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Abstract: This paper proposes to model fractional behaviors using Volterra equations. As fractional
differentiation-based models that are commonly used to model such behaviors exhibit several draw-
backs and are particular cases of Volterra equations (in the kernel definition), it appears legitimate in
a modeling approach to work directly with Volterra equations. In this paper, a numerical method
is thus developed to identify the kernel associated to a Volterra equation that describes the input–
output behavior of a system. This method is used to model a lithium-ion cell using real data. The
resulting model is compared to a fractional differentiation-based model with the same number of
tunable parameters.

Keywords: fractional behaviours; fractional models; Volterra equations; lithium-ion cell

1. Introduction

Fractional behaviors are induced by numerous physical phenomena, often of a stochastic
nature, such as diffusion, collision, adsorption, freezing, aggregation, and fragmentation [1,2]
Many examples of this type of behavior have been revealed in various areas, including
electrochemistry [3,4], thermal science [5,6], biology [7,8], mechanics [9], acoustics [10],
and electrical engineering [11]. Faced with the omnipresence of such behaviors, efficient
modeling tools are required.

Physical systems with fractional behaviors are often modeled using fractional
differentiation-based models, or “fractional models” for short. Such models are indeed
able to fit the input–output behavior of this class of system accurately and with a limited
number of parameters. However, it is now known that fractional differentiation-based
models are associated to several drawbacks mainly related to the doubly infinite dimension
of these models [12–16].

To overcome some of these drawbacks, new modeling tools must be introduced. Some
were recently proposed in [12] among which Volterra equations are included. Volterra
equations of the first kind were introduced by Volterra in [17] and, in the linear and
homogenous case, are defined by the relation:

∫ t

0
η̃(t− τ)x(τ)d τ = v(t). (1)

Assuming that v(t) is differentiable, differentiation of the relation (1) leads to the
following relation, which is called a linear Volterra equation of the second kind:

x(t) = u(t) +
∫ t

0
η(t− τ)x(τ)d τ, (2)
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where u(t) = 1
η̃(0)

d
d t v(t) and η(t) = − 1

η̃(0)
d

d t η̃(t).
Volterra equations have been used in various applications: energy [18,19], sorption

kinetics [20], and mechanical systems [21]. These equations are more general than the
fractional differentiation-based models, since fractional pseudostate space descriptions are
special cases of Volterra equations [22] involving a particular kernel. The Cole and Cole [23]
modeling work considered by some as the first application of fractional differentiation
could thus have been done using Volterra equations as demonstrated in [22].

This paper therefore proposes an answer to the problem of the direct determination
of the kernel of a Volterra equation from input–output data. There is very little work in
the literature that is interested in this problem, which is nevertheless an essential step in
the modeling methodology. We can, however, cite the work of Brewer et al. [24], which
relates to the identification of Volterra equation with weakly singular kernels but for which
the kernel has a predefinite structure; and of Karuppiah et al. [25] which relates to the
reconstruction of a time-independent parameter in an integrodifferential equation. We can
also cite the work of Glentis et al. [26] in which Volterra kernels are estimated via statistics
method, of Nemeth et al. [27] in which interpolating technics are used to approximate
Volterra kernels, and of Lorenzi [28] in which some results on identification of unknown
terms in integrodifferential equations are gathered. None of these works allow the direct
computation of an analytic function for the kernel in the Volterra model to be obtained.

In this paper, it is first highlighted that Volterra equations generalize a pseudostate
space description often used in the literature to model input–output fractional behaviors,
but also other fractional models. An identification method that permits the direct deter-
mination of the kernel involved in a first-kind Volterra equation is then proposed. The
method is applied to derive a model for a lithium-ion cell on real data. A comparison of
the obtained model with a fractional differentiation based model is also carried out.

2. Volterra Equations as Generalizations of Fractional Models

For a fractional model, the pseudostate space descritpion is given by the relation
{

Dν
0 x = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
, ∀t < 0, x(t) = u(t) = 0, (3)

where Dν
0 is a fractional differentiation operator of order ν ∈ R [29], x(t) ∈ Rn is the

pseudostate vector [30], u(t) ∈ R is the control input, supposed differentiable and y(t) ∈ R
is the measured output. All these functions are supposed to be integrable over their
domain of definition. Several definitions exist for this operator [31]. One of the most used
definitions is that of Riemann–Liouville, denoted RLDν

t0
with:

RLDν
t0

f (t) =
dm

d tm

[
1

Γ(m− ν)

∫ t

t0

(t− τ)m−ν−1 f (τ)d τ

]
, (4)

and m = dνe.
In the case 0 < ν < 1, a first order integration on both sides of the first equation of (3),

leads to the following relation:

∫ t

0
ζ(t− τ)x(τ)d τ =

∫ t

0
Ax(τ) + Bu(τ)d τ, (5)

where ζ(t− τ) = (t−τ)m−ν−1

Γ(m−ν)
multiplies each component of the vector x(τ). The relation (5)

can therefore be rewritten as follows
∫ t

0
(ζ(t− τ)In − A)x(τ)d τ =

∫ t

0
Bu(τ)d τ, (6)
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where In denotes the identity matrix of size n. And so the pseudo-state representation (3)
can be rewritten as a Volterra equation of the first kind:

∫ t

0
η(t− τ)x(τ)d τ = v(t), (7)

with v(t) =
∫ t

0 Bu(τ)d τ and η(t) = ζ(t)In− A. The relation (7) shows that the pseudostate
representation is a particular case of Volterra equation of the first kind and thus of the
second kind given relation (2).

This analysis can be extended to another class of fractional models. Consider the
following fractional differential equation:

Na∑

k=1

ak
dνak

d tνak
x(t) =

Nb∑

k=1

bk
dνbk

d tνbk
u(t), (8)

with

νaNa
> νaNa−1 > · · · > νa1

νbNb
> νbNb−1 > · · · > νb1

νaNa
> νbNb

and |νaNa
− νbNb

| < 1.

Laplace transform applied to relation (8) permits to write that

x(s)
1

F(s)
= u(s), (9)

where x(s) and u(s) are respectively the Laplace transform of x(t) and u(t), and where

F(s) =
∑Nb

k=1 bksνbk

∑Na
k=1 aksνak

. (10)

By multiplying the two sides of relation (9) by 1
s , it becomes

x(s)
1

sF(s)
=

1
s

u(s), (11)

in which transfer function 1
sF(s) is now proper.

Using the inverse Laplace transform, relation (11) becomes

∫ t

0
ϕ(t− τ)x(τ)d τ = v(t), (12)

with v(t) =
∫ t

0 u(τ)d τ and where ϕ(t) = L−1{ 1
sF(s)}.

Relation (12) has thus the same form as relation (1) and is a first-kind Volterra equation
with a kernel of specific structure.

Note that the constraint |νaNa
− νbNb

| can be lifted. In the case m− 1 < |νaNa
− νbNb

| <
m (m ∈ N), v(t) is the integral of order m in relation (12) and ϕ(t) = L−1{ 1

sm F(s)}.
As a consequence, in a modeling approach, it is better to work directly with a Volterra

equation, because this avoids being constrained on the choice of the kernel, which is
fixed in the case of a fractional model. The direct use of a Volterra equation is therefore
more general.
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3. A Numerical Method to Determine the Kernel of the Volterra Model

Let us denote x(t) the output of a linear system in response to an input u(t). The
signal x(t) is modeled with the Volterra equation of relation (2) which involves a kernel
η that can be determined numerically, as follows. A discretization of relation (2) is done
using trapezoid method (with sampling time Ts), which provides:

x(Ts) = u(Ts) +

∫ Ts

0
η(τ)x(t− τ)d τ

≈ u(Ts) +
η(Ts)x(Ts − Ts) + η(0)x(Ts − 0)

2
Ts

x(2Ts) = u(2Ts) +

∫ Ts

0
η(τ)x(t− τ)d τ

+

∫ 2Ts

Ts

η(τ)x(t− τ)d τ

≈ u(2Ts) +
η(Ts)x(2Ts − Ts) + η(0)x(2Ts − 0)

2
Ts

+
η(2Ts)x(2Ts − 2Ts) + η(Ts)x(2Ts − Ts)

2
Ts

... (13)

whose matrix writing is




x(Ts) x(0) 0 · · · · · · · · ·
x(2Ts) 2x(Ts) x(0) 0 · · · · · ·
x(3Ts) 2x(2Ts) 2x(Ts) x(0) 0 · · ·

...
. . .




︸ ︷︷ ︸
X




η(0)
η(Ts)

η(2Ts)
...




︸ ︷︷ ︸
η

=




x(Ts)− u(Ts)
x(2Ts)− u(2Ts)
x(3Ts)− u(3Ts)

...




︸ ︷︷ ︸
U

(14)

Samples η(k) can then be obtained solving the linear equation system (14) with a least
square method. An analytic function η(t) can then be used to fit the samples η(k).

As an example, let suppose that the signal x(t) corresponds to the step response of the
fractional transfer function

F(s) =
1(

s
ωb

+ 1
)ν , with ωb = 10−3 and ν = 0.2. (15)

The resulting step response is given by

f (t) =
e−t/2ωb tν

ν(ν + 1)

((
t

ωb

)−ν/2
WM

(
ν, ν/2 + 1/2,

t
ωb

)

+ (ν + 1)e−t/2ωb
)

, (16)

where WM(·, ·, ·) is the Whittaker M function.
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The samples η(k) are then computed using relation (14). The following function,
which is close to the impulse response of F(s), is first considered to fit the samples η(k)
using relation (14):

η1(t) = a0tν−1 exp(−t/ωb). (17)

The response of Equation (2) with kernel η1(t) is denoted x1(t) and is compared to
the response x(t) of the fractional model (15) in Figure 1.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

x(t)

x
1
(t)

Figure 1. Fractional model (15) compared to the response x1(t) of model (2) with kernel η1(t) of
Equation (17).

After optimization, the quadratic error between x(t) and x1(t) is

ε1 =
∑
|x1(i)− x(i)|2 = 5.5985. (18)

Kernel (17) is singular. To avoid this singularity and to have a more accurate fitting
of η(k), another kernel must be found. For this, it is assumed that a physical system has a
low-pass-type behavior, and thus its low-frequency behavior can be captured by a transfer
function of the form

H(s) =
1

pk(p + α)
, k ∈ N . (19)

Let h(t) be the inverse Laplace transform of H(s). To take into account the behavior of
the system in medium frequency (frequencies less than 1/Ts), function h(t) is completed
by a function of general form

g(t) =
∑na

k=1 aktk
∑nb

k=1 bktk
, with a0 = 1. (20)

Thus for the considered problem (as k = 0 in relation (19)), a possible analytic function
for samples η(k) fitting is:

η2(t) = exp(−αt)
1 + a1t + a2t2

b0 + b1t + b2t2 . (21)

In Figure 2 are compared η(k) and the kernel η2(t) with parameters gathered in Table 1
after optimization.

The quadratic error between η2(k) and η(kTs) is

ε2 =
∑
|η2(i)− η(i)|2 = 3.6892× 10−3. (22)
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Table 1. Parameters of η2(t) in the relation (21).

α 4.2697 × 10−5

a1 7.7946 × 10−3

a2 2.3453 × 10−5

b0 6.7661

b1 4.2179

b2 2.3728 × 10−1

The output of the model (2) with kernel η2(t), denoted x2(t) is given in Figure 3 and
is compared with the response of the fractional model f (t).
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Figure 3. Output x2(t) of model (2) with kernel η2(t) (Equation (21)) compared to the step response
f (t) (Equation (16)).
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Figure 3. Output x2(t) of model (2) with kernel η2(t) (Equation (21)) compared to the step response
f (t) (Equation (16)).



Fractal Fract. 2022, 6, 137 7 of 14

The quadratic error between x2(t) and f (t) is

ε3 =
∑
|x2(i)− x(i)|2 = 3.11× 10−1. (23)

The comparison reveals that the error ε3 obtained with the Volterra model is notably
smaller than the error ε1 obtained with the fractional model. Thus, the proposed kernel of
the general form

η(t) = h(t)g(t) (24)

is a possible and interesting candidate for the fitting of the samples η(k).

4. Application to Lithium-Ion Cell

This section is dedicated to lithium-ion cell input–output behavior modeling. A wide
variety of battery models have been proposed in the literature with different complexities
and applications. These models can be classified in 4 categories [32]

• Electrochemical models, which accurately describe electrochemical reactions that take
place in the electrodes and the electrolyte [33]—Pseudo-Two-Dimensional model and
Single Particle Model belong to this category;

• Mathematical models, which are based on empirical equations or math-based stochas-
tic models which only evaluate the charge-recovery effect and ignore all other factors.
The number of equations is reduced and simplified compared to the electrochemical
model [34];

• Circuit-oriented models, which are electrical-equivalent models or impedance models
in which each component of the circuit is related to an electrochemical process of the
battery to provide a good description of its internal behaviour [35];

• Combined models that consists of the combination of different electrical models and
mathematical models in order to combine the best attributes of each model, such as
the correct prediction of the battery lifetime, steady-state and transient responses, and
accurate estimation of the state of charge [36].

In this section, the model proposed falls in this last category as it is an impedance-
based model, resulting from the simplification of Single Particle model, that combines
several mathematical submodels, especially a Volterra equation, to take into the long-
memory behaviour of a lithium-ion cell. This model will be compared to a similar model
that includes a fractional order-transfer function [37].

The data comes from [38] and results from a collaboration with the society PSA
Peugeot-Citroën. The input of the cell is the current and the output its voltage. The
incoming current over time is plotted in Figure 4 and the resulting voltage U(t) over time
is plotted in Figure 5.

0 50 100 150 200 250 300 350 400 450 500

Time (s)

-100

-50

0

50

100

150

C
u

rr
e

n
t 

(A
)

Figure 4. Input current applied to the cell.
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Under the asumption of material spherical particle in the electrodes and considering
that the positive electrode is limiting in terms of dynamic behavior, a lithium-ion cell can
be modeled by the single electrode model of Figure 6. This model contains a resistor R for
the internal and connections resistances that can be estimated through the voltage drop
that appears when a step current is applied. The function ϕ links the open circuit voltage
(OCV) to the lithium concentration at the surface of the sphere. It can be obtained by
measuring the cell voltage at rest for various cell states of charge. For the considered cell,
this nonlinear function is fitted by a 12-degree polynomial (see [38] for the fitting result of
this polynomial). The initial state of the battery is defined by CS(0) and the cell voltage is
U(t). The function G(s) permits to model the diffusion of lithium inside the sphere.

0 50 100 150 200 250 300 350 400 450 500

Time (s)

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

V
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lt
a

g
e

 (
V

)

Figure 5. Cell output voltage.

I(t) G(s)
+

+
ϕ

Cs(t)

+

+ U(t)

R

Cs(0)

Figure 6. Model of a lithium-ion cell proposed in [38].

4.1. Fractional Model

First, the diffusion part is modeled using the following fractional transfer function:

G(s) =
K
s

(1 + sn

w1
)(1 + sn

w2
)

(1 + sn

w3
)

. (25)

After a least square optimization, aiming at minimizing the differences between the
model and the cell output, the parameters gathered in Table 2 were obtained for transfer
function G(s). The optimal value for parameter R is 1.836 × 10−3. The resulting response
U1(t) of the model of Figure 6 is compared to the cell output voltage in Figure 7.
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Table 2. Parameters of G(s) from the relation (25) for modeling the outgoing battery voltage.

K 4.332 × 10−5

n 7.195 × 10−1

ω1 4.001 × 10−2

ω2 1.143 × 102

ω3 4.345
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V
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Data U(t)

 U
1
(t)

Figure 7. Voltage U(t) compared to the response of model in Figure 6 with the fractional transfer
function (25).

The quadratic error between U(t) and U1(t) is given by:

ε4 =
∑
|U(i)−U1(i)|2 = 1.250× 10−1. (26)

The error as a function of time is plotted in Figure 8.
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Figure 8. Error between voltage U(t) and the response U1(t) of model in Figure 6 using the fractional
transfer function (25).
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4.2. Volterra Model

The diffusion part of the cell model described in Figure 6 is now modeled by the
Volterra Equation (2), in which the kernel η(t) is defined by the relation:

η2(t) = − exp(−αt)
1 + a0t2

b0 + a1t2 + a2t3 , (27)

where function u(t) is defined as K1
∫

I(t). Parameter b0 = 0.264 is not optimized but is a
fixed value defined so that the first value of U2(0) coincides with the voltage U(0), where
U2(t) denotes the Volterra equation-based cell model output. Hence, this model involves
the same number of parameters as transfer function (25). After optimization, aiming at
minimizing the differences between U(t) and U2(t), the obtained parameters for η2(t) are
gathered into Table 3. The optimal value for parameter R is 1.836 × 10−3.

The cell output voltage U(t) and the output U2(t) of the model of Figure 6 using the
Volterra model (2) for the diffusion part are compared in Figure 9.

Temps (s)

0 50 100 150 200 250 300 350 400 450 500

T
e

n
s
io

n
 (

V
)

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

Data

Model

Figure 9. Voltage U(t) compared to the response U2(t) of model in Figure 6 using the Volterra
model (2) with kernel (27).

Table 3. Parameters of η2(t) of the relation (27) for the modeling of the outgoing battery voltage U(t).

a0 5.545 × 10−1

a1 3.639 × 10−2

a2 1.274 × 10−3

α 3.965 × 10−3

K1 4.486 × 10−3

The quadratic error between the voltage data U(t) and the cell model is then given by

ε5 =
∑
|U(i)−U2(i)|2 = 1.112× 10−1. (28)

The error as a function of time is plotted in Figure 10.
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Figure 10. Error between voltage U(t) and the response U2(t) of model in Figure 6 using the Volterra
model (2) with kernel (27).

4.3. Discussion

In comparison with a simple first-order or second-order model, the Volterra model
permits the system memory to be taken into account. The application of the previous
section shows that both fractional and Volterra models accurately capture the dynamics
of a system known for its fractional behaviour, with the same number of parameters and
with a slightly better quadratic error for the Volterra model; however, one advantage of
Volterra-based models is their ability to overcome several drawbacks of the fractional
models [12,13,15]. Moreover, the Volterra model used here is simpler than single-particle
models and pseudo-2D Li-ion electrochemical models.

Furthermore, the memory of a Volterra model can be limited by modifying one bound
of the integral defining the Volterra model without affecting its input–output behavior.
Relation (2) thus becomes:

x(t) = u(t) +
∫ Tf

0
η(τ)x(t− τ)d τ, x(t) = 0 for t < 0 (29)

where Tf characterizes the memory length.
By choosing Tf well, the behaviors of (2) and (29) are very close. In order to define a

rule for the choice of Tf , the frequency responses of the transfer function x(s)/u(s) resulting
from relation (29) for several values of Tf are now compared.

As the Laplace transform of relation (29) is

x(s) = u(s) +
∫ Tf

0
η(τ)e−sτx(s)d τ (30)

the transfer function x(s)/u(s) is thus given by

x(s)
u(s)

=
1

1− ∫ Tf
0 η(τ)e−sτ d τ

. (31)

For s = jω, integral in (31) can be computed numerically and thus, with ∆ =
Tf
N :

x(jω)

u(jω)
≈ 1

1−∑N−1
k=0 η(k∆)e−jωk∆

. (32)
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Frequency responses of x(jω)/u(jω) for η(t) = η2(t) (relation (27)) and for Tf = 0.05/α,
Tf = 0.1/α, Tf = 1/α, Tf = 5/α and Tf = 10/α are represented by Figure 11. This figure
shows that for Tf ≥ 5/α the Bode diagrams of x(jω)/u(jω) are similar and that it is not
useful to chose Tf > 5/α.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-20

-15

-10

-5

0
G

a
in

 (
d

B
)

Tf=0.05/

Tf=0.1/

Tf=1/

Tf=5/

Tf=10/

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Frequency (rad/s)

0

20

40

60

P
h

a
s
e

 (
°

)

Tf=0.05/

Tf=0.1/

Tf=1/

Tf=5/

Tf=10/

Figure 11. Frequency responses of x(jω)/u(jω) for η(t) = η2(t), for various values of Tf .

5. Conclusions

Starting from the idea that a fractional differentiation-based model is a particular type
of Volterra equation [22], this paper proposes a method to directly derive an explicit form
for the kernel involved in a Volterra equation from real input–output data. This method is
based on the discretization of the Volterra equation and on the fitting of the discrete form of
its kernel using an analytic function. The method is applied to the input–output modelling
of a lithium-ion cell. The comparison of the resulting model response and the data reveals a
very small error. This error is similar (but slightly better) to those obtained with a fractional
differentiation-based models with the same number of tunable parameters but without
the drawbacks associated to fractional differentiation-based models [12–16]. The authors
now intend to continue working on fractional-behavior modeling using Volterra equations
in order to improve the method presented in this paper (for instance, using a system of
Volterra equations), and extend it in particular to multi-input multi-output systems. The
authors also intend to work with other modelling tools, such as the one described in [39].
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