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Abstract
The	 success	 of	 correctly	 identifying	 all	 the	 components	 of	 a	 nonlinear	 mixed-	
effects	 model	 is	 far	 from	 straightforward:	 it	 is	 a	 question	 of	 finding	 the	 best	
structural	 model,	 determining	 the	 type	 of	 relationship	 between	 covariates	 and	
individual	 parameters,	 detecting	 possible	 correlations	 between	 random	 effects,	
or	also	modeling	residual	errors.	We	present	 the	Stochastic	Approximation	 for	
Model	 Building	 Algorithm	 (SAMBA)	 procedure	 and	 show	 how	 this	 algorithm	
can	be	used	to	speed	up	this	process	of	model	building	by	identifying	at	each	step	
how	best	to	improve	some	of	the	model	components.	The	principle	of	this	algo-
rithm	 basically	 consists	 in	 “learning	 something”	 about	 the	 “best	 model,”	 even	
when	a	“poor	model”	is	used	to	fit	the	data.	A	comparison	study	of	the	SAMBA	
procedure	with	Stepwise	Covariate	Modeling	(SCM)	and	COnditional	Sampling	
use	for	Stepwise	Approach	(COSSAC)	show	similar	performances	on	several	real	
data	examples	but	with	a	much	reduced	computing	time.	This	algorithm	is	now	
implemented	in	Monolix	and	in	the	R	package	Rsmlx.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Existing	model-	building	methods	for	nonlinear	mixed-	effects	models	have	high	
computational	time,	especially	for	selecting	the	covariate	model.
WHAT QUESTION DID THIS STUDY ADDRESS?
The	 study	 describes	 the	 principle	 of	 the	 Stochastic	 Approximation	 for	 Model	
Building	 Algorithm	 (SAMBA)	 procedure,	 which	 allows	 to	 build	 a	 covariate,	 a	
correlation,	 and	 an	 error	 model	 automatically	 and	 compares	 it	 with	 Stepwise	
Covariate	Modeling	(SCM)	and	COnditional	Sampling	use	for	Stepwise	Approach	
(COSSAC)	procedures.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
SAMBA	allows	to	select	the	best	covariate	model	without	having	to	fit	the	com-
plete	nonlinear	mixed-	effects	model	to	the	data	for	each	possible	covariate	model.	
This	study	confirms	that	it	is	possible	to	obtain	relevant	information	on	the	model	
we	are	looking	for,	even	when	another	model	is	fitted	to	the	data.	This	allows	to	
drastically	reduce	the	computation	time	with	respect	to	other	existing	procedures	
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INTRODUCTION

Construction	 of	 a	 complex	 (nonlinear)	 mixed-	effects	
model1	is	a	challenging	process	which	requires	confirmed	
expertise,	 advanced	 statistical	 methods,	 and	 the	 use	 of	
sophisticated	software	tools,	but,	above	all,	 time	and	pa-
tience.	Indeed,	the	success	of	correctly	identifying	all	the	
components	of	the	model	is	far	from	straightforward:	it	is	a	
question	of	finding	the	best	structural	model,	determining	
the	type	of	relationship	between	covariates	and	individual	
parameters,	detecting	possible	correlations	between	ran-
dom	effects,	or	also	modeling	residual	errors.	Our	goal	is	
to	accelerate	and	optimize	this	process	of	model	building	
by	identifying	at	each	step	how	best	 to	 improve	some	of	
the	model	components.

The	procedure	for	constructing	a	model	is	usually	iter-
ative:	one	adjusts	a	first	model	to	the	data,	and	diagnosis	
plots	 and	 statistical	 tests	 allow	 to	 detect	 possible	 mis-
specifications	in	the	proposed	model.	A	new	model	must	
then	be	proposed	to	correct	these	defects	and	improve	the	
predictive	 abilities	 of	 the	 model.	 Most	 of	 the	 common	
approaches	 consist	 in	 stepwise	 procedures	 consisting	 in	
testing	the	addition	of	variable	forward	and	their	elimina-
tion	backward	alternatively	and	progressing	through	the	
choice	of	models	using	a	criterion	derived	 from	the	 log-	
likelihood.	A	widely	used	approach	is	Stepwise	Covariate	
Modeling	(SCM),2	which	consists	in	an	exhaustive	search	
in	 the	covariates	 space.	Each	covariate	addition	or	dele-
tion	is	tested	in	turn	selecting	models	at	each	step	leading	
to	 the	 best	 adjustment	 according	 to	 the	 objective	 crite-
rion.	 Approaches	 such	 as	 Wald	 Approximation	 Method	
(WAM)3	 and	 COnditional	 Sampling	 use	 for	 Stepwise	
Approach	based	on	Correlation	tests	(COSSAC)4	are	less	
computationally	intensive	as	they	use,	respectively,	a	like-
lihood	ratio	test	and	a	correlation	test	to	move	in	the	co-
variates	space,	which	allows	the	testing	of	less	models.	All	
these	methods	are	nevertheless	computationally	intensive	
as	they	require	to	re-	estimate	the	model	parameters	and	
the	 likelihood	 many	 times.	 In	 particular,	 these	 methods	
are	very	sensitive	to	“the	curse	of	dimensionality”	when	
the	number	of	covariates	to	test	on	parameters	is	large.

The	 Generalized	 Additive	 Model	 (GAM)	 method5,6	
is	 computationally	 appealing	 as	 it	 does	 not	 require	 as	

many	models	fitting.	Indeed,	it	is	based	on	a	regression	
on	the	empirical	Bayes	estimates	(EBEs).	The	EBEs	are	
the	modes	of	the	conditional	distributions	of	the	individ-
ual	parameters.	In	other	words,	they	are	the	most	likely	
value	of	the	individual	parameters,	given	the	estimated	
population	parameters	and	the	data.	These	estimates	are	
known	 to	be	misleading	and	prone	 to	 shrinkage	when	
data	are	sparse.7	An	efficient	method	which	can	correct	
the	bias	caused	by	the	shrinkage	of	the	EBEs	have	been	
recently	proposed	for	covariate	analysis.8,9	In	this	paper,	
we	propose	 to	develop	similar	method	which	 relies	on	
the	use	of	random	samples	from	the	conditional	distri-
bution	 of	 each	 individual	 parameters	 instead	 of	 EBEs.	
Indeed,	 the	 random	 sample	 of	 the	 posterior	 distribu-
tion	has	been	shown	to	correctly	control	the	type	I	error	
when	performing	tests	to	detect	misspecifications	in	the	
model.10

As	for	most	of	the	model-	building	procedures,	the	ob-
jective	 of	 Stochastic	 Approximation	 for	 Model	 Building	
Algorithm	 (SAMBA)	 is	 to	 find	 a	 model	 that	 minimizes	
some	 information	 criterion,	 such	 as	 Akaike	 information	
criterion	 (AIC),	 Bayesian	 Information	 Criteria	 (BIC),	 or	
corrected	BIC	(BICc).11	The	main	principle	of	SAMBA	is	
to	use	 the	results	obtained	with	a	wrong	model	 to	 learn	
the	right	model.	Then,	SAMBA	is	an	 iterative	procedure	
where	a	new	model	is	used	at	each	iteration	of	the	algo-
rithm.	 The	 values	 of	 the	 population	 parameters	 of	 the	
model	are	found	by	maximum	likelihood	estimation,	and,	
then,	the	individual	parameters	are	sampled	from	the	con-
ditional	distribution	defined	under	this	estimated	model.	
These	 simulated	 individual	 parameters	 combined	 with	
the	 observed	 data	 can	 now	 be	 used	 to	 select	 a	 new	 sta-
tistical	model.	 It	 is	 important	 to	underline	 that,	as	most	
of	 the	 iterative	 procedures	 for	 non-	convex	 optimization,	
SAMBA	does	not	pretend	to	be	capable	of	always	finding	
the	global	minimum	of	 the	used	criterion,	but	 it	 always	
allows	to	quickly	find	a	very	good	solution.

Two	 contributions	 mainly	 constitute	 the	 content	 of	
this	 paper.	 First,	 we	 describe	 the	 novel	 algorithm	 called	
SAMBA	 for	 fast	 automatic	 model	 building	 in	 nonlinear	
mixed-	effects	models	(section	1).	Second,	we	benchmark	
its	performances	compared	with	reference	methods	SCM	
and	COSSAC	in	real-	world	examples	(section	2).

while	keeping	the	same	performances.	We	also	show	that	it	is	possible	to	perform	
correlation	and	error	model	selection	in	nonlinear	mixed-	effects	models.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This	method	will	allow	the	practitioner	 to	very	quickly	 find	a	set	of	very	good	
models	in	terms	of	data	fitting	and	parsimony,	even	when	the	number	of	param-
eters	or	the	number	of	covariates	available	is	large.
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METHODS

Model description

Let	 yi =
(
yij, 1 ≤ j ≤ ni

)
	 be	 the	 vector	 of	 observations	 for	

subject	 i,	 where	1 ≤ i ≤ N.	 The	 model	 that	 describes	 the	
observations	yi	is	assumed	to	be	a	parametric	probabilistic	
model	that	depends	on	a	vector	of	L	(individual)	param-
eters	� i =

(
� i1,…,�Li

)
.	 In	 a	 population	 framework,	 the	

vector	 of	 parameters	� i	 is	 assumed	 to	 be	 drawn	 from	 a	
population	distribution	p(� i).	Then,	defining	a	model	ℳ	
consists	in	defining	a	joint	probability	distribution	for	the	
observations	y = (y1,⋯, yN )	and	for	the	individual	param-
eters	� = (�1,⋯,�N ).	 For	 the	 sake	 of	 notation	 simplic-
ity,	we	focus	on	models	for	continuous	longitudinal	data.	
However,	extension	to	models	for	discrete	data	and	time	
to	event	data	is	straightforward.

Let	yij,	the	observation	obtained	from	subject	i	at	time	
tij	be	described	as:

The	structural	model	f	is	a	fundamental	component	of	
the	model	because	it	defines	the	individual	predictions	of	
the	observed	kinetics	for	a	given	set	of	parameters.	The	re-
sidual	errors	(�ij)	are	assumed	to	be	standardized	Gaussian	
random	variables	(mean	zero	and	variance	1).	The	resid-
ual	error	model	is	represented	by	function	g	in	model	(1)	
and	may	depends	on	some	additional	parameter	�.	Finally,	
one	can	use	the	function	u	to	transform	the	observations,	
assuming	for	instance	that	they	are	log-	normally	distrib-
uted.	In	the	following,	we	will	assume	u	to	be	the	identity.

We	assume	a	linear	model	for	the	individual	parame-
ters	(up	to	some	transformation	h):

where	�i ∼�(0,Ω)	 is	 a	 vector	 of	 random	 effects	 and	
where	ci	is	a	vector	of	individual	covariates	used	to	explain	
part	of	the	variability	of	the	� i's.	The	�pop	and	�	are	fixed	
effects.	The	joint	model	of	y	and	�	then	depends	on	a	set	
of	parameters	� = (�pop, �,Ω, �).

Selecting	a	model	described	by	Equations	1	and	2	con-
sists	for	the	modeler	in	selecting:	(i)	the	structural	model	
f ,	(ii)	the	transformation	of	the	individual	parameters	h	,	
(iii)	 the	residual	error	model	g,	 (iv)	 the	 list	of	covariates	
that	have	an	impact	on	individual	parameters,	and	(v)	the	
structure	of	the	variance-	covariance	matrix	of	the	random	
effects	 in	 the	 linear	 model	Ω.	 The	 selection	 of	 the	 two	
first	 items	 is	 problem-	specific,	 and	 their	 selection	 is	 out	
of	 the	 scope	 of	 this	 paper.	We	 will	 therefore	 assume,	 in	
this	paper,	that	 f 	and	h	are	given.	The	SAMBA	procedure	

proposes	 solutions	 to	 address	 the	 selection	 of	 the	 three	
other	components	of	the	model.

The SAMBA procedure

Automatic	model	building	is	a	difficult	task	because	it	is	
generally	not	possible	to	fit	and	compare	all	possible	mod-
els.	Moreover,	 it	 is	necessary	 to	define	what	 is	 the	“best	
model”	 among	 all	 the	 possible	 models.	 A	 classical	 ap-
proach	consists	in	searching	for	the	model	ℳ∗,	that	mini-
mizes	a	criterion,	such	as	the	penalized	likelihood12,13:

The	objective	of	this	approach	is	to	find	a	model	that	
best	 fits	 the	 data	 (by	 minimizing	− 2LL)	 while	 being	 as	
simple	as	possible	(it	is	the	role	of	pen(ℳ)	to	favor	models	
with	few	parameters).	When	the	space	of	possible	models	
is	large,	an	exhaustive	search	is	clearly	impossible,	and	an	
efficient	minimization	strategy	must	be	implemented.	It	is	
precisely	for	this	purpose	that	SAMBA	was	developed:	to	
obtain	very	quickly	the	“best”	model	ℳ∗,	or	a	model	with	
an	objective	criterion	value	very	close	to	that	of	ℳ∗.

SAMBA	 is	 an	 iterative	 procedure	 alternating	 three	
steps.	 Assume	 that	 model	ℳk	 was	 obtained	 at	 iteration	
k	of	 the	algorithm.	We	 first	compute	�(k),	 the	maximum	
likelihood	estimate	of	�	for	model	ℳk.	We	then	generate	
a	 set	 of	 individual	 parameters	� (k)	 from	 the	 conditional	
distribution	of	individual	parameters	pℳk

(�| y; �(k)).	The	
selection	 step	 finally	 consists	 in	 building	 a	 new	 model	
ℳk+1	using	the	complete data(y;� (k))	and	minimizing	the	
complete	penalized	criterion:

As	 already	 mentioned,	 the	 statistical	 model	 to	 be	
built	consists	of	a	covariate	model,	a	correlation	model,	
and	a	residual	error	model.	Then,	the	selection	of	model	
ℳk+1	is	composed	of	three	model	selection	procedures:	
the	 selection	 of	 the	 covariate	 model	ℳCOV

k+1
,	 the	 selec-

tion	of	the	correlation	model	ℳCORR
k+1

,	and	the	selection	
of	the	error	model	ℳERR

k+1
.	Note	that	not	all	these	com-

ponents	are	necessarily	selected:	some	may	have	been	
set	arbitrarily	because	of	existing	knowledge.	By	notic-
ing	 that	ℒℳ

(
�; y,� (k)

)
=ℒℳ(�|y, � (k))ℒℳ

(
y,� (k)

)
,	 it	

appears	 that	 the	problem	of	 selecting	 the	error	model	
is	 independent	 from	 the	 problem	 of	 selecting	 the	 co-
variate	 and	 correlation	 models.	 Figure  1	 provides	 a	
flowchart	of	 the	complete	procedure.	Let	us	now	take	
a	closer	 look	at	what	each	step	of	 the	model	selection	
process	consists	of.

(1)
u
(
yij
)
= u

(
f
(
tij,� i

))
+ g

(
tij,� i, �

)
�ij, 1 ≤ i ≤ N , 1 ≤ j ≤ ni.

(2)h(� i)=h(�pop)+� ci+�i , 1≤ i≤N ,

(3)ℳ∗ = argminℳ
{
min�( − 2log(ℒℳ(�; y))) + pen(ℳ)

}
.

(4)
ℳk+1 = argminℳ

{
min�

(
− 2log

(
ℒℳ

(
�; y,� (k)

)))
+ pen (ℳ)

}
.
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The	covariate	model	selection	�COV

k+1

The	sample	� (k)	has	been	generated	conditionally	to	the	
data	y	and	the	model	ℳk.	For	the	�-	th	parameter,	we	build	
a	 linear	model	between	� (k)

�
	and	covariates	c,	 such	as	 in	

Equation 2:

with	h�	the	transformation	associated	to	the	�-	th	param-
eter	and	where	�(k)

i�
	is	supposed	normally	distributed	with	

mean	zero	and	variance	�2
�
.	We	define	�� =

(
�pop,� , �� ,�

2
�

)
.			

Best	 covariate	 model	 for	 parameter	 �,	 denoted		
ℳ

COV𝓁

k+1
,	is	selected	as	being	the	one	minimizing	a	penal-

ized	criterion:

We	denote	n�	 the	number	of	non-	null	elements	 in	��	
for	model	ℳ.	The	penalization	depends	on	the	criterion	
selected	for	optimization:	if	AIC	then	penCOV (ℳ) = 2n�,	
if	BIC	or	BICc	then	penCOV (ℳ) = log (N)n�.	Equation 5	
tells	us	 that	 the	covariate	selection	problem	has	become	
here	 a	 classical	 problem	 of	 variable	 selection	 in	 a	 lin-
ear	model.14	This	problem	is	much	more	easily	tractable	
than	 the	 original	 one.	 The	 overall	 best	 covariate	 model	
combines	 the	 best	 model	 for	 each	 parameter	 such	 that	
ℳ

COV
k+1

=
{
ℳ

COV1
k+1

,…ℳ
COVL
k+1

}
.

In	 the	 implemented	 version	 of	 package	 Rsmlx	 (R	
speaks	 Monolix),	 two	 different	 strategies	 are	 imple-
mented	 depending	 on	 the	 dimension	 of	 the	 selection	
problem.	 If	 the	 number	 d	 of	 available	 covariates	 is	
less	 than	 11,	 an	 exhaustive	 search	 is	 performed	 over	
all	the	2d	possible	covariate	models	for	each	parameter.	
Otherwise,	 the	 stepwise	 variable	 selection	 procedure	
implemented	 in	 the	 function	 stepAIC	 from	 package	
MASS	 is	used.	It	consists	of	 iteratively	adding	and	re-
moving	covariates	in	stepwise	manner	to	lower	the	ob-
jective	criterion.

The	correlation	model	selection	�CORR

k+1

Using	 the	 selected	 covariate	 model	 ℳCOV
k+1

	 and	 the	
sample	 of	 individual	 parameters	 �

(k)
i

,	 it	 is	 possi-
ble	 to	 extract	 the	 vector	 of	 individual	 random	 effects	
�
(k)
i

=
(
�
(k)
i�
,� = 1, … ,L

)
	 from	Equation 5.	Assuming	that			

�
(k)
i

∼� (0,Ω)	 where	Ω	 is	 a	 block	 diagonal	 matrix,	 the	
problem	of	correlation	model	selection	consists	in	select-
ing	the	block	structure	of	Ω.	We	then	select	the	correla-
tion	 model	 denoted	ℳCORR

k+1
	 by	 minimizing	 a	 penalized	

criterion:

We	denote	nΩ	the	number	of	non-	zero	elements	in	the	
upper	 triangular	 part	 of	 the	 matrix	Ω.	 The	 penalization	

(5)
h�

(
�

(k)
i�

)
= h�

(
�pop,�

)
+ ��ci + �

(k)
i�
, 1 ≤ i ≤ N , 1 ≤ � ≤ L,

ℳ
COV𝓁
k+1

= argmin

{
min�𝓁

(
− 2log

(
ℒℳ

(
�𝓁 ;�

(k)
𝓁

)))
+ penCOV(ℳ)

}
.

ℳ
CORR
k+1

= argminℳ

{
minΩ

(
− 2log

(
ℒℳ

(
Ω;�(k)

i

)))
+ penCORR (ℳ)

}
.

F I G U R E  1  Scheme	of	the	Stochastic	Approximation	for	Model	Building	Algorithm	(SAMBA)
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depends	 on	 the	 criterion	 selected	 for	 global	 optimiza-
tion:	if	AIC	then	penCORR (ℳ) = 2nΩ,	if	BIC	or	BICc	then	
penCORR (ℳ) = log (N)nΩ.

In	the	implemented	version	of	package	Rsmlx,	we	limit	
the	size	of	 the	block-	structure	 that	can	be	considered	at	
each	 iteration.	For	ℳ1,	no	correlation	can	be	added	and	
a	diagonal	matrix	is	used	for	Ω;	for	ℳ2	only	blocks	of	size	
two	are	considered.	At	 iteration	k	 for	selection	of	model	
ℳ

CORR
k+1

,	block	size	cannot	be	larger	than	k + 1,	leading	to	
no	more	than	(k − 1)k∕2	non-	zero	covariance	terms	in	Ω.

The	error	model	selection	�ERR

k+1

For	 a	 given	 set	 of	 simulated	 individual	 parameters	
(� (k)

i
, 1 ≤ i ≤ N),	 the	 residual	 errors	 can	 easily	 be	

computed:

We	then	fit	several	error	models	with	standard	devia-
tion	of	 the	 form	 g

(
tij,�

(k)
i
, �
)

	 for	e(k)
ij

	 and	select	 the	one	
minimizing	a	penalized	criterion:

We	denote	n�	 the	 length	of	�	 (i.e.,	 the	number	of	pa-
rameters	 in	model	ℳ).	The	penalization	depends	on	the	
criterion	 selected	 for	 global	 optimization:	 if	 AIC	 then	
penERR (ℳ) = 2n�,	 if	 BIC	 then	penERR (ℳ) = log (N)n�,	
and	if	BICc	then	pen (ℳ) = log

(
ntot

)
n�	where	ntot	is	the	

total	number	of	observations,	including	below	the	limit	of	
quantification	data.

In	 the	 implemented	 version	 of	 package	 Rsmlx,	 five	
error	 models	 (provided	 by	 function	 gin	 Equation  1)	
are	 tested	 by	 default:	 constant	 (gx

(
tij,�

(k)
i
, �
)

= �),			
proportional	 (gx

(
tij,�

(k)
i
, �
)

= �f
(
tij,� i

)
),	 com-

bined1	 (gx
(
tij,�

(k)
i
, �
)

= �1 + �2f
(
tij,� i

)
),	 combined2

		
	
(gx

(
tij,�

(k)
i
, �
)

=
√

�21 + �22f
(
tij,� i

)
),	 or	 exponential	 in	

which	a	constant	error	model	is	fitted	to	the	log(y)	using	
the	 transformation	u = log	 in	Equation 1.	Note	 that	 it	 is	
currently	 not	 possible	 to	 perform	 the	 selection	 on	 a	 re-
stricted	number	of	error	models,	but	such	a	feature	could	
be	easily	implemented.

Stopping	rule	procedure

At	each	 iteration	k	of	 the	algorithm,	we	combine	ℳCOV
k+1

,		
ℳ

CORR
k+1

,	 and	 ℳERR
k+1

	 to	 get	 the	 new	 selected	 model	 ℳk+1,			

which	 is	 passed	 forward	 on	 to	 the	 next	 estimation-	
simulation	 run.	 It	 is	 important	 to	 select	 the	 covariate	
model	before	 the	correlation	model.	On	 the	other	hand,	
the	error	model	can	be	updated	before	or	after	the	other	
two	components	of	the	model.	The	algorithm	stops	when	
ℳk	is	strictly	identical	to	ℳk+1	for	all	components	and	the	
last	model	is	the	selected	one.

Remark

In	the	above,	� (k)
i

	represents	a	single	realization	of	the	con-
ditional	 distribution	 pℳk

(� i|y, �(k))	 for	 each	 i = 1,…N.	
Instead	of	considering	only	one	realization	of	this	distribu-
tion,	we	could	use	a	sample	of	size	R(�

(k)

i�,r
, 1 ≤ r ≤ R).	If	so,	

the	linear	covariate	model	described	in	Equation 5	rewrites:

where:

Procedures	 for	covariate	model	selection	and	correla-
tion	 model	 selection	 remains	 the	 same,	 but	 using	 now	(
�

(k)
i�

)
	 and	

(
�
(k)
i�

)
	 at	 iteration	 k.	 On	 the	 other	 hand,	 the			

R	series	of	residual	errors	
(
e(k)
ij,r

)
	are	used	for	selecting	the	

residual	error	model.

RESULTS

Step- by- step example of the SAMBA 
procedure

To	illustrate	how	SAMBA	works	in	practice,	we	will	de-
scribe	step-	by-	step	the	complete	procedure	on	the	example	
of	remifentanil.15	We	use	here	the	SAMBA	implementa-
tion	 in	 function	buildmlx	of	 the	R	package	Rsmlx,	using	
the	default	settings.

The	remifentanil	data

The	 dataset	 is	 composed	 of	 65	 healthy	 adults	 who	 have	
received	remifentanil	 i.v.	 infusion	at	a	constant	 infusion	
rate	between	1	and	8	μg−1 kg−1 min−1	for	4	to	20 minutes.	
Time	and	rate	of	infusion	are	known	for	each	individual.	
The	 pharmacokinetic	 (PK)	 data	 consists	 in	 the	 plasma	
concentration	of	remifentanil,	which	is	measured	during	
and	after	 infusion	for	a	 total	of	19	 to	53	observations	by	
patients,	 totaling	 2057	 observations.	 A	 total	 of	 six	

e(k)
ij

= yij − f
(
tij,�

(k)
i

)
, 1 ≤ i ≤ N , 1 ≤ j ≤ ni.

ℳ
ERR
k+1

= argminℳ

{
min�

(
− 2log

(
ℒℳ

(
�;e(k)

ij

))
) + penERR(ℳ

)}
.

h�

(
�

(k)
�,i

)
= h�

(
��,pop

)
+ ��ci + �

(k)
�,i
, 1 ≤ i ≤ N , 1 ≤ � ≤ L,

h�

(
�
(k)
�,i

)
=
1

R

R∑

r=1

h�

(
�
(k)
i�,r

)
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covariates	are	available:	one	qualitative	covariate,	the	sex	
(SEX)	and	five	continuous	covariates:	the	age	(AGE),	the	
height	(HT),	the	weight	(WT),	the	lean	body	mass	(LBM),	
and	the	body	surface	area	(BSA).	All	the	latter	are	normal-
ized	and	 log-	transformed	for	 the	analysis.	 In	 the	 follow-
ing,	we	adopt	the	notation	logAGE = log

(
AGE∕AGEpop

)
,	

where	AGEpop	is	a	typical	value	to	normalize	on	(e.g.,	the	
mean	value	of	age	in	the	population).

The	model

The	 PK	 model	 for	 i.v.	 infusion	 has	 a	 central	 compart-
ment	 (volume	 V1),	 two	 peripheral	 compartments	 (vol-
umes	 V2	 and	 V3,	 and	 intercompartmental	 clearances	
Q2	 and	 Q3),	 and	 a	 linear	 elimination	 (Cl).	 Log-	normal	
distributions	are	used	for	the	six	individual	parameters.	
The	26 = 64	possible	covariate	models	will	be	considered	
for	each	of	the	six	individual	parameters.	Note	that	if	we	
had	to	test	all	possible	models,	we	would	have	had	to	test	
646	combinations,	which	would	have	made	the	problem	
intractable.

SAMBA	iterations

We	start	the	SAMBA	procedure	with	a	model	ℳ0	with-
out	any	covariate	on	all	parameters,	with	no	correlation	
between	 random	 effects	 and	 the	 so-	called	 combined1	
error	model.	Figure 2	 illustrates	 the	 selection	 steps	on	
this	 specific	 example.	 One	 can	 notice	 that	 the	 BICc,	
which	 has	 been	 chosen	 as	 target	 criterion,	 decreases	
from	7186	for	ℳ0	to	6985	for	ℳ1,	6957	for	ℳ2,	and	6903	
for	ℳ3,	 which	 is	 finally	 selected	 as	 the	 best	 model	 for	
this	example.

•	 Run 0 (BICc = 7185.8) + Iteration 1:	Model	ℳ0	is	fit-
ted	to	data	and	individual	parameters	are	sampled	con-
ditionally	 on	 the	 data	 and	 this	 model.	 Each	 of	 the	 64	
possible	linear	covariate	models	is	fitted	to	each	individ-
ual	parameters	and	the	one	with	lowest	BICc	is	selected.	
Let	us	take	the	example	of	Cl:	the	three	best	models	in-
clude	(1)	an	effect	of	logAGE	and	logWT	(BICc = −55.0),	
(2)	an	effect	of	logAGE	and	logLBM	(BICc = −56.1),	and	
(3)	an	effect	of	logAGE	and	logBSA	(BICc = −57.5).	The	
latter	is	chosen	as	the	best	model	for	parameter	Cl	as	it	
provides	the	lowest	BICc	(ℳCOV,Cl

1
).	Altogether,	for	all	

parameters,	the	best	covariate	model	(ℳCOV
1

)	 includes	
logAGE	on	all	parameters,	 logBSA	on	Cl,	and	logLBM	
on	V1	and	V2.	No	correlation	is	added	to	the	model	be-
cause	no	correlation	is	allowed	at	first	iteration.	Then,	
ℳ

CORR
1

	 is	 a	 diagonal	 variance-	covariance	 matrix	 for	
the	random	effects.	Among	the	tested	error	models,	the	

three	best	ones	are	proportional	(BICc = 5815.2),	com-
bined1	(BICc = 5811.2),	and	combined2	(BICc = 5807.0),	
which	 is	 selected	 for	ℳERR

1
.	 These	 covariate,	 correla-

tion,	 and	 error	 models	 are	 then	 passed	 on	 to	 run	 1:	
ℳ1 = {{ℳ

COV,Cl
1

,ℳCOV,Q2
1

,ℳCOV,Q3
1

,ℳCOV,V1
1

,ℳCOV,V2
1

,ℳCOV,V3
1

},ℳCORR
1

,ℳERR
1

}}.
•	 Run 1 (BICc = 6984.9) + Iteration 2:	Model	ℳ1	is	fit-

ted	to	the	data	and	individual	parameters	are	sampled.	
Again,	the	three	best	model	for	each	covariate	are	pro-
vided.	The	best	covariate	model	includes	logAGE	on	all	
parameters	except	V1,	logBSA	on	Cl,	logLBM	on	V1,	and	
SEX	 on	 V2	 (ℳCOV

2
).	 Block-	structured	 correlation	 with	

blocks	up	to	size	2	are	compared	(i.e.,	up	to	one	correla-
tion	term).	The	best	three	models	are	with	a	correlation	
between	 parameters	 Cl	 and	 V2	 (BICc  =  1082.9),	 be-
tween	parameters	Cl	and	Q2	(BICc = 1093.8),	and	be-
tween	parameters	V2	and	Q2	(BICc = 1072.0).	The	latter	
correlation	model	is	selected	for	ℳCORR

2
.	Residual	error	

model	combined2	remains	the	best	one	(ℳERR
2

).	These	
covariate,	correlation,	and	error	models	are	then	passed	
on	to	run	2.

•	 Run 2 (BICc  =  6956.9) + Iteration 3:	 Model	ℳ2	
is	 fitted	 to	 data	 and	 individual	 parameters	 are	 sam-
pled.	 The	 best	 covariate	 model	 includes	 logAGE	 on	
all	parameters	except	V1,	logBSA	on	Cl,	and	logLBM	
on	 V1	 and	 V2	 (ℳCOV

3
).	 Block-	structured	 correlation	

with	blocks	up	to	size	3	are	compared	(i.e.,	up	to	three	
correlation	terms),	a	correlation	block	is	selected	be-
tween	Cl,	Q2,	and	V2	(ℳCORR

3
).	Residual	error	model	

combined2	 remains	 the	 best	 one	 (ℳERR
3

).	 These	 co-
variate,	correlation,	and	error	models	are	then	passed	
on	to	run	3.

•	 Run 3 (BICc  =  6903.4) + Iteration 4:	 Model	ℳ3	 is	
fitted	 to	 data	 and	 individual	 parameters	 are	 sampled.	
Of	 note,	 regarding	 the	 correlation	 model	 selection,	
block-	structured	correlation	with	blocks	up	to	size	4	are	
compared	(i.e.,	up	to	six	correlation	terms).	During	this	
iteration,	the	same	model	as	the	one	in	the	previous	it-
eration	is	selected	(ℳ4 =ℳ3)	resulting	in	the	stopping	
of	the	procedure.	Model	ℳ3	is	therefore	the	final	model	
selected	with	the	SAMBA	procedure.

Converging	toward	a	global	optimal	model

Even	if	the	selected	criterion	decreases	at	each	iteration,	
there	 is	no	guarantee	 that	SAMBA	converges	 toward	a	
global	 minimum	 of	 this	 criterion.	 The	 quality	 and	 the	
robustness	 of	 the	 convergence	 of	 SAMBA	 can	 then	 be	
assessed	by	running	SAMBA	several	 times	 from	differ-
ent	starting	models.	In	particular,	a	good	practice	is	to:	
(1)	launch	SAMBA	from	several	initial	models,	(2)	com-
pare	the	best	models	found	(if	there	is	not	only	one)	in	
terms	 of	 objective	 criterion	 (e.g.,	 BICc),	 and	 (3)	 make	
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a	 thorough	 analysis	 and	 interpretation	 of	 the	 nearby	
models	 in	 order	 to	 choose	 the	 most	 relevant	 one	 for	 a	
given	 application.	 Regarding	 the	 choice	 of	 the	 starting	
model,	 similarly	 to	 the	 Expectation	 Maximization	 and	
Stochastic	Approximation	Expectation	Maximization	al-
gorithms,	there	is	no	optimal	choice.16,17	We	recommend	
to	test	in	priority	the	following	three	starting	models:	(1)	
an	empty	model,	(2)	(when	possible)	a	complete	model,	
and	(3)	a	model	(or	models)	that	make	sense	for	the	bio-
logical	application.	Note	that	this	robustness	assessment	
is	 standard	 for	 all	 non-	convex	 optimization	 algorithms	
and	should	also	be	performed	for	SCM	and	COSSAC	in	
routine.

Performances on real examples,  
and comparison with the SCM and 
COSSAC procedures

To	 assess	 the	 performances	 of	 the	 SAMBA	 procedure	
compared	to	SCM	and	COSSAC	procedures,	we	replicate	
the	 illustration	 provided	 in	 ref.	 4.	 We	 applied	 the	 three	
routines	 to	a	collection	of	10	representative	datasets,	 in-
cluding	PKs,	pharmacodynamics,	and	disease	models.	Of	
note,	the	SCM	method	for	variable	selection	used	here	is	
exactly	 the	 same	 as	 the	 one	 implemented	 in	 PsN	 (Pearl	
Speaks	NONMEM),	differences	lie	in	the	algorithms	used	
to	estimate	the	parameters	of	a	model	and	to	calculate	the	
likelihood.	 We	 restricted	 the	 SAMBA	 procedure	 to	 the	
covariate	model	selection	as	correlation	and	error	model	
selection	are	not	implemented	in	COSSAC	and	SCM.	The	
results	can	be	found	in	Table 1.

Because	 the	 datasets	 are	 real	 data	 illustrations,	 there	
is	 no	 “true”	 model.	 It	 is	 only	 possible	 to	 compare	 them	
in	 terms	 of	 BIC.	 Of	 10	 examples,	 the	 same	 best	 model	
was	proposed	by	 the	 three	procedures	 in	 four	examples.	
In	 two	 examples,	 the	 best	 model	 selected	 by	 SAMBA	
was	better	in	terms	of	BICc	than	with	SCM	and	COSSAC	
(Theophylline	 Ext.	 Rel.	 and	 Warfarin	 PK/PD).	 In	 three	
other	examples,	the	model	with	the	lowest	BICc	was	not	
selected	by	SAMBA.	However,	the	difference	in	BICc	was,	
respectively,	smaller	than	six	in	comparison	with	the	SCM	
procedure	and	4.2	in	comparison	with	the	COSSAC	proce-
dure.	We	insist	on	the	fact	that	a	difference	in	BICc	does	
not	 necessarily	 have	 any	 biological	 meaning.	 This	 is	 an	
arbitrary	criterion	that	allows	to	quantify	the	goodness	of	
fit	 with	 respect	 to	 the	 sparsity	 of	 the	 model	 chosen.	We	
thus	argue	that	the	three	procedures	lead	to	rather	similar	
models,	which	all	constitute	very	good	starting	points	for	
the	modeler	to	build	a	model	based	on	biological	hypoth-
esis.	Finally,	in	only	one	example	discussed	below,	the	dif-
ference	 in	 BICc	 was	 larger	 than	 10	 points	 of	 BICc	 both	
compared	with	the	SCM	and	COSSAC	procedures.

Regarding	 the	 cholesterol	 dataset,	 we	 again	 ran	 the	
SAMBA	procedure	starting	from	a	full	model	in	which	all	
covariates	are	supposed	to	have	an	effect	on	all	parameters.	
The	new	model	selected	by	SAMBA	is	the	full	model	with	
an	effect	of	logAGE	on	(Chol0,	slope)	and	SEX	on	(Chol0,	
slope)	is	much	closer	in	term	of	BICc	than	the	one	selected	
starting	from	an	empty	model	(Δ	BICc = −2).	We	can	fi-
nally	notice	with	this	example	that	it	is	sometimes	possible	
to	improve	the	convergence	of	SAMBA	by	improving	the	
convergence	 of	 SAEM.	 Indeed,	 using	 10	 Markov	 chains	
instead	of	only	one,	SAMBA	also	finds	the	model	selected	
by	SCM	and	COSSAC.	Finding	 the	optimal	 settings	 that	
minimizes	computation	time	while	maximizing	the	prob-
ability	of	finding	the	best	model	is	an	extremely	difficult	
problem	that	remains	open.	We	can	claim	that	the	default	
settings	used	in	Rsmlx	and	Monolix	give	very	good	results	
in	most	cases,	but	not	in	all	cases	with	absolute	certainty.

In	terms	of	computational	effort,	it	is	important	to	note	
that	the	SAMBA	procedure	completes	the	model-	building	
process	in	much	less	runs,	hence	much	less	CPU	time	than	
SCM	and	COSSAC.	In	the	considered	problems,	the	num-
ber	of	runs	and	the	CPU	computation	time	are	equivalent	
because	the	other	computation	times	are	negligible	in	the	
order	of	a	few	seconds.	Actually,	the	computation	times	are	
six	to	149	smaller	than	for	SCM	and	two	to	11	times	smaller	
than	for	COSSAC.	Note	that	the	number	of	evaluations	re-
quired	by	SAMBA	is	always	lower	or	equal	to	the	number	
of	evaluations	performed	by	COSSAC	and	SCM.

Simulation study

Data	generation	and	analysis

We	 simulated	 data	 from	 a	 one-	compartment	 PK	 model.	
The	 model	 has	 three	 population	 parameters	 kapop = 1,	
Vpop = 10	and	Clpop = 2.	All	individual	parameters	are	log-	
normally	 distributed	 around	 the	 population	 parameters	
(�ka = 0.2,	�V = 0.3	and	�Cl = 0.3).	We	simulated	five	in-
dividual	covariates	

(
C1,C2,C3,C4,C5

)
	from	standard	nor-

mal	distributions.	The	covariate	model	is	such	that	there	
only	 exists	 linear	 relationships	 between	 log (V )	 and	C1	
(�V ,1 = 0.2),	log (Cl)	and	C1	(�Cl,1 = − 0.2),	and	log (Cl)	and	
C2	 (�Cl,2 = 0.3).	The	correlation	model	 is	 such	 that	 there	
exists	a	linear	correlation	between	�V 	and	�Cl	(�V ,Cl = 0.6).			
Finally,	the	error	model	is	a	combined2	model	with	a = 2	
and	b = 0.1.	 A	 clinical	 trial	 could	 then	 be	 simulated	 by	
generating	 PK	 data	 from	 this	 model	 for	 100	 individu-
als	and	11	timepoints	(0.25,	0.5,	1,	2,	5,	8,	12,	16,	20,	24,	
and	30).	In	order	to	evaluate	the	properties	of	SAMBA	by	
Monte-	Carlo,	we	simulated	100	replicates	of	the	same	trial	
and	 built	 the	 model	 for	 each	 replicate	 using	 SAMBA	 as	
implemented	in	Rsmlx	and	Monolix	for	minimizing	BICc.	
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The	initial	model	did	not	include	any	covariate-	parameter	
relationship	and	any	correlation	between	random	effect.	
The	initial	residual	error	model	was	a	combined1	model.	
The	R	code	used	for	this	Monte-	Carlo	study	is	available	as	
Supplementary	Material.

Performances

Table  2	 summarizes	 the	 results	 obtained	 for	 the	 covari-
ate	 model	 selection.	 On	 the	 one	 hand,	 we	 can	 see	 that,	
for	 this	 particular	 example,	 SAMBA	 finds	 the	 three	 ex-
isting	 covariate-	parameter	 relationships	 in	 100%	 of	 the	
cases.	On	the	other	hand,	very	few	spurious	relationships	
are	 detected	 (less	 than	 2%).	 Importantly,	 in	 all	 cases	 for	
which	the	final	covariate	model	included	more	covariates	
than	 the	 true	model	M∗,	 the	BICc	of	 the	selected	model	
was	lower	than	that	of	M∗	(the	differences	ranging	from	
3	to	14.7	with	Rsmlx	and	from	2.4	to	14.6	for	Monolix).	In	
other	 words,	 SAMBA	 always	 finds	 a	 covariate	 model	 as	
good	or	better	 than	M∗	 in	 terms	of	BICc.	Regarding	 the	
selection	of	the	correlation	model,	the	correct	model	was	
selected	 for	 all	 the	 replicates.	 Finally,	 the	 correct	 error	
model	 was	 selected	 in	 86%	 of	 the	 times	 with	 Rsmlx	 and	
85%	 of	 the	 times	 with	 Monolix.	 Note	 that	 all	 the	 wrong	
selected	error	models	were	all	combined1	model	(instead	
of	combined2)	with	a	slightly	larger	BICc	most	of	the	time.	
Actually,	 these	 two	 models	 are	 quite	 similar	 and	 diffi-
cult	 to	 distinguish	 on	 the	 basis	 of	 a	 criterion	 like	 BICc.	
SAMBA	then	may	get	stuck	in	a	local	minimum	in	such	
a	 situation.	 Finally,	 and	 importantly,	 the	 final	 selected	
models	obtained	with	Rsmlx	and	Monolix	are	different	in	
only	6%	of	cases.	These	small	differences	are	due	to	small	D
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T A B L E  2 	 Performance	of	the	SAMBA	algorithm	for	the	
selection	of	the	covariate	model	in	a	simulation	study	using	a	one-	
compartment	PK	model

Covariates

Rsmlx Monolix

ka V Cl ka V Cl

C1 2 100 100 2 100 100

C2 0 1 100 0 1 100

C3 1 2 1 2 2 1

C4 0 3 4 0 3 4

C5 0 1 1 1 2 1

One	hundred	datasets	of	100	individuals	with	11	observations	each	have	
been	generated.	True	model	ℳ∗	includes	an	effect	of	C1	on	V 	and	Cl	and	
an	effect	of	C2	on	Cl.	The	percentages	of	times	(over	100	replicates)	each	
covariate-	parameter	relationship	is	selected	in	the	final	model	are	displayed.	
Implementation	of	SAMBA	in	Rsmlx	and	Monolix	are	compared.
Abbreviations:	Cl,	linear	elimination;	ka,	absorption	rate	constant;	PK,	
pharmacokinetic;	SAMBA,	Stochastic	Approximation	for	Model	Building	
Algorithm;	V,	volume.
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differences	 in	 the	 implementation	 of	 the	 algorithm	 (see	
the	Discussion	section	for	more	details).

DISCUSSION

This	 paper	 presents	 a	 novel	 model-	building	 procedure	
which	offers	covariate,	correlation,	and	error	model	se-
lection.	It	is	fast	as	it	requires	only	a	limited	number	of	
runs	 of	 population	 parameter	 estimation	 and	 simula-
tion	compared	to	SCM	and	COSSAC.	It	allows	to	explore	
the	space	of	models	rapidly	and	provides	to	the	modeler	
a	 very	 good	 model	 in	 term	 of	 the	 selection	 criterion.	
However,	we	insist	on	the	fact	that	this	procedure	does	
not	aim	at	replacing	model-	building	based	on	biological	
knowledge,	which	is,	in	essence,	the	strength	of	mecha-
nistic	modeling.	Thus,	it	should	not	be	blindly	used	and	
the	best—	potentially	few	best—	models	should	be	inter-
preted	and	compared.

SAMBA	 is	 an	 efficient	 algorithm	 for	 minimizing	
an	 objective	 function.	 In	 this	 paper,	 we	 do	 not	 aim	 at	
evaluating	 the	 quality	 of	 the	 criterion	 used	 for	 model	
selection.18	What	 is	 of	 interest	 here	 is	 the	 convergence	
of	SAMBA.	As	it	is	also	the	case	for	SCM	and	COSSAC,	
SAMBA	may	not	converge	to	the	global	minimum.	This	
is	particularly	the	case	when	the	amount	of	data	 is	 too	
small	compared	to	the	complexity	of	the	model	to	build.	
This	phenomenon	will	be	particularly	critical	when	the	
number	 of	 covariates	 is	 high	 and/or	 when	 these	 are	
highly	correlated.	We	then	strongly	encourage	the	user	
to	build	strategies	to	assess	the	robustness	of	the	results.	
Extensions	 of	 the	 proposed	 algorithm	 are	 possible	 but	
are	outside	the	scope	of	this	paper	and	constitute	a	pos-
sible	new	research	direction.

When	 there	 is	 a	 large	 number	 of	 available	 covariates,	
COSSAC	 and	 mainly	 SCM	 often	 fail	 in	 finding	 the	 best	
model	in	a	reasonable	time.	In	this	case,	SAMBA	represents	
a	 particularly	 appealing	 approach	 because	 the	 covariate	
model	 selection	 is	 based	 on	 a	 stepwise	 variable	 selection	
procedure	 for	 linear	 models,	 which	 is	 known	 to	 handle	
high-	dimension	problems.	Although	stepwise	AIC/BIC	are	
designed	to	obtain	a	sparse	estimator	that	works	well	on	the	
training	set,	other	methods,	such	as	the	lasso,19	where	the	
penalty	is	chosen	with	cross	validation,	is	designed	to	obtain	
the	sparse	linear	model	that	minimize	the	prediction	error.	
A	lasso	type	approach20	can	sometimes	present	better	per-
formances	than	an	approach	based	on	an	information	cri-
terion,	such	as	AIC	or	BIC,	in	particular	when	the	number	
of	covariates	is	very	high.	However,	it	should	be	noted	that	
the	choice	of	the	penalty	parameter	by	cross-	validation	can	
be	complicated	to	implement	and	require	a	large	number	
of	runs.	This	type	of	method	could	be	alternatively	imple-
mented	in	the	covariate	selection	procedure	and	compared	

in	further	works.	Note	finally	that	it	would	be	interesting	to	
study	the	behavior	of	SAMBA	using	the	EBEs	(corrected	as	
proposed	in	ref.	8,9),	rather	than	the	individual	simulated	
parameters,	to	build	the	covariate	model.

The	SAMBA	procedure	is	implemented	the	R	Package	
Rsmlx	in	the	function	buildmlx.21	Minimal	required	input	
is	a	Monolix	project	used	as	initial	model.	Additional	argu-
ments	can	be	used	to	enable	specific	features	(all	not	listed):	
select	the	components	of	the	model	to	optimize	among	the	
covariate,	correlation,	and	error	model,	restrict	the	number	
of	parameters	or	covariates	to	use,	select	a	specific	objec-
tive	criterion,	etc.	Rsmlx	 is	on	CRAN	and	the	R	code	can	
be	modified	to	investigate	any	of	the	alternative	implemen-
tations	mentioned	above	for	a	specific	problem.	Note	that	
the	execution	of	Rsmlx	requires	the	Monolix	software,	be-
cause	it	is	only	an	algorithm	combining	tasks	implemented	
in	Monolix.	The	R	codes	allowing	to	replicate	the	analyses	
of	this	paper	are	available	in	the	Supplementary	Material.	
All	 the	 illustration	datasets	can	be	downloaded	 from	 the	
Supporting	Information	Appendix S2	of	ref.	4.

Finally,	 the	 SAMBA	 procedure	 is	 also	 implemented	
in	the	Monolix-	GUI	software	starting	from	version	2019.	
Implementation	 is	 similar	 to	 the	one	 in	Rsmlx	with	 two	
noteworthy	differences.	First,	 for	the	selection	of	covari-
ates,	a	stepwise	procedure	is	used	even	if	the	number	of	
covariates	d	 is	small.	Second,	compiling	differences	exist	
between	C++	and	R.	The	full	SAMBA	procedure	is	avail-
able	in	the	model-	building	perspective,	under	a	task	called	
automatic	statistical	model	building	method.	A	single	it-
eration	of	the	SAMBA	procedure	is	also	proposed	in	the	
section	Proposal	in	the	tab	Results	after	running	a	single	
estimation	and	simulation	step	for	a	model	in	Monolix.22
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