xi)

which is equivalent to

0 = (In − UUT)(αb−m).

In particular, b = 1
αm is a global minimizer of g1 resp. G1, and it is independent of

U . Using this, we get

µ =
1

α
(UTm− αUTb) = 0.

Minimizing G1 with respect to U for b = 1
αm is equivalent to minimizing

G1(U,
1

α
m) = − 1

σ2 tr
(
UTSU

)
+ const.
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Further we have log
(∣∣ 1

αU
TSU

∣∣) = log(|UTSU |) + const. Thus, by combining the
above computations, we get that minimizing (23) with respect to U is equivalent to
minimizing

G(U) = − 1

σ2
tr
(
UTSU

)
+ α log(|UTSU |).

ii) Now consider the case, where σ is learned. Again by (8), the maximizer in
(19) with respect to σ is given by the maximizer of

N∑
i=1

βi

(
− 1

2σ2 ∥(In − UUT)(xi − b)∥2 − (n− d) log(σ)
)
.

By setting the derivative to zero, one obtains, that

σ2 = 1
α(n−d)

N∑
i=1

βi(xi − b)T(In − UUT)(xi − b).

Then the function in (24) modifies to

G1(U, b) = α(n− d) log
( N∑

i=1

βi(xi − b)T(In − UUT)(xi − b)
)

+ const.(25)

Now the monotonicity of the logarithm implies that minimizing G1 is again equiv-
alent to minimizing g1. Hence, as in case i) we get b = 1

αm is a global minimizer of
g1 resp. G1, and it is independent of U . Using this, we obtain

µ =
1

α
(UTm− αUTb) = 0 and σ2 = 1

α(n−d)

(
tr(S) − tr(UTSU)

)
.

By (25), minimizing G1 with respect to U for b = 1
αm is equivalent to minimizing

G1(U,
1

α
m) = α(n− d) log

(
tr(S) − tr(UTSU)

)
+ const,

such that minimizing (23) with respect to U is equivalent to minimizing

G(U) = (n− d) log
(
tr(S) − tr(UTSU)

)
+ log(|UTSU |).

By Proposition 1, the M-Step of Algorithm 2 reduces for k = 1, ...,K to the
computation of

α
(r+1)
k =

1

N

N∑
i=1

β
(r)
i,k ,

mk =

N∑
i=1

βi,kxi, Ck =

N∑
i=1

βi,kxix
T
i ,

(U
(r+1)
k , b

(r+1)
k ) ∈ argmin

U∈SPD(d,n),b∈Rn

Gk(U, b) with Gk in (21),

µ
(r+1)
k =

1

Nα
(r+1)
k

(
U

(r+1)
k

)T (
mk −Nα

(r+1)
k b

(r+1)
k

)
,

Sk = Ck −mk

(
b
(r+1)
k

)T
− b

(r+1)
k mT

k + Nα
(r+1)
k b

(r+1)
k

(
b
(r+1)
k

)T
Σ

(r+1)
k =

1

Nα
(r+1)
k

(
U

(r+1)
k

)T
Sk U

(r+1)
k
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Note that the large data set X is involved in the computation of mk and Ck, but
it does not influence the computational time for minimizing the Gk, k = 1, . . . ,K.
Indeed, the E-Step of Algorithm 2 will be the most time consuming one.

4.2. PALM for Minimizing G. To minimize G in (21) we propose to use the
Proximal alternating linearized minimization (PALM) [2], resp. its accelerated ver-
sion iPALM [25], where the ’i’ stands for inertial. As a special case the PALM
algorithm can be applied to functions of the form

F (x) = H(x) + f(x)(26)

where H ∈ C1(Rd) and a lower semi-continuous function f : Rd → (−∞,∞]. It
is based on the computation of so-called proximal operators. For a proper and
lower semi-continuous function f : Rd → (−∞,∞] and τ > 0 the proximal mapping
proxf

τ : Rd → P(Rd) is defined by

proxf
τ (x) = argmin

y∈Rd

{
τ
2∥x− y∥2 + f(y)

}
,

where P(Rd) denotes the power set of Rd.
Starting with an arbitrary x(0) PALM performs the iterations

x(r+1) ∈ proxf
τ(r)

(
x(r) − 1

τ(r)∇H(x(r))
)

Further, iPALM is detailed in Algorithm 3. Indeed, we have applied the iPALM
algorithm in our numerical examples. However, although we observed convergence
of the iterates numerically, we have not proved convergence theoretically so far.
Alternatively, we could apply the PALM algorithm which is slightly slower. Note
again, that the E-Step of the algorithm is the most time consuming one.

Algorithm 3 iPALM

Input: α(r), β(r) initialization x(1), x(0)

for r = 1, 2, ... do until a convergence criterion is reached

y(r) = x(r) + α(r)(x(r) − x(r−1)),

z(r) = x(r) + β(r)(x(r) − x(r−1)),

x(r+1) ∈ proxf
τ(r)(y

(r) − 1
τ(r)∇H(z(r))),

end for

In the following, we give details on PALM for our setting. For our problem (20),
we choose f(U) := ιSt(d,n) and

(27) H(U) := G(U)η(∥Id − UTU∥2F ),

where

η(x) :=


1, if x ∈ (−ρ, ρ),

exp(− ρ
ρ−(|x|−ρ)2 ), if x ∈ (−2ρ,−ρ] ∪ [ρ, 2ρ),

0, otherwise.
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is a smooth cutoff function of the interval (−ρ, ρ) for some ρ > 0. Then, the iteration
scheme reads as

U (r+1) ∈ ΠSt(d,n)(U
(r) − 1

τ(r)∇H(U (r)))(28)

where ΠSt(d,n) denotes the orthogonal projection onto the Stiefel manifold.

Remark 4. (Projection onto Stiefel manifolds) Concerning this orthogonal projec-
tion, it is well known [12], that for a matrix A ∈ Rn,d, the projection ΠSt(d,n)(A) is
given by the orthonormal polar factor W from the polar decomposition

A = WM, W ∈ St(d, n), M ∈ SPD(d).

Further, this orthonormal polar factor can be computed by W = UV , where A =
UΣV is the singular value decomposition of A, see [12]. The authors of [13] propose
to use the so-called Schulz-iteration

Xk+1 = Xk(I + 1
2 (I −XT

k Xk))

with X0 = A for computing the orthonormal polar factor of a full rank matrix A.
Unfortunately, the convergence of this iteration requires that ∥I − ATA∥F < 1,
which is usually not fulfilled in our case.

Note that for any r ∈ N, the matrix U (r) belongs to the Stiefel manifold, such
that η(∥Id − UTU∥F ) = 1 in a neighborhood of U (r). Thus, we can replace the
gradient with respect to H by the gradient with respect to G in (28). Then the
iteration scheme reads as

U (r+1) ∈ PSt(d,n)(U
(r) − 1

τ(r)∇G(U (r))),(29)

In particular, we do not need to choose the ρ explicitly within our algorithm.
To show convergence of the algorithm, we need the following two lemmas.

Lemma 4.1. Let H be defined by (27). Then the function ∇H is globally Lipschitz
continuous.

Proof. The function H is twice continuously differentiable and zero outside of a
compact set. Hence the second order derivative is bounded and ∇UH(·, b) is globally
Lipschitz continuous.

Further, let us recall the notation of Kurdyka- Lojasiewicz functions. For δ ∈
(0,∞], we denote by Φδ the set of all concave continuous functions ϕ : [0, δ) → R≥0

which fulfill the following properties:

(i) ϕ(0) = 0.
(ii) ϕ is continuously differentiable on (0, δ).

(iii) For all s ∈ (0, δ) it holds ϕ′(s) > 0.

For a proper and lower semicontinuous function γ : Rd → (−∞,+∞] denote by
∂γ the subdifferntial of γ.

Definition 4.2 (Kurdyka- Lojasiewicz property). A proper, lower semicontinuous
function γ : Rd → (−∞,+∞] has the Kurdyka- Lojasieweicz (KL) property at ū ∈
dom ∂γ = {u ∈ Rd : ∂γ ̸= ∅} if there exist δ ∈ (0,∞], a neighborhood U of ū and a
function ϕ ∈ Φδ, such that for all

u ∈ U ∩ {v ∈ Rd : γ(ū) < γ(v) < γ(ū) + δ},
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it holds

ϕ′(γ(u) − γ(ū))dist (0, ∂γ(u)) ≥ 1.

We say that γ is a KL function, if it satisfies the KL property in each point u ∈
dom ∂γ.

Lemma 4.3. The function H defined in (27) is a KL function.

Proof. The functions G and η are sums, products, quotients and concatenations of
real analytic functions. Thus, also H is a real analytic function. This implies that
it is a KL function, see [1, Remark 5] and [18, 19].

The following theorem follows directly from [2, Lemma 3, Theorem 1].

Theorem 4.4 (Convergence of PALM). Let F : Rd → (−∞,∞] be given by (26)
and let ∇H be globally L-Lipschitz continuous. Let (x(r))r be the sequence generated
by PALM, where the step size parameters fulfill

τ (r) ≥ γL

for some γ > 1. Then, for η := (γ − 1)L, the sequence (F (x(r)))r is nonincreasing
and

η
2∥x

(r+1) − x(r))
∥∥2
2
≤ F (x(r)) − F (x(r+1)).

If F is in addition a KL function and the sequence (x(r))r is bounded, then it
converges to a critical point of F .

By Lemma 4.1 and 4.3 and the fact that G coincides with H in a neighborhood
of the Stiefel manifold we obtain the following corollary.

Corollary 2. Let (U (r))r be generated by (29) with τ (r) ≥ γL, where L is the
Lipschitz constant of ∇H and γ > 1. Consider the sequence generated by PALM
with (29). Then, the sequence (G(U (r)))r is monotone decreasing and the sequence
(U (r))r converges to a critical point of G.

5. Superresolution. In this section, we adapt the superresolution method pro-
posed by Sandeep and Jacob [26] to our PCA-GMM model. The method works in
three steps. In the first step, we learn the PCA-GMM based on a reference image,
where high and low resolution images are known. After that, in the second and
third step, we use the learned PCA-GMM for superresolution of a low resolution
image with unknown high resolution counterpart.

Learning the PCA-GMM. For given low resolution patches xL,i ∈ Rτ2

of an

image and their higher resolution counterparts xH,i ∈ Rq2τ2

, q ∈ N, q > 2, i =

1, . . . , N we learn a PCA-GMM based on the data xi =

(
xH,i

xL,i

)
∈ Rn, where n =

(q2 + 1)τ2, by Algorithm 2. This provides us with parameters (U,b, α, µ,Σ) of the
reduced d-dimensional GMM. Using these parameters, we compute the parameters
of the corresponding high-dimensional mixture model (α, µ̃k, Σ̃k), k = 1, . . . ,K,
where µk and Σk are defined as in (10) and (9). In the following, we use the

notations µ̃k =

(
µ̃H,k

µ̃L,k

)
and Σ̃k =

(
Σ̃H,k Σ̃HL,k

(Σ̃HL,k)T Σ̃L,k

)
.
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Estimation of high resolution patches by MMSE. Now, we want to improve

the resolution of a given low resolution patch xL ∈ Rτ2

. First, we select the com-
ponent k∗, such that the likelihood that xL belongs to the k∗-th component is
maximal, i.e., we compute

k∗ = argmax
k=1,...,K

αkf(xL|µ̃L,k, Σ̃L,k).

Then we estimate the high resolution patch xH ∈ Rq2τ2

as the minimum mean-
square estimator (MMSE). The following remark briefly reviews this estimator.

Remark 5. (MMSE) Given a random variable Y : Ω → Rd in a probability space
(Ω,A,P), we wish to estimate a random variable X : Ω → Rd, i.e., we seek an

estimator T : Rd → Rd such that X̂ = T (Y ) approximates X. A common quality
measure for this task is the mean square error E∥X − T (Y )∥22, which gives rise to
the definition of the minimum mean square estimator

(30) TMMSE ∈ argmin
T

E∥X − T (Y )∥22.

Under weak additional regularity assumptions on the estimator T , the Lehmann-
Scheffé theorem [17] states that the general solution of the minimization problem
(30) is given by

TMMSE(Y ) = E(X|Y ).

In general, it is not possible to give an analytical expression of the MMSE estimator
TMMSE. An exception are Gaussian random variables: if X and Y are jointly
normally distributed, i.e.,(

X
Y

)
∼ N

((
µX

µY

)
,

(
ΣX ΣXY

ΣY X ΣY

))
,

then the conditional distribution of X given Y = a is normally as well and reads as

(X|Y = a) ∼ N
(
µX|Y ,ΣX|Y

)
,

where

µX|Y = µX + ΣXY Σ−1
Y (a− µY ), ΣX|Y = ΣX − ΣXY Σ−1

Y ΣY X .

As a consequence we obtain for normally distributed random variables the MMSE
estimator

(31) TMMSE(Y ) = E(X|Y ) = µX + ΣXY Σ−1
Y (Y − µY ).

In our superresolution task, we assume that the vector

(
xH

xL

)
is a realization

of a random variable

(
XH

XL

)
∼ N (µ̃k∗ , Σ̃k∗). Then, by (31), the MMSE can be

computed as

xH = µ̃H,k∗ + Σ̃HL,k∗(Σ̃L,k∗)−1(xL − µ̃L,k∗).
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Reconstruction of the high resolution image by patch averaging. We es-
timate for any patch in the low resolution image the corresponding high resolution
patch. Once we have estimated the high resolution patches, we compute an estimate
of the high resolution image in the following way:

Let xH = (xk,l)
qτ
k,l=1 ∈ Rqτ,qτ be a two-dimensional high resolution patch. Now,

we assign to each pixel xk,l the weight

wk,l := exp
(
− γ

2

(
(k − qτ+1

2 )2 + (l − qτ+1
2 )2

))
.

After that, we add up for each pixel in the high resolution image the corresponding
weighted pixel values and normalize the result by dividing by the sum of the weights.

6. Numerical results. In this section, we demonstrate the performance of our
algorithm by two- and three-dimensional examples, where we mainly focus on ma-
terial data which provided the original motivation for this work. More precisely, in
the frame of the ITN MUMMERING, a series of multi-scale 3D images has been
acquired by synchrotron micro-tomography at the SLS beamline TOMCAT. Ma-
terials of two samples were selected to provide 3D images having diverse levels of
complexity:

- The first one is a sample of Fontainebleau sandstone (”FS”), a natural rock
rather homogeneous and commonly used in the oil industry for flow experi-
ments.

- The second one is a composite (”SiC Diamonds”) obtained by microwave
sintering of silicon and diamonds, see [29].

Slices of the corresponding 3D images are given in the first two columns of Figure 1.
All implementations were done in Python and Tensorflow and they can be paral-

lelized on a GPU. We run all our experiments on a Lenovo ThinkStation with Intel
i7-8700 6-Core processor with 32GB RAM and NVIDIA GeForce GTX-2060 Super
GPU. The code is available online2.

For the implementation of PALM and iPALM, we use the implementation frame-

work from [11]3. As suggested in [25] we set the extrapolation factors γ
(r)
1 = γ

(r)
2 =

r−1
r+2 and choose τ

(r)
1 = 1

L̃1(b(r)
and τ

(r)
2 = 1

L̃2(U(r+1))
, where L̃1(b(r)) and L̃2(U (r+1))

are estimates of the Lipschitz constant of ∇UG(·, b(r)) and ∇bG(U (r+1), ·).
We generate pairs of high and low resolution images using the following superreso-
lution operator:

Generation of the test examples. For convenience, we describe the generation
in 2D. The 3D setting is treated in a similar way. We use the operator A from
the implementation of [23]4. This operator consists of a blur operator H and a
downsampling operator S. The blur operator is given by a convolution with a Gauss
kernel with standard deviation 0.5. For the downsampling operator S we use the
discrete Fourier transform (DFT). Given an image x ∈ Rm,n the two-dimensional
DFT is defined by Fm,n := Fn ⊗ Fm, where Fn = (exp(−2πikl/n))n−1

k,l=0. Now, the
downsampling operator S : Rm,n → Rm2,n2 is given by

S =
m2n2

mn
F−1

m2,n2
DFm,n,

2https://github.com/johertrich/PCA_GMMs
3https://github.com/johertrich/Inertial-Stochastic-PALM
4https://github.com/pshibby/fepll_public
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where for x ∈ Rm,n the (i, j)-th entry of D(x) is given by
xi,j , if i ≤ m2

2 and j ≤ n2

2 ,

xi+m−m2,j , if i > m2

2 and j ≤ n2

2 ,

xi,j+n−n2 , if i ≤ m2

2 and j > n2

2 ,

xi+m−m2,j+n−n2
, if i > m2

2 and j > n2

2 .

For a given high resolution image x, we now generate the low resolution image
y by y = Ax + ϵ, where ϵ is a realization of white Gaussian noise with standard
deviation 0.02.

Initialization of the EM algorithms. Since the negative log-likelihood function
is non-convex and admits many critical points, EM algorithms for GMMs are very
sensitive with respect to the initialization. For example this can be seen by consid-

ering the case when ϑ
(r)
k = ϑ

(r)
l , k, l = 1, ...,K for some r ∈ N. Then we obtain that

β
(r)
i,k = αk and consequently ϑ

(r+1)
k = ϑ

(r+1)
l , k, l = 1, ...,K. The same effect appears

for PCA-GMMs and HDDC. Consequently the initialization of the EM algorithms
is of great importance. For our numerical examples, we initialize the GMMs as

follows. We set α
(0)
k = 1

K , for k = 1, ...,K. For initializing the means, we choose
randomly K distinct data points µ1, ..., µK from our training data x1, ..., xN . Fi-
nally, we choose for each k = 1, ...,K the M points y1, ..., yM from x1, ..., xN which

are the closest ones to µk and initialize the covariances by Σk = 1
M

∑M
i=1 yiy

T
i . The

number M is chosen according to the dimension n of the data. In our examples, we
use M = 2n.

We initialize the PCA-GMMs and HDDC by taking the initialization for GMMs,
running one E-Step from the EM algorithm for GMMs followed by the M-step of
the PCA-GMMs or HDDC, respectively.

Choice of σ and K. The PCA-GMM model depends heavily on the choice of the
parameter σ. As pointed out in Subsection 4.1, this parameter could be learned
from the data. However, the forward model for the low resolution images y = Ax+ϵ
for some (unknown) superresolution operator A, the high resolution image x and
noise ϵ suggest to choose the σ according to the standard deviation of the noise ϵ.
Note, that in our experiments, the low resolution images are artificially generated
by applying a downsampling operator and adding some noise. Consequently, the
standard deviation of ϵ is known. Nevertheless, if the noise level is unknown, it could
be estimated very accurately from the data based on homogeneous area detection
as done, e.g., in [10, 27].

In practice, it can be unstable to estimate the standard deviation of the noise
within the optimization of the mixture model, since this requires that the image
patches belong exactly (and not only approximately) to a dimensionality reduced
GMM with K components, which is an unrealistic assumption. Therefore, it can be
beneficial and quite more accurate to estimate the standard deviation of the noise
a priori. In particular, if the standard deviation of the noise is known, fixing σ can
be the better approach.

Note that the noise with standard deviation σ within the superresolution model
does not necessarily imply that the eigenvalues of the covariance matrices in the
mixture model are greater than or equal to σ2 (which is assumed for HDDC), since
the noise is only applied to the low resolution images.
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Figure 1. Top: Images for estimating the mixture models. Bot-
tom: Ground truth for reconstruction. First column: Material
”FS”, second column: Material ”SiC Diamonds”, third column:
goldhill image.

Also the number of components K of the mixture models can have a large impact
on the results. For superresolution, a detailed comparison of the prediction quality
for different choices of K was done by Sandeep and Jacob in [26]. They observed that
the benefit of taking more than 100 components in the GMM is usually very small.
Therefore, we take K = 100 components for all mixture model in our numerical
examples.

Comparison of the computation times. Note that there already exist imple-
mentations of HDDC by some of the authors of [3]. However, to provide a fair
comparison of the execution times, we reimplement the EM algorithm for HDDC in
Python and Tensorflow, such that it supports GPU parallelization. Further, note
that we compute the updates of α, m and C simultaneously to the E-step such
that the corresponding execution time is contained in the E-step, even though the
updates technically belong to the M-step. This has the advantage that we have to
iterate only once over the whole data set and enables a better parallelization. We
implemented this optimization of the order of computation for all of the models
(GMM, PCA-GMM and HDDC) analogously.

2D-Data. For estimating the parameters of the mixture models, we use the upper
left quarter of the image as in the top row of Figure 1. As ground truth for the
reconstruction we use the whole images as in the bottom row. The images in the
left and middle columns are the middle slices of the material data ”FS” and ”SiC
Diamonds”. The high resolution images have a size of 2560 × 2560. The right
column contains the goldhill image, which has the size 512 × 512.
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We estimate the parameters of a GMM and of our PCA-GMM as described in
the previous sections. First, we fix the parameter σ in Algorithm 2 as the standard
deviation of the noise on the low dimensional image (i.e. σ = 0.02). Second, we
consider the case when σ is learned from the data and finally we compare our results
with HDDC [3]. Each mixture model has K = 100 classes. We use the magnification
factors q ∈ {2, 4} and the patch size τ = 4 for the low resolution patches. This
corresponds to a patch size of qτ = 8 or qτ = 16 respectively for the high resolution
images. For the material images, this leads to N ≈ 400000 patches for q = 2 and
N ≈ 100000 for q = 4. Using the goldhill image, we get N ≈ 15000 patches for
q = 2 and N ≈ 3700 patches for q = 4. We reduce the dimension of the pairs of
high and low resolution patches from n = (q2 + 1)τ2 = 80 or n = (q2 + 1)τ2 = 272
respectively to d for d ∈ {4, 8, 12, 16, 20}. After estimating the mixture models,
we use the reconstruction method from [26] as described in the previous section
to reconstruct the ground truth from the artificially downsampled images. The
resulting PSNRs are given in Table 1. As a reference we also measure the PSNR
of the bicubic interpolation. The average execution times for one E-step and one
M-step are given in Table 2. Figure 2 shows some small areas of the high resolution
images, low resolution images and the corresponding reconstructions for GMMs and
PCA-GMM with d = 12 and d = 20. The result with d = 12 for PCA-GMM is
already almost as good as GMM, whereas the dimension of the patches was reduced
by a factor between 4 and 22 (depending on the case). Further, we observed that
the dimensionality reduction reduces the execution time of the E-step significantly.
On the other hand, the execution time of the M-step is larger than those in the
GMM for all dimension reduced models due its higher complexity. Comparing the
different dimensionality reduced models, we observe that the PCA-GMM with fixed
σ gives significantly better results than the other models, while HDDC achieves the
fastest M-step due to the closed-form updates. However, compared to the execution
time of the E-step, this advantage seems to be negligible for large data sets as, e.g.,
the patches from the FS and SiC Diamonds image.

Figure 3 shows a histogram of the eigenvalues of the covariance matrices Σk,
k = 1, ...,K of the PCA-GMM model with fixed σ = 0.02 for the FS and SiC
Diamonds image with magnification q = 4. We observe, that for the SiC Diamonds
image a significant amount of eigenvalues are smaller than σ2 = 4 ·10−4 which is not
possible within a HDDC model [3]. For the FS image, the eigenvalues are mostly
greater than σ2.

3D-Data. In the following, we present the same experiments as in the 2D-case
but with 3D-data. For this experiment, we crop a 600 × 600 × 600 image from
the material images ”FS” and ”SiC Diamonds”. For the estimation of the mixture
model, we use the upper front left 300 × 300 × 300 part of the images and crop
randomly N = 1000000 patches.

Again, we estimate the parameters of a GMM and a PCA-GMM with K = 100
classes and fixed σ = 0.02 as described in the previous sections. Since we have seen
in the 2D examples that the results of PCA-GMMs with learned σ and HDDC are
similar, we compare our 3D results just with HDDC. As magnification factor, we use
q = 2. For the low resolution image we use τ×τ×τ -patches with patch size τ = 4 and
for the high resolution image we use a patch size of qτ = 8. We reduce the dimension
of the pairs of high and low resolution patches from n = (q3 + 1)τ3 = 576 to d for
d ∈ {20, 40, 60}. After estimating the mixture models, we use the reconstruction
method from [26] as described in the previous paragraph to reconstruct the ground
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Magnification factor q = 2 Magnification factor q = 4
d FS Diamonds Goldhill FS Diamonds Goldhill

bicubic - 30.57 30.67 28.99 25.27 25.19 24.66
GMM - 35.49 37.21 31.63 30.69 30.74 27.80

PCA-GMM,

σ = 0.02

20 35.44 37.24 31.25 30.75 30.74 27.64
16 35.42 37.22 31.25 30.74 30.62 27.59
12 35.47 37.13 31.18 30.67 30.48 27.55
8 35.32 36.69 31.00 30.46 30.16 27.38
4 34.69 35.23 30.42 29.78 29.24 26.89

PCA-GMM,

learned σ

20 35.22 37.06 31.27 30.43 30.51 27.66
16 35.14 37.01 31.14 30.34 30.31 27.51
12 34.95 36.54 30.94 30.13 29.84 27.33
8 34.43 35.47 30.54 29.62 29.08 26.88
4 32.74 33.41 29.69 28.51 27.75 26.16

HDDC [3]

20 35.35 37.12 31.35 30.54 30.63 27.73
16 35.31 37.10 31.25 30.47 30.48 27.62
12 35.24 36.64 31.08 30.27 30.08 27.40
8 34.76 35.66 30.76 29.80 29.34 27.00
4 33.46 33.86 29.93 28.61 27.99 26.37

Table 1. PSNRs of the reconstructions of artificially downsam-
pled 2D images using either bicubic interpolation, a GMM, PCA-
GMM for different choices of d or HDDC. The magnification factor
is set to q ∈ {2, 4}. PCA-GMM produces results almost as good as
GMM, with a much lower dimensionality.

truth from of the artificially downsampled images. The resulting PSNRs are given
in Table 3 and the average execution times of one E-step and one M-step are given
in Table 4. As a reference we also measure the PSNR of the nearest neighbor
interpolation.

7. Conclusions. In this paper, we presented a new algorithm to perform image
superresolution. Based on previous work by Sandeep and Jacob [26], we added
a dimension reduction step within the GMM model using PCA on patches. The
new variational model, called PCA-GMM is of interest on its own, and can be also
applied for other tasks. We solved our PCA-GMM model by an EM algorithm with
the usual decreasing guarantees for the objective if the E-step and M-step can be
performed exactly, see Corollary 1. However, our M-step requires to solve a non-
convex constrained minimization problem. Here we propose a PALM algorithm
and prove that all assumptions for the convergence of the sequence of iterates to a
critical point required by [2] are fulfilled, see Corollary 2. Our algorithm has the
advantage that the M-step is cheap in relation to the E-step since it does not rely
on the large numbers of samples in the inner iterations.

We have demonstrated the efficiency of the new model by numerical examples,
in the case of 2D and 3D images. They confirm that PCA-GMM is an efficient way
of reducing the dimension of the patches, while keeping almost the same quality of
the results than with a GMM algorithm. This dimension reduction is of the utmost
importance when dealing with 3D images, where the size of the data gets very large.
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Magnification factor q = 2, i.e. dimension n = 80
FS, N = 405769 Diamonds, N = 405769 Goldhill, N = 15625

d E-step M-step E-step M-step E-step M-step
GMM - 10.91 0.06 10.91 0.06 0.44 0.06

PCA-GMM,

σ = 0.02

20 7.25 0.74 7.42 0.57 0.28 0.54
12 6.58 0.59 6.53 0.51 0.25 0.46
4 6.18 0.56 6.17 0.52 0.24 0.48

PCA-GMM,

learned σ

20 7.28 0.54 7.41 0.54 0.28 0.54
12 6.59 0.47 6.53 0.45 0.25 0.47
4 6.20 0.47 6.17 0.44 0.24 0.51

HDDC [3]
20 7.27 0.27 7.44 0.27 0.28 0.26
12 6.64 0.26 6.64 0.26 0.25 0.26
4 6.27 0.27 6.23 0.26 0.24 0.26

Magnification factor q = 4, i.e. dimension n = 272
FS, N = 100489 Diamonds, N = 100489 Goldhill, N = 3721

d E-step M-step E-step M-step E-step M-step
GMM - 17.15 0.06 17.11 0.06 0.90 0.06

PCA-GMM,

σ = 0.02

20 8.65 3.54 8.68 2.03 0.44 1.83
12 8.17 2.73 8.15 1.99 0.42 1.75
4 7.95 2.10 7.94 2.49 0.41 1.91

PCA-GMM,

learned σ

20 8.65 1.92 8.70 1.83 0.44 1.87
12 8.17 1.99 8.17 1.74 0.42 1.74
4 7.94 2.17 7.93 1.76 0.41 1.72

HDDC [3]
20 8.65 1.53 8.71 1.54 0.44 1.52
12 8.16 1.54 8.14 1.53 0.42 1.52
4 7.95 1.54 7.96 1.54 0.41 1.52

Table 2. Average execution time (in seconds) for the E-step and
M-step in the EM algorithm for estimating the parameters of the
mixture models.

d FS Diamonds
Nearest neighbor - 30.10 26.25

GMM - 33.32 30.71

PCA-GMM,

σ = 0.02

60 33.38 30.83
40 33.36 30.75
20 33.25 30.17

HDDC [3]
60 33.23 30.49
40 33.24 30.29
20 33.02 29.47

Table 3. PSNRs of the reconstructions of artificially downsam-
pled 3D images using either nearest neighbor interpolation, GMM
or PCA-GMM for different choices of d. The magnification fac-
tor is set to q = 2. As in the 2D case, PCA-GMM with small d
produces results almost as good as GMM, but with a much lower
dimensionality.

Inverse Problems and Imaging Volume 16, No. 2 (2022), 341–366



PCA-GMMs for Superresolution 363

(a) Diamonds, q = 2 (b) Diamonds, q = 4 (c) FS, q = 2 (d) FS, q = 4

Figure 2. Reconstructions of 2D low resolution images. First row:
ground truth, second row: low resolution, third row: reconstruction
with GMM, fourth row: reconstruction with PCA-GMM and d =
20, fifth row: reconstruction with PCA-GMM and d = 12. The
larger of d, the closer is the result of PCA-GMM to GMM.

As future work, apart from the mathematical analysis of the EM algorithm with
approximate M-step, we intend to work on the robustness of the method. This
could be done by using a robust PCA [22], and also by making the model invariant
to contrast changes, see, e.g. [9]. Further, we aim to deal with material examples,
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(a) FS with magnification q = 4 (b) SiC Diamonds with magnification q = 4

Figure 3. Histograms of the eigenvalues of Σk, k = 1, ...,K for
the PCA-GMM with fixed σ = 0.02 for d = 20.

FS Diamonds
d E-step M-step E-step M-step

GMM - 717.91 0.07 718.13 0.07

PCA-GMM,

σ = 0.02

60 338.22 12.29 337.44 17.49
40 327.34 9.73 324.93 13.87
20 320.00 7.85 319.46 9.80

HDDC [3]
60 337.29 4.15 337.42 4.16
40 327.11 4.19 324.95 4.15
20 320.03 4.20 319.07 4.15

Table 4. Average execution time (in seconds) of the E-step and
M-step in the EM algorithm for estimating the parameters of the
mixture models.

where we do not subsample the images in a synthetic way. In particular, we will not
know the subsampling operator. Within ITN MUMMERING such measurements
were taken, but require to undergo an advanced registration process.

Finally, we are aware of deep learning techniques for superresolution, see, e.g.
[15, 30]. We will consider such approaches in the future which would also benefit
from dimensionality reduction, in particular in 3D.
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