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Abstract 19 

Human-associated microorganisms are ideal models to study the impact of environmental changes on 20 

species evolution and adaptation because of their small genome, short generation time, and their 21 

colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis 22 

is a good example of organism facing anthropogenic-driven selective pressures. It is associated with 23 

fermentation processes in which it can be considered either as a spoiler (e.g. winemaking, bioethanol 24 

production) or as a beneficial microorganism (e.g. production of specific beers, kombucha). Besides its 25 

industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled 26 

B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad 27 

genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic 28 

studies have revealed the co-existence of auto- and allotriploidization events with different 29 

evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are 30 

associated with specific fermented processes, suggesting independent adaptation events to 31 

anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a 32 

wide variety of carbon and nitrogen sources, which may explain its ability to colonize already 33 

fermented environments showing low-nutrient contents. Several traits of interest could be related to 34 

adaptation to human activities (e.g. nitrate metabolization in bioethanol production, resistance to 35 

sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of 36 

the great genomic diversity of the species. Future work will have to take into account strains of varied 37 

substrates, geographical origins as well as displaying different ploidy levels to improve our 38 

understanding of an anthropized yeast’s phenotypic landscape.  39 

 40 

Keywords: polyploidy, hybridization, adaptation, fermentation, beer, wine  41 



3 
 

1. Introduction 42 

Yeasts are eukaryotic species encountered in most, if not all, earth biomes (Starmer & Lachance, 2011). 43 

Yeasts are heterotrophic, they are described as primary decomposers of organic matter, and are 44 

particularly associated with the early colonization of nutrient-rich substrates. The ability of some yeast 45 

species to efficiently perform alcoholic fermentation, i.e. to convert sugar into ethanol, made it 46 

possible to forge close ties with human beings, leading to a tight co-evolution between yeast and 47 

human (Starmer & Lachance, 2011). Their simple life cycle, their small genomes (10 to 20Mbp) which 48 

are genetically diverse and their multifaceted metabolisms have propelled yeasts as valuable models 49 

to study evolutionary genetics and ecology (Gladieux et al., 2014; Hittinger et al., 2015). Besides the 50 

famous yeast model organism Saccharomyces cerevisiae, the genus Brettanomyces (of which Dekkera 51 

is a synonym) has received a lot of attention recently, due to its association with various food processes 52 

and to its unusual genomic composition. This genus belongs to the Pichiaceae family, which is a part 53 

of the Saccharomycotina subphylum (Kufferath & Van Laer, 1921; Riley et al., 2016). It is composed of 54 

six species (B. nanus, B. naardenensis, B. bruxellensis, B. anomalus, B. custersianus and 55 

B. acidodurans), with Allodekkera sacchari being the closest non-Brettanomyces species known to date 56 

(Jutakanoke et al., 2017; Péter et al., 2017) (Figure 1A). Recently, high quality genomes were obtained 57 

for five Brettanomyces species, revealing distant species separated in two clades with B. nanus and 58 

B. naardenensis on one hand, and B. bruxellensis, B. anomalus and B. custersianus on the other hand 59 

(Roach & Borneman, 2020). The calculation of average nucleotide identity along the genomes between 60 

each species pairs, ranging between 60.6% and 77.1%, revealed that Brettanomyces species are 61 

relatively distant of each other: as a comparison, the most distant species within Saccharomyces genus 62 

show 79.9% nucleotide identity (S. cerevisiae and S. eubayanus) and 75.2% within Metschnikowia 63 

genus (M. hawaiiana and M. orientalis), two yeast genus frequently associated with fermented foods 64 

(Lachance, Lee, & Hsiang, 2020; Roach & Borneman, 2020). The five Brettanomyces species whose 65 

genome is fully sequenced exhibit gene family expansions related to fermentation, such as glucosidase 66 

enzymes involved in starch or galactose metabolism, as well as in nitrogen assimilation. In addition, 67 
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twelve horizontal gene transfer (HGT) events were detected within Brettanomyces genus, and may 68 

explain the ability of B. bruxellensis and B. anomalus to utilize sucrose (Roach & Borneman, 2020). 69 

Gene expansions and HGTs are well described markers of domesticated subpopulations of S. cerevisiae 70 

(Gallone et al., 2018; Giannakou, Cotterrell, & Delneri, 2020; Legras et al., 2018; Peter et al., 2018). The 71 

identification of interesting parallels with the evolution of S. cerevisiae supported Brettanomyces as a 72 

valuable yeast model to study adaptation to fermentative environments. 73 

Due to its positive or negative role in different industrial applications, B. bruxellensis is the species that 74 

has received the most attention. It was first isolated by N. Hjelte Claussen in 1904 as being responsible 75 

for the special flavor of British beers, and therefore was the first patented microorganism (Claussen, 76 

1904; Steensels et al., 2015). In brewery, B. bruxellensis plays a major role for some special beer types 77 

such as the Lambics from Belgium, Flanders Red and Brown ales, or the ‘coolship ales’ from the USA 78 

(Bokulich, Bamforth, & Mills, 2012; Claussen, 1904; De Roos & De Vuyst, 2019). It contributes to the 79 

peculiar flavour of spontaneous fermented beers, bringing additional complexity to their aromatic 80 

bouquet. In addition, over the past decades, the growing popularity of craft beers and the rise of 81 

microbreweries led to an increased interest among brewers who use B. bruxellensis alone or in co-82 

culture with other species. For example, B. bruxellensis has been described as a good candidate for 83 

beers with a spicy phenolic note (Holt, Mukherjee, Lievens, Verstrepen, & Thevelein, 2018). 84 

Brettanomyces bruxellensis’ scientific literature with a focus on brewery is substantial (Capece, 85 

Romaniello, Siesto, & Romano, 2018; De Roos & De Vuyst, 2019; Lentz, 2018; Serra Colomer, Funch, & 86 

Forster, 2019; Steensels et al., 2015). Brettanomyces bruxellensis is also involved in the elaboration of 87 

other spontaneous fermented beverages such as kombucha, kefir, etc. in which its role is mostly 88 

considered as positive (Lynch, Wilkinson, Daenen, & Arendt, 2021; Tran et al., 2020). 89 

Despite its positive contribution to particular beer flavours and traditional beverages, B. bruxellensis is 90 

also recognised as a major spoiler for top-selling ale and lager beers due to sensory or turbidity defects 91 

(Shimotsu et al., 2015). The same account for wine, where B. bruxellensis negative contribution is also 92 
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widely described, amplified by its resistance to sulphite, one of the common control method 93 

historically used (Monica Agnolucci, Tirelli, Cocolin, & Toffanin, 2017; Avramova et al., 2019; Blomqvist 94 

& Passoth, 2015; Malfeito-Ferreira, 2018; Schifferdecker, Dashko, Ishchuk, & Piškur, 2014; Suárez, 95 

Suárez-Lepe, Morata, & Calderón, 2007). Its presence in wine is associated with the production of 96 

volatile molecules (called volatile phenols), associated to unpleasant aromas described as barnyard, 97 

horse sweat or burnt plastic (Chatonnet, Dubourdie, Boidron, & Pons, 1992; Kheir, Salameh, 98 

Strehaiano, Brandam, & Lteif, 2013). The ‘Brett’ taint negatively affects up to 25-30% of red wines in 99 

the world (Alston, Arvik, Hart, & Lapsley, 2021; Gerbaux, Jeudy, & Monamy, 2000; A. Romano, Perello, 100 

Revel, & Lonvaud-Funel, 2008). Brettanomyces bruxellensis is able to penetrate the micropores of the 101 

barrels and therefore reused barrels – a frequent practice in oenology – are a recurrent cause of 102 

contamination (Cartwright, Glawe, & Edwards, 2018; Fabrizio et al., 2015). In bioethanol production, 103 

this species is considered as the main yeast spoiler as it can reduce the ethanol yield and cause large 104 

economic losses (Basílio et al., 2008; Bassi, Meneguello, Paraluppi, Sanches, & Ceccato-Antonini, 2018; 105 

Blomqvist & Passoth, 2015; A.T. de Souza Liberal et al., 2007; Radecka et al., 2015; Seo, Park, Jung, Ryu, 106 

& Kim, 2020). Besides its beneficial-spoiler duality, another oddity of B. bruxellensis is its ability to act 107 

as a first fermenter (even starter) yeast in some processes (e.g. craft beer, kombucha, bioethanol) or 108 

as a fermentation ‘finisher’ (e.g. wine, Lambic beers, etc.), the actual fermentation usually being 109 

carried out by S. cerevisiae. This starter-finisher versatility suggests multiple fermentative adaptations 110 

that may have arisen from the complex structure of B. bruxellensis genome that includes large 111 

chromosomal rearrangements, hybridization events , as well as ploidy level variation (Gounot et al., 112 

2020). In particular, a remarkable characteristic of B. bruxellensis species resides in the rare 113 

coexistence of diploid and steady triploid isolates (Curtin, Kennedy, & Henschke, 2012; Piškur et al., 114 

2012). 115 

In this review, we first focus on the genetic and genomic composition of B. bruxellensis revealed by 116 

population genomic surveys. This genetic diversity is reflected at the phenotypic level, with contrasting 117 

behaviours regarding metabolic and life-history traits that have ecological significances. We describe 118 
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the impact of such diversity on central metabolism characteristics and technological traits, and we 119 

discuss how future researches including both genomic and phenotypic approaches may shed lights on 120 

the evolutionary history of a human-associated yeast. 121 

2. Genetic and genomic diversity of Brettanomyces bruxellensis 122 

2.1. Population structure of Brettanomyces bruxellensis 123 

A wide variety of molecular tools (e.g. AFLP, RAPD) were developed to assess the genetic diversity of 124 

B. bruxellensis species (reviewed in (Renouf, Lonvaud-Funel, & Coulon, 2007)). Most of these studies 125 

focused on the intraspecific diversity of small cohorts: between 10 to 100 isolates mainly from the 126 

same process (Agnolucci et al., 2009; Conterno, Lucy Joseph, Arvik, Henick-Kling, & Bisson, 2006; 127 

Curtin, Bellon, Henschke, Godden, & de Barros Lopes, 2007; Miot-Sertier & Lonvaud-Funel, 2007). 128 

Thus, an important step has been taken with the genotyping of more than 1,000 worldwide strains 129 

using 12 microsatellite markers (Avramova, Cibrario, et al., 2018). This study provided deep insights 130 

into the genetic diversity and ploidy level in several subpopulations of different ecological origin. The 131 

population structure was mainly explained by the ploidy level (47% of the variance), followed by the 132 

geographical origin (5% of the variance) and the fermented product from which the strain had been 133 

isolated (6% of the variance). However, when considering non-wine isolates, the geographical origin 134 

explains 55% of the total variance, indicating that wine isolates are highly disseminated across the 135 

world compared to strains isolated from other substrates. Isolates from different origins (such as beer, 136 

kombucha, tequila and bioethanol isolates) were mostly clustered into one or two genetic groups, 137 

suggesting different adaptation processes to various anthropic environments (Avramova, Cibrario, et 138 

al., 2018). This large population study allowed the identification of different genetic subpopulations 139 

within B. bruxellensis, which were subsequently validated and refined by whole genome sequencing 140 

approaches (Eberlein, Abou Saada, Friedrich, Albertin, & Schacherer, 2021; Gounot et al., 2020; Serra 141 

Colomer, Chailyan, et al., 2020) (Supplemental Table 1). At least six subgroups can now be considered, 142 

either diploid (two groups) or triploid (four groups) (Figure 1B). Among diploid groups, one 143 
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subpopulation is composed mainly of strains isolated from wine, and is named the wine 3 group 144 

(known as G2N3, CBS2499-like or Wine 2n in various publications, Supplemental Table 1), the other is 145 

associated with kombucha, beer and wine isolates, and we named it the kombucha group (known as 146 

G2N1, L14165-like, Farmhouse). Regarding the triploid subpopulations, the beer group contains strains 147 

from beer and wine (G3N1, AWRI1608-like, Lambic), the two other groups are strongly associated with 148 

winemaking and are referred as wine 1 (or G3N2, AWRI1499-like, Wine 3n) and wine 2 groups (or 149 

G3N3, L0308-like). The last group, named teq/EtOH group, contains most isolates from bioethanol and 150 

tequila process (CBS5212-like, Tequila). Recent genomic data suggested that the teq/EtOH group was 151 

not monophyletic, yet more in-depth analyses are necessary to refine precisely the actual number of 152 

teq/EtOH groups. Recently still, genome sequencing revealed an autotetraploid strain (Figure 1B), 153 

genetically close to a small subpopulation already observed but described as diploid (G2N2, KOM1449-154 

like). More isolates are needed to delineate this subpopulation and its ecological and genomic features. 155 

The vast majority (~80%) of wine strains are found in three groups (wine 1 and wine 2 triploid groups, 156 

wine 3 diploid group, Figure 1B), yet some wine isolates can be found occasionally in other groups, 157 

with variations depending on the wine producing region (Avramova, Cibrario, et al., 2018; Cibrario et 158 

al., 2019). Beer isolates are also distributed in different groups, although to a lesser extent (two main 159 

groups). Regarding the other isolation niches (such as kombucha, tequila, bioethanol), additional works 160 

and more strains are needed to determine whether they fall within one specific subpopulation, or if 161 

they are more disseminated as for winemaking. Dissemination via equipment could play an important 162 

role in exchanges within and between ecological niches: craft brewers frequently age beer in wood 163 

barrel that previously contained red or white wines (Sanna & Pretti, 2015) and similar practice is 164 

common for tequila’s ageing (Aguilar-Méndez et al., 2017). Brettanomyces bruxellensis’ population 165 

structure seems to be well-defined, but so far, only anthropic isolates of the species have been 166 

described, with no wild strains identified so far.  167 

2.2. Genomic landscape of Brettanomyces bruxellensis 168 
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Within the Saccharomycotina subphylum, B. bruxellensis diverged from the model species S. cerevisiae 169 

between 200 and 300 MY ago, before the whole-genome duplication (WGD) event that appeared in 170 

the Saccharomyces lineage 100 MY ago (Fisher, Buskirk, Vignogna, Marad, & Lang, 2018; Guo et al., 171 

2016; Wolfe & Shields, 1997). WGD outcomes (e.g. gene duplication, promoter rewiring) were 172 

suggested to be involved in the acquisition of the make-accumulate-consume (MAC) strategy in the 173 

Saccharomyces genus (Thomson et al., 2005). Thus, it seems that both species, S. cerevisiae and 174 

B. bruxellensis, have independently acquired the MAC ability (Rozpędowska et al., 2011). The first 175 

partial genome sequence of B. bruxellensis strain CBS 2499 showed around 50% of nucleotide identity 176 

with S. cerevisiae (Woolfit, Rozpędowska, Piškur, & Wolfe, 2007), and more recent studies identified 177 

that at least 3,300 orthologous gene families were conserved across both clades (out of 5000 for 178 

B. bruxellensis) (Cheng et al., 2017).  179 

Over the past decade, several de novo assemblies have been published with increasing quality (Table 180 

1), in particular thanks to the combination of long-read sequencing (e.g. Oxford Nanopore sequencing) 181 

with short-read sequencing (Fournier et al., 2017). Such high quality assemblies were used as reference 182 

genomes for population genomic surveys (Eberlein et al., 2021; Gounot et al., 2020; Serra Colomer, 183 

Chailyan, et al., 2020). These population studies revealed that the pangenome is composed of 5,409 184 

ORFs (open reading frames) with 5,106 core and 303 accessory ORFs within the species. Although no 185 

significant functional enrichment was found for the set of accessory genes, some of them were shown 186 

to be involved in drug and sugar transports (Gounot et al., 2020). Many core genes involved in carbon 187 

and nitrogen uptake have been identified, consistent with the ability of B. bruxellensis to metabolise a 188 

wide range of complex nutriments (e.g. xylose, lactose, cellobiose and nitrate).  189 

In B. bruxellensis, the nucleotide diversity estimated by the average number of pairwise nucleotide 190 

differences, Pi, is high (π = 1.2×10−2) compared to S. cerevisiae (π = 3×10−3) (Gounot et al., 2020). In 191 

addition, roughly 50% of the available strains of B. bruxellensis (exclusively isolated from anthropic 192 

niches) are triploids (Avramova, Cibrario, et al., 2018). Polyploidy in industrial yeasts is known to confer 193 
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robustness and environmental stress resistance (Albertin & Marullo, 2012; Querol & Bond, 2009; 194 

Steensels, Gallone, & Verstrepen, 2021). Interestingly, while triploidy appears to be predominant in 195 

the available strains, aneuploidy is rarer in B. bruxellensis than in S. cerevisiae with 5.6% and 19.1% of 196 

aneuploidy isolates, respectively (Gounot et al., 2020; Peter et al., 2018). Genomic studies have shown 197 

that the triploid genomes have different genomic architectures arising from intra- and interspecific 198 

hybridization events (Borneman, Zeppel, Chambers, & Curtin, 2014; Eberlein et al., 2021; Gounot et 199 

al., 2020). In a recent study, the polyploid genomes were reconstructed using different phasing 200 

strategies, revealing that each polyploid subpopulation had a unique history (Abou Saada, Tsouris, 201 

Eberlein, Friedrich, & Schacherer, 2021). The different triploid genomes (at least four) are composed 202 

of a core diploid B. bruxellensis genome and an additional haploid one. These additional genomes are 203 

either genetically closely related to the diploid one (with a genetic divergence lower than 1%) or 204 

genetically divergent (greater than 3%), indicating auto- as well as allopolyploidization events. 205 

Interestingly, the three allopolyploidization events have occurred independently with a specific and 206 

unique donor for each of the polyploid subpopulations (Table 1). The closest Brettanomyces sister 207 

species, B. anomalus, shows >23% of genetic dissimilarity with the diploid B. bruxellensis’ genome, 208 

excluding the known Brettanomyces sister species as possible donors. Large-scale population genomic 209 

surveys with a long-read sequencing strategy will help refine precisely the evolutionary history of each 210 

subgenome, and any intertwined relationships. 211 

In addition, B. bruxellensis genomes show different levels of Loss Of Heterozygosity (LOH). LOH events 212 

are a source of genomic rearrangements and can contribute to the rapid onset of phenotypic diversity 213 

(Dutta, Dutreux, & Schacherer, 2021; Sampaio et al., 2020; Smukowski Heil et al., 2017). LOH has 214 

gained attention for its frequent association with fitness, adaptation, polyploid stabilization, or even 215 

pathogenesis in yeasts but also in other organisms such as the oomycete Phytophthora capsica, hybrids 216 

of the cultivated rice Oryza or the Cobitis fish species (Beekman & Ene, 2020; Forche et al., 2011; Janko 217 

et al., 2021; Lamour et al., 2012; Morales & Dujon, 2012; Todd, Wikoff, Forche, & Selmecki, 2019; R. 218 

R.-C. Wang, Li, & Chatterton, 1999). Compared to S. cerevisiae where LOH represents 50% of the 219 
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genome, B. bruxellensis presents a low level of LOH, which is variable across subpopulations (Gounot 220 

et al., 2020; Peter et al., 2018). In the diploid isolates (wine 3 and kombucha groups), the LOH regions 221 

represent 13% of the entire genome. In the triploid subpopulations, different scenarios were observed. 222 

For subpopulations that have undergone an allopolyploidization event, a higher proportion of the 223 

genome is under LOH in the beer and wine 1 groups (Figure 1B) with 26.6% and 22.3%, respectively 224 

(Eberlein et al., 2021). However, this fraction mainly concerns the acquired haploid genome. By 225 

contrast, the genomes of the teq/EtOH group are less impacted by LOH events (10.5%), which mainly 226 

involve the core diploid genome from B. bruxellensis. For the autotriploid population, LOH was also 227 

highlighted and conserved across six sequenced strains, resulting in the presence of only two 228 

haplotypes while three were expected (Eberlein et al., 2021). The conservation of a given haplotype 229 

over the others may indicate specific selection pressures on the alleles present in such LOH regions. 230 

Future studies will have to focus on the gene content of these LOH regions to identify possible genetic 231 

signatures of adaptation to anthropized environments. 232 

Regarding the Copy Number Variation (CNV), genes affected by CNV harbour functions related to drug 233 

transporters, nitrogen assimilation or ethanol production (Borneman et al., 2014; Sam Crauwels et al., 234 

2014; C. D. Curtin, Borneman, Chambers, & Pretorius, 2012; Gounot et al., 2020). Ploidy level and CNV 235 

could play an important role in the adaptation to the ecological niche, where multiple copies of a 236 

particular gene or gene family can be beneficial in the new environment. For example, in S. cerevisiae 237 

yeast, beer isolates have more increased copies of genes involved in maltose uptake and breakdown 238 

are amplified (Gallone et al., 2016; Gladieux et al., 2014). In the pathogenic C. albicans, CNV are 239 

associated to a significant fitness benefit to antifungal drugs (Todd et al., 2019). Within allotriploid 240 

isolates, the diploid core genome was more prone to duplication events than the acquired haploid 241 

genome (Gounot et al., 2020). Further studies will be needed to determine if CNVs are actually 242 

associated with increased adaptation to specific ecological niche, as suggested for nitrate assimilation 243 

in bioethanol production process (Galafassi, Capusoni, Moktaduzzaman, & Compagno, 2013). Indeed, 244 

genes involved in the nitrogen pathway have been independently lost in several diploid isolates within 245 
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different subpopulations, indicating differential selective pressure (Gounot et al., 2020). Genomic 246 

rearrangements affecting genes associated with traits of ecological interests have also been reported. 247 

For example, genes coding beta-glucosidase activity are lost in beer isolates but conserved in wine 248 

isolates (Sam Crauwels et al., 2017). This enzymatic activity could be useful to consume efficiently 249 

peculiar carbon sources found in wines aged in oak barrels, due to the liberation of specific wood 250 

polysaccharides. These variations were related to different aroma production, indicating technological 251 

interest besides ecological significance (Serra Colomer, Funch, Solodovnikova, Hobley, & Förster, 252 

2020). Variations were also observed for maltose-related genes, although it was not possible to 253 

associate a phenotype to a specific genotype (S. Crauwels et al., 2015; Serra Colomer, Chailyan, et al., 254 

2020). Concerning Horizontal Gene Transfer (HGT) in B. bruxellensis, three events from bacteria were 255 

recently highlighted, of which one encompassing an invertase-coding gene (from Asaia bacteria). This 256 

enzymatic activity is speculated to have conferred the ability to hydrolyse sucrose (Roach & Borneman, 257 

2020). Horizontal gene transfers are drivers of adaptive evolution in eukaryotes and may have 258 

contributed to adaptation to high-sugar environments (Gladieux et al., 2014; Schönknecht, Weber, & 259 

Lercher, 2014). The prevalence of these HGTs in the different subpopulations has yet to be described, 260 

and it will be interesting to assess their possible involvement in niches’ adaptation. 261 

Besides the nuclear genome, genetic diversity has also been described for B. bruxellensis’ 262 

mitochondrial genome. The mitogenome is large and variable in size (between 75Kb to 100kb), 263 

compact with introns and intergenic sequences (Eberlein et al., 2021; Procházka, Poláková, Piškur, & 264 

Sulo, 2010). By contrast to S. cerevisiae, the mitochondrial genome contains NADH dehydrogenase 265 

subunit genes, which allow the recycling of NAD in presence of oxygen during the fermentation process 266 

(Procházka et al., 2010). Across the different genetic subpopulations, the synteny of the mitogenome 267 

is well conserved with the exception of the teq/EtOH group for which a large inversion event and 268 

increased size (up to 100 kb) due to high intron content in the COB and COX1 genes were evidenced 269 

(Eberlein et al., 2021). The intron content is known to be variable within Saccharomyces genus, 270 

especially for COX1 and COB genes and was shown to be a marker of hybridization events (especially 271 
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COX1 introns) (De Chiara et al., 2020; Prasai, Robinson, Scott, Tatchell, & Harrison, 2017). In terms of 272 

nucleotide diversity, the genetic subgroups are highly homogeneous. The teq/EtOH group is more 273 

distant, with a genetic variation of 2% to 3% with the reference mitogenome. In Ascomycota species, 274 

the mitochondria inheritance is biparental, implying initial heteroplasmy in case of hybridization 275 

events. The outcome of the different mitotypes can be variable: (i) one or the other might be retained 276 

stochastically, (ii) one or the other might be retained due to selective pressures (e.g. to purge nucleo-277 

cytoplasmic incompatibility or because of higher fitness of one mitotype), (iii) a chimeric mitotype can 278 

emerge from the two parental ones due to recombination events (Albertin et al., 2013; De Chiara et 279 

al., 2020; Lee et al., 2008). Here, the well-conserved mitotypes across the populations of diploid and 280 

polyploidy isolates argue in favour of the selection hypothesis without exchange. By contrast, the 281 

teq/EtOH group might have acquired a chimeric mitochondrial DNA, or the mitotype from the donor 282 

of the acquired haploid genome. Further studies will be needed to understand the possible impact of 283 

these mitochondrial genomes on the phenotypic diversity.  284 

The exploration of the diversity of B. bruxellensis genomes has just started. Population genomic 285 

surveys unveil a complex genome architecture, with a strong involvement of polyploidy and 286 

hybridization events and mechanisms generating intra-specific variation (e.g. CNVs, LOH). LOH events 287 

appear to have radically shaped the genomic landscape of B. bruxellensis polyploids. This phenomenon 288 

is widely observed in polyploid yeasts and is an essential source of interindividual variation in 289 

predominantly asexual species (Peter et al., 2018; Steensels et al., 2021). Subsequent large-scale 290 

whole-genome sequencing will help to identify and understand the forces that shape the evolution of 291 

B. bruxellensis genomes, especially in the context of ecological divergence and industrial adaptation. 292 

However, genomic approaches alone will not be sufficient to formally demonstrate the relationship 293 

between the genomic and the phenotypic diversification of the species. Largescale phenotyping 294 

approaches are therefore necessary to clarify the link between genetic diversity and adaptation to 295 

anthropic fermentation environments. 296 
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3. Phenotypic diversity of Brettanomyces bruxellensis 297 

Although molecular tools bring priceless information to understand the origin of the species, their 298 

formation and diversification in ever-changing environments, the physiological abilities and metabolic 299 

features of the organisms can also be used to seek a deeper comprehension of their niche space use.  300 

3.1. Intraspecific diversity of central metabolism and nutrient requirements 301 

The nutritional requirements of B. bruxellensis are less described than those of model species such as 302 

S. cerevisiae. Nevertheless, B. bruxellensis exhibits atypical characteristics related to the metabolism 303 

of carbon, oxygen, nitrogen and other nutrients, that may explain its ability to colonise harsh 304 

environments described as ‘apocalyptic’ (Smith & Divol, 2016). The main phenotypic characteristics of 305 

B. bruxellensis have already been reviewed (Blomqvist & Passoth, 2015; de Barros Pita et al., 2019; 306 

Schifferdecker et al., 2014; Serra Colomer et al., 2019; Smith & Divol, 2016; Steensels et al., 2015). 307 

However, phenotypic traits have been little studied in the light of genetic diversification. 308 

Brettanomyces bruxellensis is characterized by growth variability which is partly related to ecological 309 

origin and/or to the genetic group (da Silva et al., 2019; Louw, du Toit, Alexandre, & Divol, 2016). As 310 

an example, bioethanol isolates grow faster compared to wine isolates on seven carbon sources 311 

(sucrose, cellobiose, maltose, lactose, glucose, fructose and galactose) (da Silva et al., 2019) and the 312 

variability of growth was highlighted for other genetic groups as well (Figure 2). 313 

Generally, central regulatory mechanisms like Glucose Catabolite Repression GCR (da Silva et al., 2019; 314 

Leite et al., 2012) and Nitrogen Catabolite Repression NCR (Cajueiro, Parente, Leite, de Morais Junior, 315 

& de Barros Pita, 2017; de Barros Pita, Leite, de Souza Liberal, Simões, & de Morais, 2011; de Barros 316 

Pita & Tiukova, 2013; Galafassi, Capusoni, et al., 2013) seem to be less strict in B. bruxellensis compared 317 

to S. cerevisiae (i.e. non-glucose and non-ammonium sources can be metabolized even in presence of 318 

high glucose/ammonium concentration). Diversity was observed in GCR, with B. bruxellensis’ 319 

bioethanol isolates being less susceptible to GCR than wine isolates (Blomqvist, Eberhard, Schnürer, & 320 

Passoth, 2010; da Silva et al., 2019). There is no data available to our knowledge for isolates from other 321 
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substrates, yet this feature needs more research as it may have significant ecological and technological 322 

implications: the simultaneous use of different carbon and nitrogen sources could increase the 323 

efficiency of absorption in low-nutrient media and be associated with higher fitness in specific 324 

environments. 325 

The most striking characteristic of B. bruxellensis is its ability to use a wide range of carbon sources as 326 

shown by large-scale phenotypic analyses (Cibrario, Miot-Sertier, et al., 2020; Conterno et al., 2006; 327 

Crauwels et al., 2015; da Silva et al., 2019; Galafassi et al., 2011; Smith & Divol, 2018). However, the 328 

carbon utilisation varies among isolates: a survey on the assimilation of 190 different carbon sources 329 

on seven strains clearly showed a variability between isolates, that could be related to different 330 

processes (Crauwels et al., 2015). By contrast to wine isolates, most beer strains were not able to 331 

consume galactose, some β-disaccharides (cellobiose and gentiobiose) or some β-substituted 332 

monosaccharides (arbutin and β-methyl-D-glucoside) (Crauwels et al., 2015; Serra Colomer, Funch, 333 

Solodovnikova, Hobley, & Förster, 2020). This observation could be explained by a variation of beta-334 

glucosidase and alpha-glucosidase activity between the genetic groups (Serra Colomer, Funch, et al., 335 

2020). Different environmental selective pressures could be responsible for this feature (Serra 336 

Colomer, Funch, et al., 2020). However, further work involving more than seven isolates is needed, 337 

including strains representative of all described subpopulations to properly assess the relationship 338 

between carbon assimilation and process. 339 

Like S. cerevisiae, B. bruxellensis is able to ferment sugars into ethanol even in the presence of oxygen, 340 

a phenomenon called the Crabtree effect, which supports the ‘Make-Accumulate-Consume’ (MAC) 341 

strategy (Rhind et al., 2011; Smith & Divol, 2016). The evolutionary and metabolic significances of the 342 

Crabtree effect remain highly discussed, although a simplistic viewpoint suggests that metabolic shifts 343 

(from respiration to fermentation and back again) are energetically costly and time-consuming 344 

(Pfeiffer & Morley, 2014). Furthermore, B. bruxellensis is an acetogenic yeast, which produces large 345 

amounts of acetic acid in addition to ethanol under aerobic conditions. This production varies a lot 346 
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between strains (up to 10-fold) (Freer, 2002; Freer, Dien, & Matsuda, 2003) and could have ecological 347 

implication since acetic acid release in the environments is described as a useful feature to outcompete 348 

other microorganisms (Rozpędowska et al., 2011) or to lure/deter flies involved in yeast dissemination 349 

(Dzialo, Park, Steensels, Lievens, & Verstrepen, 2017). Regarding oxygen impact, conflicting results 350 

have been highlighted, with some studies connecting oxygen input to increased or decreased growth 351 

(Aguilar Uscanga, Délia, & Strehaiano, 2003; da Silva et al., 2019; Smith & Divol, 2018). The 352 

conservation of the NADH dehydrogenase subunit genes in the mitogenome suggests specific oxygen’s 353 

need during B. bruxellensis’ fermentation (Procházka et al., 2010). The oxygen requirement is barely 354 

deciphered in B. bruxellensis and should be the subject of deeper studies in the near future, particularly 355 

to determine its possible impact on niche colonization.   356 

In addition to peculiarities regarding carbon and oxygen metabolism, B. bruxellensis has atypical 357 

nitrogen and vitamins requirements, which may explain its ability to colonize certain niches. In general, 358 

B. bruxellensis seems to have higher nitrogen needs than S. cerevisiae (Leite et al., 2012), and 359 

B. bruxellensis is able to grow on nitrate as sole nitrogen sources (Borneman et al., 2014; Conterno et 360 

al., 2006). This could be advantageous in wine or in bioethanol environment where nitrate is present 361 

and not consumed by the first S. cerevisiae fermenter (Cajueiro et al., 2017; de Barros Pita et al., 2011). 362 

Pena-Moreno et al. even reported that the presence of nitrate boosted ethanol production and growth 363 

for some bioethanol strains (Morales-de la Peña, Welti-Chanes, & Martín-Belloso, 2019). Nitrate 364 

consumption capacity varies depending on the ecological origin of isolation (Borneman et al., 2014; 365 

Crauwels et al., 2015; da Silva et al., 2019). The nitrate assimilation cluster (NIT cluster) was found to 366 

be probably involved in the observed phenotypic variation: it encompasses genes encoding nitrate 367 

transporter, nitrate reductase, nitrite reductase and two related transcription factors. It has evolved 368 

differently between strains and ecological groups. While NIT cluster was duplicated in a wine diploid 369 

isolate capable of assimilating nitrate (belonging to the wine 3 subgroup) and it was partially deleted 370 

or subjected to gene conversion in beer isolates unable to assimilate nitrate (belonging to the beer 371 

subpopulation) (Borneman et al., 2014; Gounot et al., 2020). In a wine triploid isolate able to assimilate 372 
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nitrate (from the wine 1 group), three haplotypes are present. To sum up, selective pressures in 373 

different ecological niches may have allowed different evolutionary trajectories, although researches 374 

involving more representative strains are needed to have the full picture. Regarding vitamins 375 

requirements, B. bruxellensis was initially defined as an auxo-autotroph (Peynaud and Domercq, 1956) 376 

but recent results indicate that biotin is the only vitamin which strongly affects the biotic capacity of 377 

B. bruxellensis in the long term (von Cosmos & Edwards, 2016). Thiamine requirements appear to 378 

depend on the strain and on the presence of ethanol in the growth medium (von Cosmos & Edwards, 379 

2016). 380 

3.2. Traits of technological interest 381 

Another notable characteristic of B. bruxellensis species is its ability to convert hydroxycinnamic acids 382 

(HCAs) into volatile phenols. HCA metabolism may have an important impact from an ecological 383 

viewpoint: HCA have antimicrobial properties, and the ability to convert HAC into less toxic compounds 384 

could promote yeast growth (Richard, Viljanen, & Penttilä, 2015). Besides, HAC are important dietary 385 

antioxidants for flies. However, flies are not able to detect directly HCA and use ethyl phenols as an 386 

indirect indicator of their presence (Dweck, Ebrahim, Farhan, Hansson, & Stensmyr, 2015). Flies 387 

interaction with yeasts have consequences on their dissemination and the possibility to colonize new 388 

environments, and volatile phenols could be a key factor mediating yeast-insect interactions (Stefanini, 389 

2018). Besides their ecological importance, volatile phenols are considered as off-flavours in oenology 390 

(for review (Suárez et al., 2007; Wedral, Shewfelt, & Frank, 2010)). The term ‘volatile phenols’ generally 391 

includes 4-ethylphenol (4-EP), 4-ethylguaiacol (4-EG) and 4-ethylcatechol (4-EC) and their vinyl forms, 392 

4-vinylphenol (4-VP), 4-vinylguaiacol (4-VG), 4-vinylcatechol (4-VC). These are produced through the 393 

conversion of hydroxycinnamic acids (HCAs): p-coumaric acid, ferulic acid and caffeic acid respectively. 394 

The production of volatile phenols by B. bruxellensis strains is variable and was extensively described 395 

in oenological conditions (M. Agnolucci et al., 2009; Monica Agnolucci et al., 2010; Conterno et al., 396 

2006; Di Toro et al., 2015; Hixson et al., 2012; Madsen et al., 2017; D. Romano et al., 2017; Vigentini 397 
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et al., 2008; Zepeda-Mendoza et al., 2018). Most studies involved end-point analyses, which makes it 398 

difficult to distinguish between the intrinsic capacities of the strains and their modulation by external 399 

parameters. Furthermore, the respective importance of the different factors governing such variability 400 

is poorly described: a few authors showed that volatile phenol production was both strain-dependent 401 

and wine matrix-dependent (Chandra, Madeira, Coutinho, Albergaria, & Malfeito-Ferreira, 2016; 402 

Cibrario, Miot-Sertier, et al., 2020; Dias, Pereira-da-Silva, Tavares, Malfeito-Ferreira, & Loureiro, 2003; 403 

Zhu, Zhang, & Lu, 2012). The niche of isolation could also play a role and brewing isolates have a more 404 

efficient metabolism toward ferulic acid (leading to 4-EG) than p-coumaric acid compared to wine 405 

isolates (Lentz & Harris, 2015). Some wine and soft drink isolates possess a duplication of the Vinyl 406 

Phenol Reductase gene, which is absent in beer isolates (Crauwels et al., 2017). However, while all 407 

these studies confirmed the existence of intraspecific variation, their impact on the production of 408 

volatile phenols and their possible ecological significance remains to be properly assessed. 409 

Brettanomyces bruxellensis show important intra-specific variability regarding the production of other 410 

aroma-active molecules such as esters, fatty acids, terpenes, phenolic compounds, N-heterocycle, (see 411 

Brettanomyces aroma wheel, (Lucy Joseph, Albino, & Bisson, 2017; Serra Colomer, Funch, et al., 2020; 412 

Tyrawa, Preiss, Armstrong, & van der Merwe, 2019)). Although some environmental factors may 413 

impact ester production (e.g. ethanol and p-coumaric acid concentrations (Conterno, Aprea, 414 

Franceschi, Viola, & Vrhovsek, 2013; Lucy Joseph, Kumar, Su, & Bisson, 2007)), esterase activity is also 415 

strain-dependent (Holt et al., 2018; Spaepen & Verachtert, 1982; Steensels et al., 2015; Verstrepen et 416 

al., 2003). The intraspecific variation in the production of esters is mirrored at the aromatic level and 417 

impacts fruitiness, which is particularly important for Lambic beer style (Van Oevelen, Spaepen, 418 

Timmermans, & Verachtert, 1977). The activity of some alpha-glucosidase and beta-glucosidase 419 

enzymes may be involved in the release of aromatic compounds like terpenes (Crauwels et al., 2014; 420 

Daenen et al., 2007; Serra Colomer, Funch, et al., 2020; Vervoort et al., 2016). N-heterocycles can be 421 

produced by B. bruxellensis in beverages (mostly in wine or beer) (for review see (Snowdon, Bowyer, 422 

Grbin, & Bowyer, 2006)). These molecules are responsible for the ‘mousy’ off-flavor, which causes 423 
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rejection by the consumers. The metabolic pathway is not fully understood, but the amino-acid 424 

content and the oxygen availability in fermented beverages are key parameters for their production 425 

(Grbin & Henschke, 2000; Grbin, Herderich, Markides, Lee, & Henschke, 2007). The state of art is 426 

somewhat inconsistent, which may be explained by the difficulty to properly measure such compounds 427 

and their seemingly random occurrence in fermented beverages. From an ecological aspect, all these 428 

aromatic compounds could play key roles in natural environments, including signalling and 429 

communication with other organisms, and/or attractants for animals, particularly insects (Dzialo et al., 430 

2017). 431 

Brettanomyces bruxellensis shows an incredible ability to persist over long time in some industrial 432 

environments (Cibrario, Miot-Sertier, et al., 2020). Such capacity of persistence could be linked to the 433 

various physiological states of the cells, beside the classical free-living (planktonic) state. Indeed, 434 

B. bruxellensis is able to form biofilm, pseudo-mycelium, chlamydospore-like structure and VBNC 435 

(Viable But Non Culturable) cells. While many aspects remains unknown or contradictory, a 436 

physiological change between these forms could be induced by stress conditions related to the 437 

presence of some chemical compounds and/or to nutrient limitation (Uscanga, Delia, & Strehaiano, 438 

2000). Intraspecific diversity was observed in the ability to enter or exit the VBNC state (Capozzi et al., 439 

2016; Longin et al., 2016) as well as to form pseudo-hyphae (Martyniak, Bolton, Kuksin, Shahin, & Chan, 440 

2017) or biofilm (Lucy Joseph et al., 2007). Recently, two concomitant studies (Dimopoulou, Renault, 441 

et al., 2019; Lebleux et al., 2020) have suggested that the ability to produce biofilms depends on the 442 

genetic groups. Although only a limited number of strains were tested, the beer group showed 443 

robustness regarding biofilm formation in glucose-rich or glucose-limited media. For other genetic 444 

groups, biofilm’s production was more dependent on environmental characteristics, suggesting 445 

different regulatory mechanisms (Dimopoulou, Renault, et al., 2019). These differences were also 446 

partly mirrored by the biochemical and physicochemical properties of the surface of the strains 447 

(Dimopoulou, Renault, et al., 2019). Finally, whether B. bruxellensis is actually able to sporulate and to 448 

undergo a sexual cycle remains a mystery. Early description of ascospore-like forms by van der Walt 449 
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(Van der Walt, 1964) prompted the definition of a teleomorphic stage (ie the sexual reproductive stage 450 

of a fungal species in mycology). The teleomorph was named Dekkera bruxellensis (B. bruxellensis 451 

being the anamorph counterpart, that reproduces asexually). Since then, ascospores formation was 452 

scarcely described (A.T. de Souza Liberal et al., 2007), and most authors consider B. bruxellensis as 453 

lacking an effective sexual cycle (Hellborg & Piškur, 2009). In particular, the existence of a meiosis 454 

should be associated with triploid instability, which is not evidenced at the genomic level. The impact 455 

of polyploidy and hybridization on the ability to switch from one form to another (planktonic, sessile, 456 

biofilm, pseudo-mycelium) remains to be elucidated. From an ecological viewpoint, the possibility to 457 

adopt various lifestyles and switch from one to another cellular morphologies may facilitate niches 458 

adaptation and drastic environment changes, as it the case for dimorphic fungi whose yeast-hyphae 459 

switch is recognized as an essential adaptation for host colonization and pathogenicity (Boyce & 460 

Andrianopoulos, 2015). 461 

As one of the main worldwide wine spoilers, winemakers try to prevent and/or control Brettanomyces 462 

contamination through several methods such as the use of filtration, application of ozone, high 463 

pressure, ultrasound, ultraviolet irradiation, pulsed electric fields, chitosan or the addition of sulphite 464 

(Supplemental Table 2). So far, most studies evaluating the efficiency of these different applications 465 

have included a very small subset of strains (Supplemental Table 2) with questionable 466 

representativeness, especially for wine isolates that are found into different genetic groups. As a result, 467 

conflicting conclusions have been recorded: for example, chitosan treatments have sometimes been 468 

described as very effective (Bağder Elmacı et al., 2015) or moderately effective against B. bruxellensis 469 

(Petrova, Cartwright, & Edwards, 2016). This incongruity has been partly resolved, a strain-dependent 470 

sensitivity to chitosan was demonstrated (Paulin et al., 2020). In future work, it could be interesting to 471 

define a standardized method to evaluate the efficiency of anti-microbial treatments against 472 

B. bruxellensis including a panel of isolates representative of the genetic diversity of the species. 473 
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In winemaking, the most common treatment is the addition of sulphur dioxide (Barata et al., 2008). 474 

High intraspecific diversity in sulphite tolerance was repeatedly demonstrated in several studies 475 

(Avramova, Cibrario, et al., 2018; Dimopoulou, Hatzikamari, Masneuf-Pomarede, & Albertin, 2019; 476 

Galafassi, Toscano, Vigentini, Piškur, & Compagno, 2013). On a cohort of 100 isolates from 477 

winemaking, three phenotypic groups were defined: sensitive (slowed growth), tolerant (delayed 478 

growth) and resistant (no impact on growth) (Vigentini, Lucy Joseph, Picozzi, Foschino, & Bisson, 2013). 479 

A recent study was able to connect sulphur sensitivity to the genetic groups, with two triploid groups 480 

(wine 1 and wine 2) containing most tolerant/resistant isolates (Avramova, Vallet-Courbin, Maupeu, 481 

Masneuf-Pomarède, & Albertin, 2018). Competition experiments between sensitive/tolerant isolates 482 

under increasing concentration of sulphite showed specific adaptation of isolates from wine 1 483 

allotriploid group to high SO2 environments (Avramova et al., 2019). Different SSU1 haplotypes (SSU1 484 

encoding sulphite efflux pump) related to variable SO2 tolerance were characterized (Valdetara et al., 485 

2020; C Varela, Bartel, Roach, Borneman, & Curtin, 2019; Cristian Varela, Bartel, Onetto, & Borneman, 486 

2020). It revealed that gene dosage effect (the number of SSU1 haplotype) as well as the SSU1 487 

regulation could be at least partially involved in SO2 tolerance (Varela et al., 2019). In a recent 488 

experiment, Bartel et al conducted a laboratory experimental evolution in presence of sulfur dioxide 489 

concentrations, and evidenced adaptive evolution in different genetic backgrounds targeting partly 490 

SSU1 (Bartel et al., 2021). A genotyping study showed that the two genetic groups (wine 1 and wine 2) 491 

containing the most tolerant/resistant isolates of B. bruxellensis were scarcely isolated before 1990 492 

and that their proportion had increased steadily since then, possibly with the increase of sulphur use 493 

in oenology (Cibrario et al., 2019). Sulphur tolerance/resistance in B. bruxellensis could thus be the 494 

result of anthropization and adaptation to winemaking environments as for wine strains of 495 

S. cerevisiae (Gallone et al., 2016; García-Ríos & Guillamón, 2019; Kaewkod, Bovonsombut, & 496 

Tragoolpua, 2019). The fact that sulphite tolerant/resistant phenotypes are present in two different 497 

genetic cluster (one autotriploids, one allotriploid) may indicate independent acquisition and possibly 498 
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different adaptive mechanisms. How much and how the change in ploidy contributes to the 499 

resistant/tolerant phenotype has to be resolved in future studies. 500 

In conclusion, although a high number of surveys investigated various B. bruxellensis traits with 501 

fundamental and applied interest, many of these published studies used a small subset of strains 502 

usually not representative of the genetic diversity of the species (Figure 3, Supplemental Table 3). 503 

Brettanomyces bruxellensis literature is scattered with incongruences that could be directly related to 504 

intraspecific diversity and the lack of representability of the isolates tested. It highlights the necessity, 505 

for future research, to properly take into consideration strains from different ploidy levels, with varied 506 

hybridization backgrounds (auto- and allotriploids), isolated from various substrates and geographical 507 

origins and distributed within the different genetic populations described. 508 

4. Discussion and perspectives 509 

4.1. Brettanomyces bruxellensis, the fermentation finisher 510 

Brettanomyces bruxellensis has attracted increasing attention recently due to its involvement in 511 

industrial processes and its unusual genomic composition. Saccharomyces cerevisiae is one of the most 512 

intensively studied eukaryotic models, at the fundamental level in molecular, cellular and ecology 513 

biology, but also from an applied point of view as it is widely used as a fermentation starter for several 514 

human processes (Boone, 2014; Chambers & Pretorius, 2010; Goddard & Greig, 2015; Peter & 515 

Schacherer, 2016). Interestingly, while B. bruxellensis species is associated with similar anthropic 516 

processes (e.g. oenology, brewery), it is particularly recognized for its competence to colonize already 517 

fermented environments (such as wine or beer rather than grape must or wort) (Schifferdecker et al., 518 

2014). Brettanomyces bruxellensis is thus a perfect model of fermentation finisher, a complementary 519 

counterpoint to S. cerevisiae model of fermentation starter, sharing the same industrial niches, but not 520 

with the same temporality. Interestingly, no isolates of B. bruxellensis were identified outside human 521 

related processes so far. Several reasons may explain the non-detection of wild isolates yet. First, 522 

B. bruxellensis is a slow-growing yeast species, so it may be easily outcompeted by other yeast species 523 
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whenever culturable methods are used (Agnolucci et al., 2017). Another possibility is that 524 

B. bruxellensis could be part of biofilm communities in natural environments – albeit at low-abundance 525 

and/or in Viable But Not Cultivable (VBNC) state preventing its isolation. Indeed, 40-80% of cells on 526 

Earth live and persist in multispecies communities (bacteria, archaea, eukaryotes, etc.) forming 527 

biofilms, e.g. aggregated structures frequently enclosed into matrixes of extracellular polymeric 528 

substances (Flemming et al., 2016; Flemming & Wuertz, 2019). Growth in polymicrobial biofilms is 529 

relatively protected from environmental variations, and could improve survival in hostile environments 530 

(Flemming & Wuertz, 2019). The identification of low-abundance or VBNC species within complex 531 

communities remains a challenge, prompting the use of metagenomics, culturomics or reverse 532 

genomics approaches (Martellacci et al., 2019; Ryu et al., 2021). Brettanomyces bruxellensis has 533 

abilities to form VBNC or to be involved in microbial consortia like kombucha’s SCOBY (Symbiotic 534 

Community of Bacteria and Yeast) (Savary et al., 2021). These characteristics make it plausible the 535 

hypothesis of natural biofilms as one of their wild environments, although no definite evidences are 536 

described so far. Besides biofilms, natural fermentations are another putative example of ecosystems 537 

that could foster the growth of wild B. bruxellensis. Many insects, mammals or birds store foods (fruits, 538 

grains, meat, etc.) for times of less-plentiful sustenance. Food storage is prone to microbial growth or 539 

spoilage, and natural fermentations occurred long before humans, and long before human-directed 540 

fermentations (Carrigan et al., 2015; Post & Urban, 1993; Ruxton, Wilkinson, Schaefer, & Sherratt, 541 

2014; Wiens et al., 2008). These naturally-occurring fermentations are poorly described, but they 542 

probably display similar characteristics to B. bruxellensis’ anthropic environments: presence of ethanol 543 

and organic acids, wide variety of ever-evolving sugar, nitrogen and other nutrients contents, oxygen 544 

availability, succession of complex microbial communities, etc. In such natural fermentations, 545 

B. bruxellensis could play second fiddle and colonize the environments after more efficiently-growing 546 

and fermenting microorganisms. In natural environments also, the role of wild-fermentation finisher 547 

would be congruent with B. bruxellensis’ scavenging abilities (Smith & Divol, 2016). However, this 548 

hypothesis remains purely speculative: the literature is scarce regarding the microbial communities 549 
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associated with food caching or hoarding , and so are the available isolates from these niches (Herrera, 550 

Kramer, & Reichman, 1997; Post & Urban, 1993). Obtaining and studying natural isolates would be an 551 

ideal option, but even in the absence of data on their wild counterparts, future works both at the 552 

genomic and phenotypic levels will help outlining the characteristics of B. bruxellensis’ natural 553 

reservoirs. In particular, study of the central metabolism and the molecular mechanisms (HGT, LOH, 554 

CNV, etc) driving their evolution will help to determine which metabolic functions are conserved, lost 555 

or gained and their possible involvement into adaptations to anthropic environments. For example, 556 

determining whether maltose metabolization or beta-glucosidase activity were acquired before 557 

B. bruxellensis’ anthropic associations may give clues concerning its possible natural niches (i.e. crops- 558 

or wood-related). Future works should explore more thoroughly all these aspects (central metabolism, 559 

VBNC and biofilm abilities, etc.) to gain more insights into a fermentation-related microorganism and 560 

to improve our possibilities of controlling the species in various processes.  561 

4.2. Exploring the relationships between polyploidy/hybridization and adaptation to anthropized 562 

environments 563 

Genomic analyses unveiled a genetic diversity of B. bruxellensis related to specific substrates. Diploid 564 

isolates coexist with triploid ones of hybrid origins, and several subpopulations of diploid and triploid 565 

individuals are described. Some of these groups are related to specific substrate origins (wine, beer, 566 

kombucha, tequila) and display adaptive traits related to their ecological niche (e.g. sulphite 567 

tolerance/resistance in winemaking, ability to metabolize nitrate in bioethanol production, maltose 568 

utilization in beer process). In industrial processes, where stress is omnipresent, polyploidy and 569 

aneuploidy are recurrent events in domesticated populations of S. cerevisiae (Peter et al., 2018; Querol 570 

& Bond, 2009; Steensels et al., 2021). In B. bruxellensis, the level of aneuploidy (roughly 5%) is 571 

surprisingly low considering: 1- the proportion of aneuploidy in other yeast species (19% in 572 

S. cerevisiae, 15% and 33%  in the pathogenic yeasts Cryptococcus neoformans and Candida albicans, 573 

respectively (Gounot et al., 2020; Peter et al., 2018; Rhodes et al., 2017; Scopel, Hose, Bensasson, & 574 

Gasch, 2021; Selmecki, Forche, & Berman, 2006)); and 2- the proportion of triploids in B. bruxellensis 575 
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(>50%) which are known to evolve quickly toward aneuploidy and diploidy in Saccharomyces species 576 

(Avramova, Cibrario, et al., 2018; Gerstein, McBride, & Otto, 2008; Todd, Forche, & Selmecki, 2017). 577 

The phylogeny and evolutionary history of B. bruxellensis species are particularly complex to 578 

reconstruct because of the intertwined events of polyploidization and hybridization (Linder, Moret, & 579 

Nakhleh, 2003). New approaches will be needed to unravel its complex genetic architecture and to 580 

elucidate the precise relationship between genomic evolution and the actual adaptation to 581 

anthropized environments. The evolution of many species (plant, animal, microorganism) is strongly 582 

shaped by human activities. When anthropogenic-driven transformation is purposefully associated 583 

with improved attributes, the species are labelled as domesticated, as in S. cerevisiae for which several 584 

independent domestication events were evidenced (Gallone et al., 2018; Giannakou et al., 2020; 585 

Steensels, Gallone, Voordeckers, & Verstrepen, 2019). In the case of B. bruxellensis, the situation 586 

seems to be more complicated: the fact that some beer isolates are used by brewers for their improved 587 

ability to metabolize specific sugars may correspond to domestication. Conversely, adaptation to 588 

winemaking environments through acquisition of sulphite resistance is probably an unintentional 589 

consequence of anthropogenic influence. Thus, for wine groups, the term ‘domestication’ does not 590 

apply to what seems to be an adaptive evolution at the expense of humans. A few works already 591 

provided evidence of various beneficial or detrimental traits associated with the different anthropized 592 

environments colonized by B. bruxellensis. The underlying molecular mechanisms remain to be 593 

explored more thoroughly, in particular the role played by LOH, HGT, CNV and other mechanisms in 594 

the evolution and adaptation of the species. How polyploidization and hybridization actually impacted 595 

the evolutionary routes of B. bruxellensis is still an open question. Future directions should take 596 

advantage of this model yeast to examine closely the influence of anthropogenic activities on the 597 

species and their genomic, phenotypic and adaptive consequences, whether positive or negative for 598 

humans.  599 

The description of both auto- and allotriploid groups raises the question of their origin. The recent 600 

genomic approaches, and particularly phasing methods, allowed the precise description of the 601 
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genomic content of these triploids that harbour a core diploid genome added with an additional 602 

haploid one of various intra- and inter-specific origins (Abou Saada et al., 2021). Triploid formation in 603 

B. bruxellensis happened at least four times, suggesting the successive occurrence of a not-so-rare 604 

event of polyploid formation, followed by a not-so-rare establishment mechanism (selection or 605 

random genetic drift). Regarding the possible mechanisms of polyploid formation, accidental miss-606 

repartition of chromosomes during mitosis can lead to unbalanced number of chromosomes in 607 

daughter cells (Todd et al., 2017; Wertheimer, Stone, & Berman, 2016). However, this pathway would 608 

account only for the formation of autotriploids (not allotriploids), furthermore without heterozygosity 609 

increase, which is described in B. bruxellensis wine 2 autotriploid group. In addition, the presence of a 610 

complete haploid set of chromosomes tends to invalidate the hypothesis of mitosis mishaps, which 611 

would more frequently lead to aneuploids rather than polyploids. Autopolyploidy can also occur via 612 

endoreduplication – replication of the whole nuclear genome in absence of mitosis – a phenomenon 613 

frequently described in plants (Harari, Ram, Rappoport, Hadany, & Kupiec, 2018; Sugimoto-Shirasu & 614 

Roberts, 2003). However, endoreduplication accounts only for even ploidy levels, not for odd (triploid) 615 

ones, and is not associated with increased in heterozygosity levels. The production of unreduced 616 

gametes, followed by intra- or interspecific hybridization, is another route of polyploid formation 617 

frequently described in plants and animals (Otto & Whitton, 2000). The absence of evidence of sexual 618 

cycle in B. bruxellensis makes this mechanism less likely. Protoplast (spheroplast) fusion could be an 619 

interesting hypothesis: protoplast formation could occur after cell wall digestion in insects’ guts and 620 

subsequent protoplasts fusion could allow intra- and inter-specific hybridization of non-sexual species 621 

(Steensels et al., 2014). To date, protoplast fusion is the most likely hypothesis of auto- and allotriploid 622 

formation, yet the literature lacks of formal evidence and future genomic and ecological analyses may 623 

shed lights on the possible routes of polyploid formation in B. bruxellensis. In addition to 624 

polyploidization/hybridization mechanism, the prominence of B. bruxellensis' triploids indicates that 625 

triploid formation was followed by the successful establishment of these lineages, through either 626 

neutral genetic drift or natural/artificial selection. It seems highly unlikely that random genetic drift 627 
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could account alone for the presence of triploid lineages in B. bruxellensis: firstly, polyploidy is related 628 

to energetic and resource costs that, far from being neutral, should lead to its counter-selection 629 

(Comai, 2005; Neiman, Kay, & Krist, 2013). Secondly, at least four auto- and allotriploid events have 630 

led to the independent establishment of triploid lineages, a high number for a purportedly stochastic 631 

phenomenon. Thirdly, some of these triploid lineages show (or are suspected to show) higher fitness 632 

in their environments of predilection, such as sulphite resistance for the wine 1 and wine 2 groups, the 633 

possible metabolization of maltose and other complex sugars for the beer group, or increased growth 634 

and the ability to metabolize nitrate for teq/EtOH group (Avramova, Vallet-Courbin, et al., 2018; S. 635 

Crauwels et al., 2015; Galafassi, Capusoni, et al., 2013; Serra Colomer, Chailyan, et al., 2020). All these 636 

elements suggest that polyploidization in B. bruxellensis is not neutral from an evolutionary viewpoint, 637 

although more genomic and phenotypic studies are needed to deepen our understanding of the 638 

evolutionary fates of these polyploids compared to their diploid counterparts.   639 

Finally, the large genetic differences (up to 3%) recorded between subpopulations raise the question 640 

of the actual number of species within this clade (Eberlein et al., 2021). No sexual cycle was formally 641 

recorded to date and no gene flow between B. bruxellensis subpopulations was ever described, 642 

suggesting independent evolution within each clade, and speciation in progress. Future large-scale 643 

genomic and phenotypic analyses will help determine whether we should still consider B. bruxellensis 644 

as a single but complex species with diverse subpopulations, or whether we should redefine 645 

B. bruxellensis as a complex of single species. 646 

4.3 Brettanomyces bruxellensis, a yeast model to study the relationship between polyploidy, 647 

hybridization and adaptation to human-related environments 648 

Polyploidy and hybridization, two frequently associated events, have long been described as key 649 

evolutionary mechanisms underlying radiation and adaptation in many clades of plants, animals or 650 

fungi (Gregory & Mable, 2005; Otto & Whitton, 2000; Todd et al., 2017; Van De Peer, Mizrachi, & 651 

Marchal, 2017). In flowering plants, where the impact of polyploidy is the most studied, polyploidy and 652 

hybridization are frequently associated with phenotypic diversification, trait innovation, increased 653 
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fitness, invasiveness abilities, adaptation to harsh environments and domestication (Ainouche & 654 

Wendel, 2014; Soltis & Soltis, 2009). Historically less studied in microorganisms, polyploidy and 655 

hybridization are now well established as driving evolutionary forces in yeast, Chromalveolata, but also 656 

in prokaryotes, including Bacteria and Archaea (Albertin & Marullo, 2012; Marcet-Houben & Gabaldón, 657 

2015; Soppa, 2022). Yeast usually enables the development of systems biology approaches, and 658 

B. bruxellensis triploids may allow to investigate the fates of genes duplicated by whole genome 659 

duplication and their impact on phenotypic traits. In addition, the close association between various 660 

human processes and different ploidy/hybridization status makes of B. bruxellensis a valuable model 661 

to decipher the evolutionary mechanisms involved in the adaptation to anthropized niches. The study 662 

of B. bruxellensis’ diploid and triploid populations may provide valuable insights into the ecological and 663 

evolutionary significance of natural polyploidy. 664 
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Tables and Figures 1588 

Figure 1. Genetic position and population structure of Brettanomyces bruxellensis. 1589 

1A. Neighbor-joining tree of the Brettanomyces genus. 1590 

The distance tree comprises the six Brettanomyces species, Allodekkera sacchari (the closest sister 1591 
species to Brettanomyces clade), Ogataea polymorpha, Saccharomyces cerevisiae and 1592 
Saccharomyces bayanus as outgroups. 26S ribosomal RNA gene sequences were used. A global 1593 
alignment with free end gaps was prepared using Geneious (Prime 2020.2) and the default setting for 1594 
multiple alignments. The Neighbor-joining tree was built with the Tamura-Nei Model of genetic 1595 
distances. The final tree represents a consensus of 1,000 resampled trees obtained with an extended 1596 
majority rules method. The consensus supports of the nodes are given in %. Sequences data was 1597 
downloaded from NCBI. 1598 

1B. Genetic diversity within Brettanomyces bruxellensis species.  1599 

Brettanomyces bruxellensis subpopulations are represented by different colors and named from 1600 
previous reports (Avramova, Cibrario, et al., 2018; Gounot et al., 2020). The tree was built from whole 1601 
genome Illumina short-read sequencing of 71 B. bruxellensis isolates aligned to the reference genome 1602 
B. bruxellensis (Fournier et al., 2017) and 24,313 genetic variants evenly distributed across the genome 1603 
(Eberlein et al., 2021). The ploidy level of each population was schematized, two chromosomes 1604 
represent diploid groups, three chromosomes represent triploids ones. Light grey, dark gray and white 1605 
chromosomes represent the independent haploid acquired genomes from unknown sister species. 1606 

 1607 

 1608 
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 1610 

Figure 2. Growth parameters for different subpopulations of B. bruxellensis.  1611 

Genetic groups as described by previous reports (Avramova, Cibrario, et al., 2018; Gounot et al., 2020). 1612 
Growth data was taken from Avramova et al. (Avramova, Vallet-Courbin, et al., 2018). The growth 1613 
parameters correspond to the lag phase (hour), maximum OD (600 nm) without or with sulphite (0.6 1614 
mg.L-1 of molecular SO2). For each genetic group, mean values are represented by a circle, and error 1615 
bars correspond to standard error. Top letters represent significance groups as defined by Kruskal-1616 
Wallis test when significant (p-value < 0.05). P-values were 0.0054, 0.11 and 5.4 10-10 for lag phase, 1617 
maximum OD without or with sulphite respectively. 1618 
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Figure 3. Representativity and diversity of Brettanomyces bruxellensis collections studied in the 1620 
literature. 1621 

3A: Histogram of the number of isolates of B. bruxellensis used in the studies referenced in 1622 
supplemental Table 3, with their process/substrate of isolation. 1623 

3B: Venn diagram of the number of studies including isolates of B. bruxellensis from various 1624 
geographical origins. 1625 

3C: Venn diagram of the number of studies including isolates of B. bruxellensis from various process 1626 
origins. 1627 
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Table 1. Whole-genome sequencing of B. bruxellensis isolates.  1629 

1ND stands for ‘not determined’ by the corresponding publication. 1630 

Publication 
Isolates ID 
(or number of isolates) 

Niche; origin 
of isolation 

Country/region 
of isolation 

Ploidy1 

Woolfit et al. (2007) CBS 2499 Wine France ND 

Piškur et al. (2012) CBS 2499 Wine France Diploid 

Curtin et al. (2012) AWRI 1499 Wine Australia Triploid 

Crauwels et al. (2014) ST05.12/22 = VIB X9085 Beer Belgium Diploid 

Valdes et al. (2014) LAMAP 2480 Wine Chile ND 

Borneman et al. (2014) 
AWRI 1608 Wine Australia Triploid 

AWRI 1613 Wine Australia Diploid 

Crauwels et al. (2015) 

ST05.12/26 = MUCL 
49865 

Beer Belgium Diploid 

ST05.12/48 Beer Belgium Diploid 

ST05.12/53 Beer Belgium Triploid 

ST05.12/59 = CBS 6055 Dry ginger ale 
United States 
of America 

Triploid 

Olsen et al. (2015), Jiang, et al. 
(2019) 

CBS 11270 Bioethanol Sweden Diploid 

CBS 2796 Wine Germany ND 

Fournier et al. (2017) 

9 strains 
Wine, beer, 
bioethanol 

Europe, 
Oceania, Africa 

Diploid, 
triploid 

53 strains 
Wine, beer, 
bioethanol, 
soft drink 

Europe, 
Oceania, Africa, 
America 

Diploid, 
triploid 

Colomer et al. (2020) 64 strains 

Beer, 
bioethanol, 
wine, 
kombucha, 
tequila 

Europe, 
Oceania, Africa, 
America 

Diploid, 
triploid 

Eberlein et al. (2021) 71 strains 

Beer, 
bioethanol, 
wine, 
kombucha, 
tequila 

Europe, 
Oceania, Africa, 
America 

Diploid, 
triploid 

 1631 


