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The use of templates in materials chemistry is a well-established approach for producing membrane-
bounded hollow spheres used for microencapsulation applications, but also in synthetic biology to
assemble artificial cell-like compartments. Sacrificial solid or gel micro-particles, but also liquid-like
oil-in-water or water-in-oil emulsion droplets are routinely used as templates to produce capsules.
Yet, disruption of the core sacrificial material often requires harsh experimental conditions, such as
organic solvents, which limits the use of such approach to encapsulate fragile solutes, including biomo-
lecules. Recently, water-in-water emulsion droplets have emerged as promising alternative templates to
produce capsules in solvent-free conditions. These water-in-water droplets result from liquid-liquid
phase separation in dilute aqueous polymer or surfactants solutions. Their ease of preparation, the large
palette of components they can be assembled from and the lack of harsh solvent or oil used for their pro-
duction make water-in-water emulsions of practical importance in materials chemistry. Water-in-water
droplets can also spontaneously sequester solutes by equilibrium partitioning, which provides a simple
strategy to locally accumulate molecules of interest and encapsulate them in capsules after interfacial
shell formation. Here, we review recent works that employ water-in-water emulsion droplets to prepare
capsules and suggest possible additional applications in materials chemistry.
� 2022 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

In materials chemistry, sacrificial templates are solid particles,
emulsion droplets, self-assembled systems or any other object that
can be coated with chemicals or particles then disassembled to
produce a material in the shape of the initial template (Fig. 1).
Templates have been used to prepare porous materials [1–5], Janus
particles [6–11] or nano- or micro-meter sized hollow capsules
[12–20]. The latter represent attractive materials for both techno-
logical and fundamental aspects since they have been exploited to
encapsulate various solutes, protect them from the external med-
ium, and release them on demand [21–26]. The encapsulation
properties of hollow spheres depend on the chemical composition
and structure of the shell used to cover the core, but also on the
nature of the template initially used. While hollow spheres with
sizes spanning several orders of magnitudes (from tens of nanome-
ter to hundreds of micrometers) can be produced using such a tem-
plating approach, our discussion will focus on microscale capsules
(typically 1–100 lm in diameter).

Conventional methods for the preparation of micro-capsules
have been broadly reviewed recently [6–8,10,12,16,17,19–21,23,2
4,26–42]. Several methods are template-free as nanoprecipitation
or use solvent shifting [40–46]. Solid or gel particles but also
water-in-oil or oil-in-water emulsion droplets are routinely used
as sacrificial templates to synthesize capsules. One advantage of
using solid templates such as silica or latex beads is that they
can be highly monodisperse, which provides simple access to
monodisperse hollow spheres [16,47,48]. However, removing a
solid template often involves harsh conditions, such as high tem-
peratures [49], organic solvents [50] or very low pH environments
[51]. In addition, encapsulating solutes within the resulting hollow
spheres has to be performed after the capsules have been prepared
(which often turns out tedious) or by initially loading the template
beads, but the solutes can then be damaged during template
removal. Gelled beads assembled from low molecular weight
organogelators [52,53] have also been used as templates to form
hollow capsules by the interfacial assembly of a shell. Gelled tem-
plates can be removed more easily, and do not necessarily need to
be sacrificed as they can be loaded with the molecules of interest
before the assembly of a shell. The use of water-in-oil (W/O) or
oil-in-water (O/W) emulsion droplets as templates has also
become popular in recent years [4,5,33,54,55], mainly because
such dispersions can be produced using a broad range of methods
and components (oils and emulsifiers) [3,36,56], and can be used to
encapsulate either water-soluble or lipophilic solutes. Here again,
Fig. 1. Schematic representation of the templating method used to prepare capsules as h
to produce a hollow sphere.
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destruction of the template is not necessary but the final capsules
may eventually be transferred into the desired continuous phase,
e.g. using gradual changes in solvent.

Different strategies and components have been used to produce
shells onto the above-mentioned templates. Colloidal particles can
stabilize W/O or O/W droplets to produce Pickering emulsions
[12,17,31,37,57], and can then be cross-linked or locked-in to form
robust capsules that have been referred to as colloidosomes
[18,19,58]. Polymers and polyelectrolytes [59,60], including pro-
teins, have also been used to form a shell in lieu of particles
[27,30,33,61–63]. These macromolecules either stabilize the emul-
sion itself by spreading at the oil/water interface or are deposited
at the surface of pre-formed emulsion droplets via electrostatic
interactions, for instance using the layer-by-layer technique
[16,33,47,61,64–66]. Interfacial polymerization, cross-linking or
complexation are also powerful strategies for producing hollow
spheres in emulsion dispersions [67–71]. For instance, molecular
precursors solubilized in one phase (water or oil) may polymerize
at the droplets’ interface upon addition of a reagent in the other
phase [72]. Similarly, a polymer bearing reactive groups can be sol-
ubilized in one phase and cross-linked at the interface by using a
cross-linker dispersed in the other phase [73]. Two polymers can
also be dispersed in one or the other phase, respectively, and meet
at the droplet interface via attractive electrostatic interactions
where they can further be cross-linked to form a robust shell
[74,75]. Interestingly, droplet-based microfluidics has emerged as
a promising approach to produce monodisperse emulsions dro-
plets as templates to prepare uniformly-sized micro-capsules
[67,76–78].

The above-mentioned templates offer powerful approaches for
the construction of micro-capsules, but may be limited for han-
dling fragile solutes, such as biomolecules. In addition, in the con-
text of a greener chemistry, alternative strategies to build capsules
with a lower environmental impact have recently emerged based
on the use of water-in-water (W/W) emulsion droplets as
solvent-free, biomolecule-friendly templates. The term ‘water-in-
water emulsions’ is a generic term used to designate the formation
of all-aqueous (oil-free) droplets in a continuous aqueous solution
[79]. W/W emulsions encompass aqueous two-phase systems
(ATPS) produced by segregative liquid–liquid phase separation of
incompatible polymers (such as poly(ethylene glycol) and dex-
tran), but also coacervates [80] resulting from an associative liq-
uid–liquid phase separation process, e.g., between oppositely
charged polyelectrolytes (complex coacervation) or between
amphiphilic molecules [81] (e.g., in the case of the surfactant
ollow spheres. The template is first covered by a shell, and then eventually removed
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clouding phenomenon). Such W/W emulsions have been first
reported in the late 19th/early 20th centuries, and have been
applied to various fields, including food science, healthcare indus-
try or underwater adhesives. In the mid-20th century, complex
coacervate droplets have further been suggested as plausible pre-
biotic protocells [82], the first primitive cells that appeared on
the early Earth. These water-in-water emulsions have recently
regained strong interest with their use as synthetic or artificial
cells in a bottom-up approach [83–87].

Key feature of these droplets is their ability to spontaneously
uptake and accumulate a range of solutes, including biomolecules,
via equilibrium partitioning, making them interesting compart-
ments to localize species. However, droplets produced by LLPS
are intrinsically unstable and undergo macroscopic phase separa-
tion with time. To avoid loss of droplet integrity, several
approaches have been developed recently to stabilize all-aqueous
droplets against coalescence. These approaches pave the way to
the use of W/W emulsion droplets as templates to produce hollow
spheres, using similar shell construction strategies as with conven-
tional templates (Fig. 2). For instance, Pickering-like water-in-
water emulsions can be produced; interfacial complexation and
polymerization at the water/water droplet interface, but also poly-
electrolyte layer-by-layer adsorption can be performed: in other
words, all the chemistry that has been developed to produce cap-
sules using conventional templates can be applied to water-in-
water emulsions. Of course, this requires the chemicals and com-
ponents used to build the shell to be adapted to be all soluble in
water, and the experimental conditions (polymerization, cross-
linking. . .) to be optimized to be performed in all-aqueous environ-
ment. The best example being that of proteinosomes, which have
been initially produced from water-in-oil emulsions [62] and were
further produced using complex coacervates [88]. Importantly,
since these all-aqueous droplets spontaneously sequester solutes,
it becomes possible to develop simple encapsulation strategies
without the need of organic solvent or harsh conditions (as
depicted in Fig. 2).

Here, we review recent studies on the production of robust cap-
sules from all-aqueous emulsions, starting with the experimental
conditions of liquid–liquid phase separation in water, followed
by studies devoted to the stabilization of droplets, the sequestra-
tion of solutes, and the formation of hollow capsules in a context
of materials chemistry.
2. All-aqueous emulsions produced by liquid–liquid phase
separation

2.1. Polymer liquid–liquid phase separation

Liquid-liquid phase separation (LLPS) is a well-established phe-
nomenon in aqueous polymer solutions that produces water-rich
micro-droplets in thermodynamic equilibrium with a continuous
aqueous phase [79,86,89–92]. Two main classes of LLPS can be dis-
Fig. 2. Schematic representation of the formation of capsules and encapsulation of a des
emulsion droplet (blue) spontaneously sequesters a solute (green) before being covered
capsule containing the solute (green). The initial template may eventually remain encap
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tinguished depending on whether the process is associative or seg-
regative (Fig. 3). Associative LLPS is typically referred to as
‘‘coacervation”, which originates from the Latin word ‘coacervare’
meaning ‘coming together’ or ‘gather’ [93]. Complex coacervation
involves the association between two species (at least), such as
oppositely charged polyelectrolytes, to produce polymer-rich dro-
plets in equilibrium with a continuous dilute aqueous phase, while
simple coacervation refers to LLPS of a single polymer species, such
as a polyampholyte, that self-phase separate [79,85,91]. Beyond
electrostatic attraction, other non-covalent interactions can also
result in associative LLPS, including biomolecular recognition,
hydrophobic polyampholytes, p -p or p -cation stacking, as
recently reviewed [94,95].

In comparison, segregative phase separation is driven by the
incompatibility between two polymer species (generally
uncharged, such as PEG and dextran) to produce polymer-rich dro-
plets suspended in a continuous phase enriched in the other poly-
mer. This process has been referred to as an ‘‘aqueous two-phase
system” [91].
2.2. surfactant liquid–liquid phase separation

Surfactants can also undergo liquid–liquid phase separation to
produce surfactant-rich droplets – a process known as the clouding
phenomenon [81]. This process can be compared to simple coacer-
vation when a single surfactant species is involved, but can also
occur in mixtures of positively and negatively charged surfactants
[96,97] or uncharged pairs of surfactants [98]. In the latter case, the
term catanionic coacervates, from the contraction of cationic and
anionic, can be used, by analogy with catanionic vesicles or other
assemblies produced by two oppositely charged surfactants [99–
103].

Interestingly, the clouding phenomenon has recently been
extended to long- and short-chain fatty acids. Solubilizing long-
chain fatty acids in water is usually not trivial due to the existence
of a critical temperature (known as the Krafft point) below which
fatty acids crystallize. For instance, the Krafft temperature for the
sodium salt of myristic acid, a 14-carbon chain length fatty acid,
is around 40 �C [104,105]. Studies have shown that replacing
sodium counter-ions with bulkier tetrabutyl-ammonium cations
prevented the crystallization of myristate, allowing the formation
of stable myristate micelles at room temperature [106,107]. Simi-
larly, addition of guanidine hydrochloride (GuHCl) to sodium
myristate (at equimolar ratio) successfully prevented crystalliza-
tion, and favored fatty acid self-assembly into elongated micelles
or stacked bilayers above or below 20 �C, respectively [108]. Strik-
ingly, myristate coacervate droplets were produced by adding
a� 2-fold molar excess of guanidinium counter-ions (Fig. 4), which
was attributed to the ability of guanidinium to form hydrogen
bonding networks with the carboxylate headgroup of fatty acids
[109]. In comparison, flat bilayers formed upon cooling, yielding
faceted gelled droplets (Fig. 4).
ired solute starting from water-in-water emulsion droplets as templates. The initial
by an additional chemical to form the shell (red), which is consolidated to form a
sulated within the capsule, together with the solute.
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Fig. 3. Schematic representation of segregative (Aqueous Two Phase System, ATPS) and associative (Complex and simple coacervates) Liquid-Liquid Phase Separation (LLPS).

Coacervates

Water oil droplets

A

Fig. 4. (adapted with permission from ref [96,109]). Fatty acid based coacervate
droplets made of sodium myristate and a 2-fold excess guanidine hydrochloride
observed by epifluorescence (using Nile red) at 25 �C (A) and 15 �C (B). C) Phase
separation occurring upon resting showing a fatty acid upper rich phase (see
arrows) made of transparent elongated micelles at 25 �C (left) and stacked bilayers
at 15 �C (right). D) Photos of samples tubes prepared at different GuHCl molar ratio
(indicated below) showing the occurrence of the phase separation phenomenon at a
given value (1.5). Catanionic coacervates prepared from sodium decanoate and
CTAB in bulk E) and using microfluidics (F).
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Using decanoic acid, a shorter fatty acid bearing 10 carbon
atoms, we were also able to produce catanionic coacervates upon
addition of either cetyltrimethylammonium bromide or cetylpyri-
dinium chloride by adjusting the pH at an adequate value [96].
Highly monodisperse catanionic coacervates were also formed
using microfluidics by first producing cationic surfactant-rich
water-in-oil droplets followed by pico-injection of the sodium salt
of the fatty acid (Fig. 4).

2.3. Water-in-water emulsions from liquid-liquid phase separation

Liquid-liquid phase separation processes in water therefore
produce micrometer-sized, chemically-enriched, droplets sus-
pended in an aqueous continuous phase. The droplets are highly
684
hydrated, with a water weight fraction that is typically comprised
between 50 and 90 wt%. Since the common solvent of the two
coexisting, immiscible phases is water, we here refer to these dro-
plet suspensions as ‘‘water-in-water”, ‘‘all-in-water” or ‘‘all-
aqueous” emulsions, regardless of the driving force or constituents
of the droplets and continuous phase [79].
3. sequestration phenomenon in all-aqueous emulsions

As for conventional oil/water phase separation, any solute
added to W/W emulsions may phase partition in one or the other
phase (or both) based on chemical potentials. When the solute
mostly partitions within droplets, the term ‘sequestration’ is used
rather than ‘encapsulation’ since the solute can still freely
exchange between the droplets and the continuous phase (there
is no physical barrier that restrict solute diffusion). This sequestra-
tion phenomenon has led Oparin to suggest that coacervate dro-
plets may have played a role as protocells, the first primitive
cell-like compartments that appeared on the early Earth [82].
According to this hypothesis, prebiotic ingredients would have
been sequestered within droplets, and their local accumulation
could have favored reactions to produce more and more complex
or evolved cells. Aqueous two-phase systems and coacervates have
also gained strong interest in recent years to build artificial or syn-
thetic cells [83,84]. Here again, the sequestration phenomenon
provides a simple means to concentrate ingredients of interest
within droplets. Depending on the chemical composition of the
droplets, uptake of small molecular dyes, proteins, enzymes, DNA
but also cell-free expression systems has been demonstrated
[82,83,86,87,109–111]. The sequestration phenomenon is easily
observed when using fluorescent dyes or fluorescently labelled
solutes by visual inspection, epifluorescence or confocal micro-
scopy. Direct visualization of fluorescence within droplets allows
determining whether the solute is sequestered or not (Fig. 5). Tak-
ing advantage that W/W emulsions are not stable since droplets
coalesce with time, macroscopic phase separation can also be
exploited to separate and recover the two phases and quantita-
tively analyze solute partitioning using UV/vis of fluorescence
spectroscopy.

While the uptake or exclusion of a component from droplets is
still a largely empirical phenomenon, several parameters such as
the net charge of the solutes but also the solution pH can affect
partitioning and result in predictable trends for solute sequestra-
tion. For instance, studies showed that uncharged and positively
charged dyes were sequestered within fatty acid (negatively
charged) based droplets, whereas negatively charged dyes were
excluded (Fig. 5) [109], in other studies, proteins were shown to
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Fig. 5. (adapted with permission from ref [109,112]). Sample tubes photos of fatty
acid based coacervates mixed with A) anionic dye (calcein), B) cationic dye (basic
fuchsin) and C) uncharged dye (rhodamin B) after phase separation occurred. D)
Schematic representation and E) experimental evidence via confocal microscopy of
the change of protein sequestration upon varying the pH in giant lipid vesicles
encapsulating PEG/dextran aqueous two phase system.
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move from one phase to the other upon varying the pH [112]
(Fig. 5). We also suggest that the sequestration phenomenon could
be ‘tuned’ by using additives, similar to what has been done in sol-
vent/water systems: for instance, hydrophobically modified hyper-
branched polyethylene imine (HbPEI) dispersed in chloroform
allowed uptake of hydrophilic dyes from water.[113] Using such
polymers to form complex coacervates, or at least, doping coacer-
vates with HbPEI could allow the uptake of chemicals that were
not initially sequestered within droplets.
4. stabilization of W/W emulsions

All-in-water emulsions prepared by liquid–liquid phase separa-
tion typically contain highly polydisperse droplets with sizes rang-
ing between 1 and 100 mm, as observed by optical microscopy [79].
In general, droplets can be seen to coalesce under the microscope,
which ultimately results – in a few minutes up to a few hours – in
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macroscopic phase separation clearly visible in bulk with the for-
mation of two distinct phases upon resting. The construction of
capsules using all-aqueous droplets as templates therefore
requires that coalescence is prevented. Yet, and unlike conven-
tional O/W or W/O emulsions, the stabilization of W/W emulsion
droplets is far from trivial for two main reasons: (i) the surface ten-
sion of water/water interfaces is significantly lower (few mN/m)
than that of water/oil interfaces (�mN/m) [114], and (ii) water/wa-
ter interfaces are very diffuse, with typical thicknesses of a few
tens of nanometers [115]. Conventional surfactants used to stabi-
lize O/W emulsions therefore turn out inefficient in adsorbing at
water/water interfaces, so that they do not allow stabilization of
all-aqueous emulsions. Different alternative strategies have thus
been developed in recent years to stabilize W/W droplets, mostly
via the use of large objects – typically with a size similar to that
of the diffuse interface – to produce Pickering-like emulsions, but
also via the rational design of polymers able to adsorb at such
interfaces. We detail below examples of stabilization approaches.

4.1. Pickering-like all-aqueous emulsions

The first work reporting the stabilization of W/W emulsions
used protein, fat or quartz particles to stabilize dextran and methyl
cellulose and/or maltodextrin-based W/W emulsions. Particles
were shown to adsorb at the W/W interface and could be aggre-
gated by different ways to form Pickering W/W emulsions [116].
Recently, in the same way, amine-modified commercial latex
beads were shown to adsorb on dextran-rich droplets suspended
in a PEG-rich continuous phase [117], an observation that was also
extended to polydopamine-based particles [118] or other particles
(Fig. 6) [119]. Small unilamellar vesicles [120–122], lipid corpuscle
[123], together with cellulose nanocristals [124,125], protein parti-
cles and nanofibrils [126,127], yeast cellular wall fragments [128]
and spiky particles [129] were also shown to adsorb at all-
aqueous droplets’ interface to produce Pickering-like W/W emul-
sions (Fig. 6).

The underlying mechanism that account for the adsorption of
such objects at water/water interfaces remains yet elusive, so that
this phenomenon is still largely empirical. As commented above,
the low surface tension in such systems does not allow supposing
that the presence of particles at the interface affords a gain of free
energy by decreasing the interfacial energy, as in the case of W and
O emulsions. The rational design of particles could help decipher-
ing general rules for their adsorption at all-aqueous interfaces,
maybe affording a unified description of this phenomenon. For
instance, the construction of Janus particles with the two sides
showing a differential affinity for the droplets and continuous
phase would be excellent candidates for stabilizing such emul-
sions, but this has not yet been reported to date. By analogy with
Janus particles synthesized from O/W emulsions after they have
been immobilized and chemically modified [130,131], we also
believe that such Janus particles could be synthesized using W/W
emulsions by using particles that spontaneously adsorb on it, and
adding a chemical partitioned in one or the other phase able to
react with these particles.

An important contribution to the stabilization (and the under-
standing) of W/W emulsions upon addition of particles has been
made by the group of Nicolaï, Benyahia and collaborators who
developed various experimental and theoretical evidences of this
phenomenon [115,124,132–140]. For instance, pH-responsive
polymeric microgels were shown to adsorb at PEG/dextran inter-
face and stabilize the dextran-rich droplets depending on the pH
(Fig. 7) [115]. These results highlight that the surface properties
of the particles play a crucial role in the stabilization of W/W emul-
sion. Moreover, emulsion stability could be controlled on demand
by using the same particles. A similar feature has been observed



Fig. 6. (adapted with permission from ref [117–119,129]) A) Confocal images of Pickering W/W emulsions stabilized by latex beads (insert: sample tube photo of the
Pickering emulsion after sedimentation); B) Optical microscopic image of dextran-in-PEG emulsion (insert: cryo-SEM image of Polydopamine Particles at the W/W interface);
C) Projection image characterizing the surface of the blastosomes stabilized by fluorescent PS-COOH particles, D) All aqueous droplet stabilized by spiky particles.
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Fig. 7. (adapted with permission from ref [115,141]) A) Images PEO-in-dextran emulsions stabilized by microgels at different pH values. B) Images of W/W emulsion
(xyloglucan / amylopectin) at different pH in the presence of fluorescently labeled b-lactoglobulin microgels after 24 h.
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more recently with diblock copolymer-based microgels, affording
temperature dependent stabilization of W/W emulsions (Fig. 7)
[141].

4.2. polymer adsorption at water/water interfaces

Beyond nano- and micro-particles, single polymer chains have
been reported to be able to adsorb and self-assemble at water/wa-
ter interfaces, and in turn stabilize W/W emulsions. An elegant
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approach to drive the adsorption of a polymer at water/water
interfaces is to rationally design it so that a part of it interacts with
the inner droplet components whereas another part interacts with
the outer continuous phase. This has been nicely achieved using a
triblock copolymer that spontaneously self-assembles at the inter-
face of dextran-rich droplets suspended in PEG [142]. The triblock
copolymer was made of a central hydrophobic region flanked by
two different hydrophilic moieties that exhibited affinity for either
dextran or PEG so that they self-assembled at the PEG/dextran



A. Perro, Noëmie Coudon, Jean-Paul Chapel et al. Journal of Colloid and Interface Science 613 (2022) 681–696
interface, forming a polymer layer, i.e., a polymersome-like struc-
ture having a dextran-rich lumen embedded in a PEG-rich contin-
uous phase. Such a strategy was also applied to stabilize complex
coacervates, still using triblock copolymers [143].

Another approach is to use polymers that can interact electro-
statically with the inner core of complex coacervate: in this case,
the interaction should be not too strong so that the polymer
remains at the droplet interface without destructing the coacervate
droplet. We observed such a phenomenon when adding DNA to
catanionic coacervates (Fig. 8) [96].
4.3. Lipid-based stabilization of W/W emulsions

Recent studies have also explored the use of self-assembling
molecular amphiphiles, and in particular lipids, to adsorb at
water/water interfaces. We do not include here all works reporting
on aqueous phase separation occurring within lipid vesicles
[146,147] but indeed, lipid membranes that really cover aqueous
droplets. In a seminal example, a fatty acid, sodium oleate, was
shown to self-assemble into bilayers at the surface of complex
Fig. 8. (adapted with permission from ref [96,142,144,145]) A) Schematic representati
epifluorescence and prepared from the addition of DNA (labelled with Sybr green) to catan
phospholipid membrane (left: optical image, right: confocal image) and D) hydration of
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coacervate microdroplets, forming a lipid membrane [148]. Using
lipids allows mimicking the membrane-bounded structure of liv-
ing cells, and is attracting growing attention. Recent studies have
indeed demonstrated the self-assembly of phospholipids at the
surface of complex coacervates [144,145,149] (Fig. 8). The interac-
tions driving the formation of lipid membranes at water/water
interfaces remains yet elusive – it is unclear in particular how such
small molecules, i.e., with a size much smaller than the interfacial
thickness [115], can adsorb at these all-aqueous interfaces – so
that further investigations are needed to better understand this
phenomenon.
4.4. Diffusion across shells and membranes assembled on W/W
droplets

While all the systems discussed above appear very efficient to
stabilize W/W emulsions, to date, the shells or membranes formed
on such all-aqueous droplets are all still permeable to small –and
in some cases large – molecules, so that passive diffusion of solutes
through the membrane is observed. This diffusion limits the use of
on of W/W emuslions stabilized by triblock copolymers; B) Capsules observed by
ionic coacervates. C) Giant vesicles formed by complex coacervates surrounded by a
a dry lipid film using a complex coacervates dispersion to form giant vesicles.
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such systems as cell-like micro-compartments since it precludes a
fine control over chemical localization and exchange with the envi-
ronment. Stronger efforts should be made to restrict diffusion of
solutes across the membrane and better control its permeability.
5. building capsules from W/W emulsions

The stabilization of W/W emulsions against macroscopic phase
separation via adsorption of particles or molecules (polymers and
lipids) does not prevent droplet dissolution (for instance upon
dilution), so that droplet disassembly drives the destruction of
the shell and no hollow sphere is retained. The formation of robust
capsules requires the adsorbed objects to be cross-linked to main-
tain the shell integrity when the droplets are disassembled. Simi-
larly to W/O and O/W emulsions, the term ‘demulsification’ has
been used for aqueous two-phase systems, e.g., PEG/dextran solu-
tions, to refer to the disassembly of W/W emulsions due to dilution
below the critical polymer concentration required to have phase
separation [118]. For complex coacervates, held together by elec-
trostatic interactions, changes in pH or ionic strength, in addition
to dilution, can also induce demulsification. Several strategies have
been developed to produce micro-capsules before demulsification
of W/W emulsions.
5.1. colloidosomes templated by W/W emulsions

Colloidosomes offer new opportunities for applications such as
microencapsulation. For conventional W/O or O/W Pickering emul-
sions, a large set of methods has been developed to produce colloi-
dosomes from Pickering emulsions [19], e.g. via particles cross-
linking. However, the encapsulation of small chemicals is usually
limited to short timescales because the particles shell is very per-
meable [19], due to the large interstitial pores produced between
the adsorbed particles. Although a second shell or impermeable
polymer layer can be deposited at the surface of such capsules to
prevent fast release of small chemicals, the use of phase-
separated all-aqueous droplets is emerging as an exciting alterna-
tive to produce colloidosomes able to retain such small chemicals
by sequestration, and prevent their fast release.

Interestingly, the approaches developed to build colloidosomes
fromW/O or O/W systems can be adapted to W/W Pickering emul-
sions. This was first shown in an ATPS using fat-based particles to
stabilize the emulsion, where particles were aggregated at the dro-
plet interface to form microcapsules [116]. Other kinds of particles
have also been used to produce Pickering water-in-water emul-
sions but were not converted into robust colloidosomes (see
above) [115,124,132,135,136,139,150–152]. Amine-modified latex
beads were shown to spontaneously adsorb at the interface of
dextran-rich droplets suspended in a PEG continuous phase
[117]. The authors attempted to cross-link the beads via amide
bonds by using carbodiimide chemistry in the presence of poly-
acrylic acid (PAA), but observed instead that carboxylate groups
on PAA were esterified with hydroxyl groups of sugars on dextran.
Esterification reaction is usually unfavored in water due to hydrol-
ysis [153], but it was suggested that the high concentrations of
both polymers (PAA and dextran) within droplets favored the reac-
tion in this case. This reaction eventually produced a dextran/PAA
microgel, on which latex beads were also cross-linked (via amide
bonds) concomitantly to the esterification of PAA and dextran.
The resulting colloidosomes exhibited reversible swelling behavior
upon dilution (Fig. 9) and were able to uptake and release
macromolecules.

Other colloidosomes have been obtained using PEG/dextran
ATPS as templates and dopamine-based or CaCO3 particles to pro-
duce a Pickering water-in-water emulsion. The dopamine-based
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particles were successfully cross-linked by using both PAA and car-
bodiimide chemistry to produce colloidosomes (Fig. 9) [118], with-
out forming a gel inside the droplets (in contrast to the above-
mentioned study). CaCO3 particles were formed in situ at the sur-
face of dextran-in-PEG droplets and locked-in through enzyme-
driven biomineralization to form hard-shell colloidosomes [154].
In the same way, CaCO3 particles also formed Pickering emulsions
when combined with a thermoresponsive and degradable
polymer-forming coacervate, which were further transformed into
colloidosomes upon calcium carbonate crystallization [155].

5.2. Coacervate-to-capsule transition

Other approaches have also emerged to produce capsules from
all-in-water emulsions. Instead of covering the aqueous droplets
with particles or other shell-forming components, a morphological
transition from droplets to capsules can be induced by varying a
physicochemical parameter or adding a chemical. Such a structural
reorganization was first reported by the group of Mann [156] start-
ing from complex coacervates assembled from poly(dial-
lyldimethylammonium chloride (PDDA) and adenosine
triphosphate (ATP) (Fig. 10). Addition of phosphotungstate (PTA)
clusters to such coacervate microdroplets induced a structural
change to capsules consisting of a double shell of PDDA/PTA and
PDDA/ATP delimiting a polymer-free, dilute aqueous lumen. The
stronger interaction of PTA with PDDA compared to ATP induced
the formation of a semi-permeable shell, resulting in the
osmotically-driven diffusion of water molecules in the coacervate
droplet, and formation of a water-rich lumen. This transition from
a molecularly crowded environment (coacervates) to a yolk-shell
structure was further exploited to produce protocells with
catalase-like activity by combining PTA and ruthenium-based
polyoxometalate [157]. We anticipate that this type of structural
transformation could also be induced using other chemicals, such
as negatively charged polymers, but further studies are required.

A transition from coacervates to vesicles has also been observed
in fatty acid (FA)-based systems upon decreasing the pH. This fea-
ture may be relevant in the context of prebiotic chemistry since
fatty acids are the simplest amphiphiles capable of self-
assembling into vesicles [158–161]. As discussed above, sodium
myristate can form coacervates using an excess of guanidinium
cations. In another paper [162], it has been shown that such a FA
can self-assemble into vesicles at lower pH (7.5–9) so that transi-
tions from coacervates to vesicles could be performed upon vary-
ing the pH. This has been achieved recently [163], which allowed
the encapsulation of proteins within the so-formed FA vesicles
(Fig. 10). A fluorescent protein and an enzyme were shown to be
spontaneously sequestered within FA-enriched coacervates. Upon
decreasing the pH, the FA-filled droplets turned to membranous
hollow vesicles encapsulating the pre-concentrated proteins. In
the same way, vesicles initially lacking any cargos in their lumen
were transformed into coacervates that sequester proteins, which
were further transformed into vesicles that now encapsulated pro-
teins in their lumen.

We also observed such a transition from droplets to capsule-like
structures in an ATPS based on gelatin and PEG [164]. This binary
system can form gelatin-enriched droplets within a PEG-enriched
continuous phase above the melting transition of gelatin
(�45 �C) [165–168]. The droplets were shown to self-aggregate
upon cooling. However, when alginate was added to the initial
hot mixture, aggregation no longer occurred when the temperature
was decreased [164]. Rather, isolated gelatin-rich droplets were
observed and were shown to entrap smaller PEG droplets in their
core, forming a PEG-in-gelatin-in-PEG double emulsion. When
the sample was maintained at a temperature above the melting
transition of the protein (before cooling), the smaller inner PEG



Fig. 9. (adapted with permission from ref [117,118]) Confocal images of hybrid hydrogel-colloidosomes in the pristine (A) and swollen (B) forms. Lower panel: process used
for the production of colloidosomes using polydopamine-based microparticles (PDP).
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droplets were shown to coalesce within the main gelatin-rich dro-
plets, forming a lumen so that hollow spheres having a gelatin shell
that gelled upon cooling were produced (Fig. 10).

6. emerging directions for the production of polyelectrolyte
capsules templated by W/W emulsions.

6.1. W/W droplets and capsules using microfluidics

The W/W emulsion-templated construction of capsules dis-
cussed above typically produces polydisperse compartments that
replicate the polydispersity of the template emulsion. Approaches
to prepare uniformly-sized capsules are also being investigated,
mostly using droplet-based microfluidics. Microfluidics allows
the high-throughput production of monodisperse microdroplets
suspended in a continuous phase, and has been initially developed
for preparing water-in-oil droplets [169–171]. The so-formed
emulsion droplets have been used to produce capsules using sim-
ilar chemical strategies as those developed in bulk [76,172].

Excitingly, droplet-based microfluidics has recently started
being used to produce water-in-water emulsions without the need
689
of oil. For instance, for a PEG/dextran ATPS, monodisperse dextran-
rich droplets can be produced by using a PEG solution as the con-
tinuous phase. Yet, due to the very low surface tension of W/W
emulsions, the different settings, such as the flow rates, and the
set-up have to be adapted to produce droplets. For example, a
piezoelectric field or pulsating inlet pressures (Fig. 11) have been
used to force the production of droplets [173,174], while other
approaches have relied on the use of passive droplet generation,
choppers or glass microcapillaries [169,173,175–181]. Coacervates
were also formed exploiting microfluidic flow-focusing system.
Droplets resulting from the interaction of poly(diallyldimethylam-
monium chloride) with either adenosine triphosphate or
carboxymethyl-dextran exhibit a narrower size distributions and
a higher stability compared to the conventional fabrication tech-
niques [177].

Once monodisperse W/W droplets are produced, capsules can
be easily prepared, e.g. by interfacial polymer complexation, par-
ticular cross-linking or other methods. In a seminal study, poly-
electrolyte microcapsules were produced by dispersing a
positively charged polymer in dextran and a negatively charged
polymer in the continuous PEG phase [182]. When producing dex-
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Fig. 10. (Adapted with permission from [156,163,164]) A) SEM image of dried PCVs spherical polyoxometalate coacervate vesicles; B) Epifluorescence images showing
vesicles obtained from fatty acid-based coacervates upon decreasing the pH. Yellow patch stands for encapsulated YFP and Nile Red allows delineating the fatty acid bilayer;
C) Epifluorescence images (I/II) of PEG/gelatin dispersion (labeled with acridine orange) containing 0.5 and 0.8 mg mL�1 alginate, respectively. III) SEM images of yolk–shell
particles after deposition of a silica layer.

Fig. 11. (Adapted with permission from ref [173,182,186]) A) W/W droplets formed with perturbations generated by a solenoid valve, which acts on the inlet pressure. I)
Schematic representation of the process, II) Optical images of the W/W droplets. B) polyelectrolyte capsules obtained by microfluidic formation of Dex-in-PEG-in-PEG double
emulsion. The positively charged polymer present in the dextran phase and the negatively charged polymer present in the PEG outer phase meet in the intermediate PEG
phase where they strongly interact to form a robust shell. C) polyelectrolyte capsules obtained by a similar approach using the electrospray method. Here, no intermediate
PEG phase is required but charged polymers also meet at the interface to form a robust shell.
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tran droplets, clogging occurred in the microfluidic channel
because of the fast complexation between charged polymers at
the droplets’ interface. This problem was elegantly circumvented
by adding an additional PEG channel, free of any charged polymers,
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to coat the dextran-rich droplets. Therefore, dextran-in-PEG-in-
PEG double emulsion droplets were formed, where the intermedi-
ate PEG layer ensured slow mixing of oppositely charged polymers
and their complexation to form a polyelectrolyte shell (Fig. 11). The



Fig. 12. (Adapted with permission from ref [190,191]) A) Schematic representation
of the microfluidic device used to produce PEG-in-Dex-in-PEG double emulsion
droplets. The use of acrylate-dextran derivatives allows cross-linking the interme-
diate dextran shell upon UV exposure. B) Confocal image of a capsule obtained by
this way. C) Osmose-induced formation of multiple emulsion droplets (2 panels
left) obtained by microfluidics that further evolve along the microfluidic device to
yolk-shell double emulsion droplets (right panel).
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need of such an intermediate layer was confirmed in another
recent study [68]. Similar findings were obtained using the electro-
spray method [183] instead of microfluidics. In this case, monodis-
perse droplets and capsules have also been produced via interfacial
complexation (Fig. 11) [184–189]. However, up to now, no any
polyelectrolyte-based microcapsules have yet been produced in
bulk using W/W emulsions.
6.2. multiphase emulsions to prepare capsules

Recent studies exploited the possibility of forming multiple all-
aqueous emulsions to prepare micro-capsules. For instance,
microfluidic production of PEG-in-dextran-in-PEG double emul-
sion droplets, coupled to the use of reactants (thiol-yne reactions)
in the dextran intermediate shell, allowed preparation of micro-
capsules with a gelled dextran layer (Fig. 12) [190]. An interesting
way to prepare all-aqueous double emulsions is to play with osmo-
tic pressure when producing a single W/W emulsion. In an exam-
ple, a low concentration of PEG was initially mixed with dextran so
that no phase separation occurred. When droplets of such a mix-
ture were produced by microfluidics using a highly concentrated
PEG outer continuous phase, variation of osmotic pressure induced
a phase separation (PEG-in-dextran) within the droplets to pro-
duce a PEG-in-dextran-in-PEG double emulsion (Fig. 12) [191].
Fig. 13. (Adapted with permission from ref [193–195]) Examples of the production of m
formed complex coacervates prepared with 2 different charged polymers, B) mixing 4 dif
charged polymers.
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Such a strategy was further extended to higher orders since multi-
ple emulsions were produced by this way [192]. However, only
double emulsions were produced but no capsules, up to now. Obvi-
ously, the formulation of W/W/W double emulsions via microflu-
idics opens promising perspectives and a nice way to build
capsules in oil-free solutions.

Strategies for the preparation of W/W/W emulsions in bulk are
also being developed. Elegant examples include multiphase com-
plex coacervates (Fig. 13) [193–197], produced by mixing 2 polyca-
tions together with 2 polyanions in water to form all-aqueous
droplets-in-droplets in an aqueous continuous phase. However,
again, multiple emulsions were produced but no any capsules. This
approach could pave the way to the construction of capsules where
the intermediate aqueous layer would be transformed into a robust
shell (e.g., upon gelation or chemical reaction).

6.3. 3D constructs from W/W emulsions

Another coming direction, although it is beyond the scope of the
production of capsules, is the preparation of 3D constructs by using
ATPS [198,199]. Typically, instead of building droplets, the method
consists of forming tubules by using a 3D printer that can deposit a
concentrated polymer within another incompatible polymer-rich
continuous phase, e.g. dextran in PEG. Again, the interface needs
to be stabilized by polyelectrolytes or hydrogen bonds to prevent
complete dissolution of both polymers or fast deformation of tubu-
lar structures. These tubular construct could even be produced by
microfluidics [200] (under flow conditions that do not form dro-
plets) and be used for preparing non-spherical but elongated cap-
sules or other materials, still with the capacity of sequestrating or
encapsulating cargos.

6.4. adding oil to W/W emulsions

While W/W emulsions are particularly attractive because com-
partmentalization can be induced without using nonpolar solvents,
addition of oil to such emulsions may also be of interest for
microencapsulation applications, e.g., to encapsulate both hydro-
philic and lipophilic cargos. This has been mainly explored by the
group of P. Erni et R. De Vries [201–203] and consists of forming
O/W/W droplets [17,204–206]. Oil is emulsified in complex coacer-
vates so that oil-in-coacervate droplets can form in a continuous
aqueous phase. The intermediate complex coacervate layer is fur-
ther cross-linked and eventually biomineralized using silica pre-
cursors to produce hybrid capsules. There are other open doors
in this direction since double emulsions are of practical interest
ultiphase complex coacervates yielding double emulsion droplets, A) mixing 2 pre-
ferent charged polymers and C) step-by-step formation upon sequential addition of
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for various applications [207–209] and have been widely used
recently for the production of liposomes and polymersomes or
other kind of capsules [75,210,211]. Out of this context but of
interest, production of W/W/O droplets has been largely investi-
gated [167,168,212–216] and can afford capsules of various forms,
thanks to the aqueous phase separation occurring within droplets
embedded in oil [217].
7. conclusions and outlooks

Interest in W/W emulsion droplets has been reignited a decade
ago [83] in the field of protocells, artificial and synthetic cells. Yet,
beyond these bio-inspired systems, these emulsions are also very
attractive as templates in materials chemistry for the preparation
of microcapsules. The key advantage of such all-aqueous emulsions
is their ability to spontaneously sequester cargos, which provides a
simple mechanism to accumulate species before the assembly of a
robust shell. Interestingly, it is also possible to first form a perme-
able shell at the surface of droplets, to prevent their coarsening,
then upload cargos via spontaneous partitioning and, ultimately,
make the initial shell impermeable.

As discussed above, the sequestration phenomenon is still lar-
gely empirical and should be better investigated to predict
whether a cargo will be sequestered or not in aqueous droplets.
Similarly, the stabilization of such droplets to prevent their coales-
cence should be studied more in detail to predict whether a chem-
ical or a particle will adsorb at the droplet interface or not. In
addition, while many studies have developed strategies to prepare
W/W emulsions-based microcapsules, the formation of submicro-
metric capsules using W/W emulsions is still unexplored to our
knowledge. This domain of lower sizes may be of higher interest
for pharmaceutical, cosmetic and food applications. As for the
preparation of O/W emulsions, high shearing or sonication meth-
ods could be employed for forming small W/W emulsions to be
transformed into few tens or hundreds nanometers capsules.

Still copying what has been done in the domain of O/W or W/O
emulsions, the preparation of high internal phase W/W emulsions
(HIPEs) should also be possible. In O/W emulsions, HIPEs are
obtained when a high amount of oil is added with respect to water.
Instead of inducing a phase inversion that would yield a W/O
emulsion, O/W droplets still form and are in close contact, often
forming a gel [5,218,219]. In an ATPS made of PEG and dextran,
varying the amounts of both polymers (and/or their molecular
weight) may yield dextran-in-PEG or PEG-in-dextran droplets,
depending on the phase diagram. In other words, addition of dex-
tran with dextran-in-PEG droplets induces a transition to PEG-in-
dextran droplets. However, if one add a stabilizing agent that force
the initial curvature, i.e., the formation of dextran droplets, then,
dextran-in-PEG HIPEs should form for high amounts of dextran.

Overall, preparing capsules from W/W emulsions has gained
interest in recent years, and open exciting perspectives for the
years to come. Although studies on W/W emulsions have been
reignited for being used as protocells, organelles [90] or other cel-
lular bodies [220], it is obvious that their ease of preparation, the
large palette of components they can be assembled from for their
production and the potential low cost of chemicals to be used
make them of practical importance in materials chemistry. Many
works have been done by using microfluidics but this could also
be developed in bulk affording higher amounts of final materials.
A lot has also been done recently for stabilizing these emulsions,
preventing coalescence of droplets, but these were not always con-
verted into robust capsules. Obviously, the phenomenon of sponta-
neous sequestration of cargos in such aqueous droplets should be
the best motivating focus for using such emulsions as templates
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for building capsules that can efficiently encapsulate solutes of var-
ious interests.
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