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Abstract

We present numerical simulations of a particle trapped at the isotropic-nematic

liquid crystal (Iso-N) interface. We use our recent model, based on a phase-field

approach (see Qiu et al., Phys. Rev. E, 103, 022706 (2021)), to couple the capillary

forces acting on the interface with the elastic stresses in the nematic phase along

with topological defects. A range of floating configurations are first investigated

as a function of the contact angle and various anchoring conditions at the fluid

interface. The results show that the response of the system is driven by the existence

of an anchoring conflict at the contact line. Substantial particle displacements

and/or interfacial deformations may occur in this case even for moderate anchoring

strengths. These findings highlight the coupling between elastic and capillary forces.

In a second part, we compute drag forces exerted on a particle that moves along the

Iso-N interface for several contact angles and a moderate Ericksen number. Because
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of the coupling between the velocity and order parameter fields, topological defects

are swept downstream of the particle by the flow and sometimes ‘escape’ from

the particle or merge with the interface. We also find linear force-velocity laws,

with drag forces at the Iso-N interface being slightly greater than their isotropic

counterparts due to director distortions. We discuss these results in light of past

studies on the behavior of particles being dragged in the bulk of a liquid crystal

matrix.

Keywords: Two-phase flows, particle/fluid flow, phase-field simulations, liquid

crystals, elastic distortions, topological defects, interfacial deformations, drag force,

elastocapillary phenomena.

1 Introduction

Colloidal dispersions in bulk liquid crystal (LC) phases, also known as ‘LC colloids’ [1], and

colloidal particles attached to (isotropic) fluid interfaces [2] are both very rich and versatile

systems on their own in soft matter science. They have been extensively investigated, but

in a rather independent way so far. Yet, from a self-assembly perspective, both systems

share quite a few similarities although the underlying driving physical mechanisms differ

greatly. In both cases, the particles may undergo either attractive or repulsive interactions

which originate from the deformations of the fluid matrix they are embedded in. In LC

colloids, the so-called elastic interactions result from elastic distortions of the LC matrix

[1, 3, 4, 5, 6, 7, 8, 9, 10], whereas it is the overlap of interfacial deformations that is

responsible for capillary interactions occurring between floating particles [2, 11, 12, 13, 14,

15, 16]. Both elastic and capillary interactions can be long-ranged, anisotropic in nature

(e.g., of dipolar or quadrupolar symmetry), and feature energies that greatly exceed the

thermal energy kBT . In both cases, a myriad of colloidal structures, either ordered or

disordered, have been discovered depending on numerous factors such as the particle size

and shape, surface chemistry (e.g., Janus particles), and confinement (see reviews e.g.,

[1, 2, 9, 15, 16]).

However, so far only a handful of studies have attempted to bridge the gap between
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these two lines of research by studying the behavior of colloids trapped at liquid crystal

interfaces. Such systems represent a new kind of soft material whose properties are

expected to be governed mainly by the interplay of capillary and elastic phenomena.

On the experimental side, a few studies were dedicated to pattern formation, mostly

in confined geometries with varying anchoring conditions. For instance, two-dimensional

(2D) crystal-like structures and chain-like aggregates were observed at the air-nematic LC

(NLC) [17, 18, 19, 20, 21] and water-NLC interfaces [22, 23]. Estimates of pair interaction

potentials were derived for both spherical [17, 20] and nonspherical particles [24]. At the

single particle level, Jeridi et al. [25, 26] reported capillary-induced giant elastic dipoles in

thin nematic wetting films, whereas the influence of interfacial curvature was addressed by

Gharbi et al. [27] by placing particles on NLC shells. More dynamical aspects such as the

Brownian diffusion of micro- and nano-particles at the nematic-aqueous phase interface

were first investigated by Abras et al. [28], whereas the vibrational phonon modes of 2D

crystalline packings of particles at the air-NLC interface were discussed by Wei et al. [29].

Despite the above discoveries, there is a lack of theoretical understanding of the ob-

served phenomena. Only a few modelling studies have appeared on the subject. Tasinke-

vych & Andrienko performed the first numerical simulations dealing with particles trapped

at an isotropic-nematic (Iso-N) interface in both 2D [30] and 3D [31]. However, they con-

sidered a peculiar situation where the interface separates the same mesogenic material

in two phases coexisting under the same condition. No interfacial forces nor contact line

were taken into account in their analysis. Nevertheless, pair interaction potentials exhib-

ited a rather complex behavior due, in part, to the creation, annihilation and interaction

of topological defects in the vicinity of the particles.

Oettel et al. [32] considered a more complete physical picture and provided approx-

imate analytical calculations for interacting colloids attached to a nematic free surface.

The primary goal was to rationalize the early observations of Smalyukh et al. [17], where

hexagonal lattices of glycerol droplets were initially thought to result from a competi-

tion between an elastic repulsion and a capillary attraction. However, the theoretical

analysis of Oettel et al. [32] showed that such a competition is unlikely, at least within
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the model assumptions and the experimental conditions in [17]. Till today, this remains

an open question, and we are not aware of any other detailed theoretical or numerical

investigations dealing with these issues.

A possible reason for this is that the modelling of particles adsorbed at LC interfaces

is a challenging task. The main difficulty arises from the presence of the interface which

couples capillary and elastic phenomena. Indeed, elastic distortions, topological defects,

the anchoring of LC molecules on a potentially moving and deformed fluid interface, the

contact line dynamics and the particles’ motion are all intertwined here. The combination

of these phenomena makes these systems very rich but complicates enormously their

theoretical treatment.

Recently, our group developed a model that may shed new light on the above problems.

The model, based on a phase-field (PF) method, was originally designed to describe

elastocapillary flows of LCs [33]. In the present work, we use this model in numerical

simulations to explore both the static and the dynamic behaviors of particles trapped at

LC interfaces. In view of the dearth of theoretical and numerical studies in the literature,

we will focus on ‘basic’ scientific questions at the single particle level. For instance, how

do the LC elasticity and topological defects influence the partial wetting configuration of

a particle adsorbed at a LC interface? How do capillarity and elasticity interact? How

does interfacial deformation depend on the two factors? What is the drag force exerted

on a particle straddling a LC interface? Answers to these questions will form the basis for

studying more complex situations involving, e.g., a collection of particles (interactions),

confined geometries (thin films), and curved interfaces.

The paper is organized as follows. The model is presented in Sec. 2. It is numerically

solved with a finite element method in a 2D planar geometry. In Sec. 3, we first consider

the equilibrium configuration of a partially wetting particle on the Iso-N interface, subject

to different contact angles and anchoring conditions (Sec. 3.1). Then we study the drag

forces for a range of particle positions across the interface (Sec. 3.2). Our results show that

wetting configurations are primarily influenced by the existence of an anchoring conflict

at the contact line (CL). Sizeable particle displacement and/or interfacial distortions may
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occur in this case even for moderate anchoring strengths. The drag force computations

reveal linear force-velocity laws. The defect escapes from the particle and merges with the

interface in certain circumstances. Furthermore, the drag coefficient at the Iso-N interface

is almost always greater than its isotropic counterpart thanks to the coupling between

the flow and the order parameter fields. We discuss our results within the framework of

existing theories before concluding the paper in Sec. 4.

2 Theoretical model and numerical method

As aforementioned, we have adapted the recent model developed by Qiu et al. [33, 34]

to describe the behavior of a colloidal particle trapped at the Iso-N fluid interface. The

model of Qiu et al. [33] uses a phase-field (PF) method to account for elastocapillary flows

occurring at the Iso-N interface. It has two key features: (i) A tensor order parameter Q

that provides a consistent description of the molecular and distortional elasticity of the N

phase, including topological defects, and (ii) a PF formalism that accurately represents

the Iso-N interfacial tension and the nematic anchoring stress by approximating a sharp-

interface limit. Combining this with the equations of motion of the fluids, we obtain a

model capable of describing the phenomena resulting from the coupling between capillarity

and elasticity. All the details and validation examples of this model can be found in

[33, 34]. In the following, we only give a brief account of the main ingredients. A notable

difference between the present work and that of [33, 34] is the presence of a contact line

where the three phases isotropic (Iso), nematic (N), and solid (S) meet. PF-based models

can naturally handle the contact line dynamics thanks to intrinsic diffusive processes

[35, 36, 37, 38, 39]. Unless otherwise stated, parameter values for the model described in

this section are listed in appendix A.

2.1 Free energies

The total free energy of the fluid system consists of the bulk elastic energy of the N phase,

fb , the mixing energy of the Iso-N interface, fm , and the anchoring energy on the Iso-N
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interface, fa . Note that throughout this work, we assume an infinitely strong anchoring

condition of the nematic mesogens on the solid particle and, consequently, the anchoring

energy at the nematic-solid interface does not appear. fb is standard from the nematic

order theory [40, 41] and can be described phenomenologically as [42]

fb =
A

2
QijQij +

B

3
QijQjkQki +

C

4
(QijQij)

2 +
L1

2
(∂iQjk)(∂iQjk) . (1)

Here, A, B, C are material property coefficients (A,B < 0, C > 0), and L1 is the

bulk elastic constant. As in [33], it is useful to define a scalar order parameter: q =√
3/2∥Q∥F =

(
3
2
Q : Qᵀ)1/2 , where ∥ · ∥F is the Frobenius norm.

The mixing energy is standard from the PF model and may be written as [43, 44]

fm =
λ

2
|∇ϕ|2 + λ

4ϵ2
(
ϕ2 − 1

)2
, (2)

where ϕ is the PF variable that marks the different fluids. ϕ = −1 denotes the nematic LC

and ϕ = 1 denotes the isotropic phase. These two fluids mix in a thin diffuse interfacial

region in which ϕ and all other variables transition smoothly. The Iso-N interface may

be defined by the contour level ϕ = 0 . In Eq. (2), λ is the (constant) mixing energy

density with the dimension of force, and ϵ is the (constant) capillary width governing the

thickness of the diffuse interface. In the sharp-interface limit, the mixing energy gives rise

to an isotropic surface tension given by σ = 2
√
2λ/3ϵ [43, 44].

To describe the finite-strength anchoring of LC molecules at the Iso-N interface, we

employ the following diffuse-interface variant of the Rapini-Papoular anchoring energy

density [33]

fa =
W

2
|∇ϕ|4

∥∥∥∥Q− qe

(
êê− 1

3
I
)∥∥∥∥2

F

, (3)

where W is the (constant) anchoring strength, which can be viewed as an anisotropic

surface tension [40], and ê is a unit vector along the easy direction on the Iso-N interface.

Both homeotropic and planar anchoring conditions are considered for ê with appropriate

expressions of fa in each case (see [33] for details). In Eq. (3), qe is the equilibrium

scalar order parameter under the uniaxial assumption (qe = 0.81 with our parameters,

see appendix A). Note that in Eq. (3), W has the dimension of energy×length. In the
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sharp interface limit, it can be related to the usual anchoring strength, Ws (unit: J/m
2),

via W = 35
8
√
2
Wsϵ

3 as explained in Qiu et al. [33].

Hence, the total free energy of the fluid system in a domain Ω is given by

F =

∫
Ω

f(ϕ,Q,∇ϕ,∇Q) dV =

∫
Ω

(
fm +

1− ϕ

2
fb + fa

)
dV . (4)

The factor (1− ϕ)/2 gives the concentration of the N phase.

2.2 Governing equations

The governing equations include evolution equations for ϕ and Q , and equations of motion

for the fluids and the solid particle.

Evolution equation for ϕ. The classical Cahn-Hilliard (CH) equation describes the

evolution of ϕ [43, 44]
∂ϕ

∂t
+ v ·∇ϕ = ∇ · (γ∇µ) , (5)

where v is the fluid velocity and γ the mobility constant. µ = δFm/δϕ is the chemical

potential which, in our model, is defined only through the mixing energy, Fm =
∫
Ω
fm dV ,

i.e. without the contribution from the bulk elastic and anchoring energies. Consequently,

the CH diffusion is decoupled from that of Q [33]. Such an approximation holds in the

so-called sharp-interface limit and has been adopted in previous works [44, 45].

Evolution equation for Q. We choose the Beris-Edwards (BE) formalism to describe

the nematic hydrodynamics [46]. Within our PF formulation, the evolution equation for

Q in the LC bulk has the same general structure as in the original BE theory [47]

∂Q
∂t

+ v ·∇Q = S+ ΓH , (6)

where Γ is the (constant) collective rotational diffusion coefficient of the N phase.

H(ϕ,Q,∇ϕ,∇Q) is the molecular field tensor, whereas S(∇v,Q) is the corotation tensor.

Both tensors have been modified in our PF method to take into account the anchoring

conditions (either homeotropic or planar) at the Iso-N interface. The resulting lengthy

expressions are omitted here but can be found in [33].
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Equations of motion for the fluids. Assuming incompressible fluids, we adopt the

continuity and Navier-Stokes (NS) equations for the pressure (p) and velocity (v) fields

in both phases:

∇ · v = 0 , (7)

ρ(ϕ)

(
∂v

∂t
+ v ·∇v

)
= −∇p+∇ · T+ µ∇ϕ , (8)

where the last body force term in Eq. (8) (µ∇ϕ) is the diffuse-interface equivalent of

the interfacial tension [43, 45]. ρ(ϕ) is the density of the two-phase system given by:

ρ(ϕ) = 1+ϕ
2
ρi +

1−ϕ
2
ρn , where the subscript i (resp., n) refers to the isotropic (resp.,

nematic) phase. The total stress tensor T can be written in the following form:

T = −pI+ (1 + ϕ)ηiD+ (1− ϕ)ηnD+ Tn , (9)

where D = [(∇v)ᵀ +∇v] /2 is the rate of deformation tensor. The second term is the

viscous stress from the isotropic phase while the third term is a viscous stress of the

nematic phase with a constant effective viscosity ηn , i.e. independent of the molecular

orientation [46, 47]. The last term (Tn) in Eq. (9) is the nematic stress tensor, which has

been generalized from the bulk BE theory to take into account the anchoring constraints

on the moving Iso-N interface [33]. Note that Tn intrinsically contains effective anisotropic

viscosities [47].

Boundary conditions. For the continuity and NS equations, classical no-slip bound-

ary conditions for v are imposed on all bounding walls and the particle, unless other-

wise stated. On the outer boundaries, we need two BCs for the fourth-order CH equa-

tion. First, one often requires that there be no diffusive flux across all boundaries (∂Ω):

m̂ ·∇µ|∂Ω = 0 , where m̂ is the outward unit normal vector to a given boundary. Next,

we enforce the equilibrium value of the contact angle, θ, at the three-phase contact line

on the particle via the geometric boundary condition: ∇ϕ · m̂ = |∇ϕ| cos θ , on ∂Ωp

[Fig. 1(a)]. We also impose a 90◦-contact angle on ∂Ωw (left side) [Fig. 1(a)], meaning

that the interface is flat there but it is free to move up or down.

Concerning the order parameter Q , we consider the following three types of BCs.

(i) On all bounding walls, we apply a homogeneous Neumann BC: m̂ ·∇Q|∂Ωw
= 0 .
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(ii) For simplicity, a Dirichlet BC is used on the particle surface: Q|∂Ωp
= QD , where

QD corresponds to a uniaxial configuration perpendicular to the particle contour, i.e.

homeotropic anchoring, at equilibrium order (qe). (iii) On the symmetry axis ∂ΩS , we

impose the mixed BC [33]: m̂ ·∇ (Qii)|∂ΩS
= 0, Qij|∂ΩS

= 0 (i ̸= j), where ii does not

imply the Einstein summation. Finally recall that, at the Iso-N interface, the anchoring

conditions are already accounted for in the expressions of H [Eq. (6)] and T [Eq. (9)].

Equations of motion of the particle. In some cases, the particle attached to the Iso-N

interface is allowed to move in the y-direction (Fig. 1). Its translational velocity (Uy)

is governed by Newton’s equation of motion written here in the absence of gravity (see

Sec. 2.3): MU̇y = Fy , with the initial condition Uy|t=0 = 0 , the dot meaning differenti-

ation with respect to time. M is the particle mass and Fy is the total force exerted on

the particle along the y-direction. Fy consists of viscous, elastic, and capillary forces and

may be written as

Fy = ŷ ·
∮
∂Ωp

(T+ Tc) · m̂ ds , (10)

where ŷ is the unit normal vector along the y-axis and T is the stress tensor defined in

Eq. (9). Tc is the capillary stress tensor and can be derived using a variational procedure

[44]

Tc = fmix I− λ∇ϕ∇ϕ , (11)

with fmix given by Eq. (2). Once Uy has been determined, the particle’s vertical position

(yp) can be updated by solving: ẏp = Uy .

2.3 Geometry and parameters

In this section, we specify the parameters and the two geometries employed in our 2D

simulations (Fig. 1). The first one, referred to as problem A hereafter, deals with the

equilibrium configuration of a partially wetting particle trapped at the Iso-N interface,

whereas the second one, referred to as problem B, is dedicated to the computation of drag

forces exerted on the particle straddling the Iso-N interface.

Fig. 1(a,b) specifies the geometry for Problem A. A solid particle of radius R is trapped

at the interface between a Newtonian isotropic fluid and a nematic LC. Both fluids have
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Figure 1: (a) Sketch of the simulation domain for Problem A. Box size: (H,L) =

(8R, 10R). Symbols: θ: contact angle, ∆yI : interfacial deformation (see text for other

symbols definitions). (b) Initial bulk and anchoring conditions for the order parameter Q .

The small ellipsoids symbolize the LC molecules (not to scale). In all cases, a homeotropic

(H) anchoring condition is prescribed at the particle surface, whereas either a homeotropic

or planar (P) anchoring is enforced at the Iso-N interface. These two situations are de-

noted H and P configurations, respectively. (c) Geometry for the computation of the

two-phase flow drag force exerted on a particle confined at the Iso-N interface between

two plane walls (Problem B). Box size: (H,L) = (20R, 30R).
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a matched density and the whole system is confined in a box of length L = 10R and

height H = 8R. However, because of symmetry, we only need to simulate half of the

domain. Fig. 1(b) depicts the prescribed anchoring conditions at the Iso-N interface

and the particle surface. Both homeotropic (H) and planar (P) anchoring of variable

strength W [see Eq. (3)] will be considered on the Iso-N interface, while only an infinitely

strong, or rigid, homeotropic anchoring is set on the particle surface (cf. “Boundary

conditions” in Sec. 2.2). These two situations will be denoted hereafter as the H and P

configurations, respectively. For the initial condition, in the former (resp., the latter) case,

we require the far-field LC molecules to be oriented along the vertical (resp., horizontal)

direction [Fig. 1(b)] with an equilibrium scalar order parameter qe (cf. appendix A). Two

other configurations, namely a planar anchoring on the particle surface combined with

either a planar or homeotropic anchoring at the interface, have been computed as well.

However, preliminary results indicate that no new qualitative insights emerge from such

configurations, and therefore, we have decided not to include such setups in the present

work.

The particle’s center of mass is either fixed or allowed to move vertically. The contact

angle on the particle surface [Fig. 1(a)] is equal to the equilibrium contact angle θ . The

Iso-N interface is initially flat and kept horizontal at the left and right bounding walls

of the domain in the course of simulations. However, due to the interplay of elastic

distortions, surface tension and anchoring, the interface is likely to be deformed and

may be displaced from its initial position as we will see below. Furthermore, since we

are typically simulating the behavior of a micrometer-sized particle floating at the Iso-N

interface (appendix A), the interfacial deformations arising from the particle’s buoyant

weight are negligible. Indeed, the Bond number Bo ≃ 10−8 for typical parameter values

(see e.g. [11]).

Problem B concerns the drag on a circular particle straddling the Iso-N interface

[Fig. 1(c)]. We use the same setup as in our previous work with isotropic fluid interfaces

[48], except that the bottom fluid is now replaced with the nematic LC. Instead of moving

the particle horizontally parallel to the interface, we use a reference frame attached to the
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particle so that far from it, both liquids flow with a constant velocity v∞ in the direction

of the x-axis. In this case, the upper and lower bounding plane walls also move with the

same velocity v∞ from left to right in their own planes. Depending on the contact angle,

the interface may be deformed near the particle, but it is kept horizontal at the inlet and

outlet in all cases.

As aforementioned, our simulations are run with the base parameters listed in ap-

pendix A. When presenting the results, we use dimensionless variables marked by an

asterisk. Of particular importance is the dimensionless anchoring energy defined by

w∗ = Ws/σ . For w∗ ≪ 1, the surface tension dominates anchoring effects and controls the

shape of the interface by minimizing distortions. Conversely, interfacial deformations are

expected for w∗ & 1 , as reported with, e.g., nematic drops immersed in an isotropic fluid

[49], or the reverse [50]. Below, we will use w∗ as a measure of the anchoring strength.

Another important dimensionless quantity is the Ericksen number Er, which is relevant to

Problem B. Er is defined as the ratio of viscous to elastic forces [40, 41]: Er = γ1v∞R/K ,

where γ1 = 1/Γ is the nematic rotational viscosity and K = q2eL1 the elastic constant

(appendix A). Er ≪ 1 (resp., Er ≫ 1) implies that the fluid flow has a negligible (resp.,

dominant) influence on the elastic distortions of the nematic texture.

2.4 Numerical method

The fluid equations, and their associated boundary conditions, together with the parti-

cle’s equations of motion, are solved numerically until steady state with the finite element

computational software COMSOL Multiphysicsr [51]. Details of the numerical approx-

imation can be found in [33] and will not be repeated here. Whenever appropriate, we

employ the built-in moving mesh module of COMSOL based on an Arbitrary Lagrangian-

Eulerian (ALE) scheme to follow and resolve the particle’s vertical motion. The amplitude

of this motion is always moderate, i.e. typically . 0.5R , and does not incur any remesh-

ing event. As in Qiu et al. [33], we design nonuniform triangular meshes fitted with

subdomains whose mesh size is adjusted to ensure a sufficient resolution of both the fluid

interface [38, 39, 44, 45] and the topological defects as they move around. To appropriately
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resolve the defect core, we use a mesh size h 6 0.75 lnc , where lnc is the nematic coherence

length. Outside of the subdomains, the mesh size is much coarser to save computational

time.

3 Results and discussion

3.1 Problem A: floating particle

In problem A, we study how the interplay of surface tension, anchoring conditions and

nematic elasticity affects the partial wetting configuration of a solid particle trapped at

the Iso-N interface. We will first consider a simple situation with a fixed particle to

explore the qualitative physical trends, mainly as a function of the anchoring type (H

or P configuration) and strength. In a second step, we shall allow the particle to move

vertically. Contact angles will range from 45◦ to 135◦.

3.1.1 Fixed particle

We begin with an immobile particle whose center of mass lies in the middle of the box

[(xp, yp) = (L/2, H/2)] and the contact angle is set to 90◦ on the particle surface. As

explained in Sec. 2.3, the Iso-N interface is initially flat. We examine the influence of the

anchoring strength at this interface for both the H and P configurations and we recall that

a strong homeotropic anchoring is prescribed at the particle surface (Sec. 2.3). Thus, an

anchoring conflict arises in the H configuration at the CL on the particle surface, whereas

such a conflict is absent in the P situation [Fig. 1(b)].

Figure 2 depicts the interfacial deformation and the Q-field in the nematic phase for

several w∗ values. In the H case, the Iso-N interface remains mostly flat for low values

of w∗ (< 1) and, because of the rigid anchoring imposed on the particle, substantial Q-

field distortions occur and extend away from the particle. In this case, the anchoring

conflict at the CL is smoothed out and there are no topological defects. Equivalently, we

may speak of a large anchoring extrapolation length. However, as we increase w∗ (> 1),

the elastic distortions become more localized to the particle surface. As a result, the

13



interfacial deformations grow, with the Iso-N interface bulging upwards in the vicinity of

the CL, right where the anchoring conflict lies. For high anchoring strengths (w∗ ≫ 1), a

topological defect appears at the particle surface very close to the CL [Fig. 2(b)].

In the P configuration [Fig. 2(c)], for which there is no anchoring conflict with θ = 90◦

[Fig. 1(b)], the Iso-N interface remains nearly flat regardless of the anchoring strength.

A topological defect of winding number −1/2 forms beneath the particle, in accordance

with the imposed boundary conditions. The defect position, which depends primarily on

the anchoring strength prescribed on the particle surface, is not sensitive to w∗ for it is

far from the Iso-N interface.

The interfacial deformations of Fig. 2(a) are quantified in Fig. 3 as a function of w∗ for

the H configuration. The interfacial distortion ∆yI = ycl − yw is defined as the difference

between the y-location of the interface at the CL (ycl) and that at the bounding wall (yw).

We see that ∆yI first grows steeply for w∗ . 1 before levelling off at larger values with

a crossover region around w∗ ≃ 1 . We can account for these two regimes via a scaling

argument based on the competition between the bulk elastic energy of the nematic LC

and the surface energies involving both surface tension and anchoring. The details of the

derivation are presented in appendix B. We show that

∆yI = w∗L

√
σL

L1(1 + w∗)
, (12)

where L is the box size [52]. Thus, for w∗ ≪ 1, i.e. in the weak anchoring regime, we

have ∆yI ≈ w∗L
√

σL/L1 , indicating that ∆yI should be a linear function of w∗ . In the

strong anchoring regime, w∗ ≫ 1 , and Eq. (12) yields ∆y ≈ L
√

w∗σL/L1 , i.e. a square

root profile is expected in this case. It follows that a crossover point at w∗ = 1 naturally

appears between these two limits. As can be seen from Fig. 3, these predictions are very

well confirmed by the numerical data. The inset of Fig. 3 provides a zoomed-in view of

the crossover region, which indeed occurs around w∗ = 1 .

Thus, our analysis shows that, for w∗ & 1 , the system resolves the anchoring conflict

at the CL by deforming substantially the interface. In this regime, the energetic penalty

incurred by the deformed interface is less than the cost associated with bulk elastic distor-

tions and to deviations from the prescribed anchoring orientation. In doing so, the total
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Figure 2: Zoomed-in snapshots computed at steady state with the anchoring strength w∗

indicated in the white space inside the particle. The contact angle θ = 90◦ for all cases.

(a) H configuration. Contour plots of Q2
22. For w∗ = 16.2 , the dashed lines mark the

cut-out area that is blown up in (b). (b) Zoomed-in view in the vicinity of the contact

line for w∗ = 16.2 in (a). The grey scale shows the concentration-weighted scalar order

parameter 1−ϕ
2
q , with qe = 0.81 . The small blurry dark spot signals a topological defect

with q 6 0.5 . (c) P configuration. Contour plots of Q2
11.
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Figure 3: Interfacial deformation (∆yI/R) as a function of the anchoring strength (w∗ =

Ws/σ) for the H configuration. The shaded area marks the transition between a steep

initial variation (weak anchoring regime) and a milder increasing trend (strong anchoring

regime). The black dashed (resp., blue dash-dotted) line is a linear (resp., square root)

fit to the data [Eq. (12)]. The inserted graph is a zoomed-in plot of the crossover region

around w∗ = 1 . The red data points lie within the crossover area and were not taken into

account in the fitting procedure. Contact angle: θ = 90◦ .
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energy of the system is minimized. The fact that no interfacial deformation occurs in the

P configuration [Fig. 2(c)], for which there is no anchoring conflict, is a further indication

that the anchoring condition at the CL drives the response of the fluid interface to a large

extent.

3.1.2 Free particle

In this section, we take into account the particle’s equations of motion, which are solved

with all the other governing equations, as outlined in Sec. 2.2. The particle is now free

to move up or down depending on the forces acting on it. In turn, the shape of the Iso-N

interface will be altered by the particle motion. We start with θ = 90◦ before considering

other contact angle values.

Contact angle θ = 90◦. As before (Sec. 3.1.1), the particle’s center of mass lies initially

in the middle of the box and the fluid interface is flat, thereby realizing the condition

θ = 90◦ .

Typical results obtained at steady state are displayed in Fig. 4. In the H configuration

[Fig. 4(a,b)], we see that the particle has now sunk into the N phase, with an appreciable

downward particle displacement d∗ = d/R. In this example, d∗ ≃ −0.3 for w∗ = 0.5 . This

displacement alters the shape of the Iso-N interface which no longer bulges upwards as

before [Fig. 2(a)], but now bends downwards into a concave meniscus. With a freely mov-

ing particle, the system manages the anchoring conflict at the CL by pushing the particle

into the N phase, which is also likely to result in less pronounced interfacial distortions.

Thus, the particle position across the interface may be seen as a new degree of freedom

that can be adjusted to minimize the overall energy. In contrast, the P-configuration of

Fig. 4(c,d) hardly shows any interfacial deformation or particle displacement, even with

a stronger anchoring (w∗ = 2). This is because of the lack of an anchoring conflict at

the contact line. Therefore, the extent of particle motion and interfacial deformations

appear to be directly correlated to the existence of an anchoring conflict at the CL. In

the following, we will test further this conjecture by employing other contact angles and

various anchoring strengths in both H and P setups.
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Figure 4: Order parameter snapshots and interfacial profiles with a moving particle. (a,b)

H configuration. (c,d) P configuration. The bold black figures indicate the value of w∗

in each case. (a) (resp., (c)) Contour plot of Q2
22 (resp., Q2

11). (b),(d) Comparison of

interfacial profiles (y∗I = yI/R) computed in the fixed and moving particle cases (x∗ =

x/R). Contact angle: θ = 90◦ .
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Contact angle θ ̸= 90◦. We restrict our investigation to two distinct cases, one in

which most of the particle body lies in the N phase (θ = 45◦), and another one for which

the particle is preferentially immersed in the Iso phase (θ = 135◦). As previously, we

will monitor the response of the system as we tune the anchoring strength at the Iso-N

interface for both the H and P configurations.

We start with θ = 45◦ and the H configuration. The series of snapshots exhibited in

Fig. 5 reveals an interesting phenomenon. For w∗ = 0 [Fig. 5(a)], a topological defect

of winding number −1/2 forms slightly below the equator of the particle as if it were

repelled from the Iso-N interface. On the contrary, for a finite but weak anchoring strength

[w∗ = 0.4, Fig. 5(b)], the defect gets attracted towards the interface but stabilizes itself

at an equilibrium distance from it. This attraction has an elastic origin and probably

results from the onset of an anchoring conflict at the CL, where the Q-field deformations

differ greatly from the w∗ = 0 case. Further increasing w∗ leads to a stronger elastic

attraction and eventually to the trapping of the defect within the interfacial area, very

close to the CL [Fig. 5(c)]. The close-up view on Fig. 5(d) indeed shows that the defect

has not disappeared. Also, notice the significant interfacial deformation together with the

substantial sinking of the particle into the N phase.

Hence, for a high enough w∗, it becomes energetically favorable for the system to

absorb the defect at the interface rather than to sustain it in the bulk with costly director

disturbances. This result is a further illustration of an otherwise well-known coupling

effect between bulk elastic distortions and surface anchoring strength encountered in LC

colloids (see e.g., [1, 33]).

Other wetting configurations are presented in Fig. 6. All snapshots on the left side

correspond to situations with w∗ = 0 , whereas those displayed on the right side are

calculated for weak to intermediate anchoring strengths. For w∗ = 0 , there is no particle

displacement, or only a minute one, and the Iso-N interface remains flat. This is in

general not the case with w∗ ̸= 0 . Note that an anchoring conflict now occurs in the

P configuration since θ ̸= 90◦. As aforementioned, the system resolves the anchoring

conflict primarily by moving the particle across the Iso-N interface. In general, for a given
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Figure 5: (a-c) Steady state wetting configurations obtained with a moving particle for

several anchoring strengths (w∗, indicated by the bold black figures) in the H configuration

with θ = 45◦ . The particle displacement, d∗ = d/R, is also specified hereafter: (a)

d∗ = 2 × 10−3, (b) d∗ = 0.05 , (c) d∗ = −0.5 . As w∗ increases, the defect is elastically

attracted towards the Iso-N interface close to the CL and eventually gets trapped there.

The Iso-N interface also becomes more deformed due to a sizeable downward displacement

of the particle. Grey scale: Q2
22. (d) Close-up view of (c) near the contact line. Grey

scale: 1−ϕ
2
q . The dark blurry spot signals a topological defect lying within the interfacial

area very close to the contact line. (e) Blown-up view of (d) showing a typical fine mesh in

the vicinity of the interface (ϕ = 0) and the topological defect. As mentioned in Sec. 2.4,

the mesh gradually coarsens away from the interfacial area.
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configuration (either H or P) and θ , the greater w∗, the larger the particle displacement.

For example, in Fig. 6(b), the particle went up significantly (d∗ = 0.33) and a sizeable

interfacial deformation remains at equilibrium. However, bulk elastic disturbances are

very moderate as they are localized in the close proximity of the CL and there is no longer

any defect nearby the particle, in contrast to Fig. 5. Next, in Fig. 6(d), the particle has

sunk substantially (d∗ = −0.37) resulting in a slightly curved interface near the CL. This

arises from an anchoring conflict at the CL, which is clearly signalled by additional elastic

distortions of the Q-field [compare Fig. 4(c) and Fig. 6(d)]. Finally, a nearly flat interface

results in Fig. 6(f) with an upward motion of the particle (d∗ = 0.18). Since only a small

portion of the solid surface is submerged in the nematic, elastic distortion is limited to a

small area, as compared with the case of θ = 90◦ in Fig. 4(c). A defect of winding number

−1/2 still lies beneath the particle, in agreement with the prescribed BCs.

To summarize, with finite anchoring on the Iso-N interface, potentially large interfacial

deformations and particle displacements, on the order of 0.5R , may occur whenever there

is an anchoring conflict at the CL. This finding has never been predicted before nor

observed in experiments, and is the central result of Problem A. It is a direct consequence

of the coupling between elastic, capillary (surface tension) and anchoring effects.

3.2 Problem B: drag force

Problem B concerns the drag force on a particle straddling an Iso-N interface. As men-

tioned in the introduction, a few experiments have touched upon this topic [24, 28, 29]

but no prior theoretical or computational work seems to have been reported so far.

Fig. 1(c) specifies the setup, as already described in Sec. 2.3. A 2D planar geometry

is employed in order to first capture some main qualitative physical trends. As in Prob-

lem A, a rigid homeotropic anchoring is prescribed at the particle surface. To simplify

the analysis of the drag force, we make two further adjustments of the parameters. We

increase the surface tension by a factor of 10 relative to that of Problem A to minimize

interfacial deformation (appendix A). Besides, we adopt the P-configuration with soft

planar anchoring (w∗ = 0.4) on the Iso-N interface to avoid complications from the an-
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Figure 6: Additional steady state wetting configurations calculated with a moving particle.

As in Fig. 5, the bold black figures (inside the particle) mark the values of w∗ and d∗ is

also specified at the bottom right corner in each case. (a,b) H configuration, θ = 135◦ .

(c-f) P configuration. (c,d) θ = 45◦ . (e,f) θ = 135◦ . Depending on θ and w∗, the particle

goes either up or down with relatively small interfacial deformations, except in (b). Color

bar: Q2
22 (a,b), Q2

11 (c,f).

22



choring conflict at the CL. In all cases, the motion of the particle is heavily overdamped

since the Reynolds number Re = ρnv∞R/ηn is very small (. 10−5, cf. appendix A). Fur-

thermore, a moderate coupling between the fluid velocity and the Q-field is considered

with the Ericksen number Er in the range 0.28 − 3 (cf. Sec. 2.3). Given the complexity

of the problem and the large parameter space, we focus here on two key parameters, θ

and Er . A more extensive exploration will be conducted in the future.

The drag force, F ∗
D(LC) = FD(LC)/L1 , consists of the x-component of elastic and

viscous forces, which are evaluated by integrating the corresponding tractions along the

particle contour, as in Eq. (10). As a reference, the drag force for an isotropic-isotropic

(Iso-Iso) interface, F ∗
D(iso) , was also calculated with the fluids having the same viscosities

as those of the Iso-N system. This force corresponds to the limit of A,B,C, L1,Ws → 0

(Sec. 2.1) and thus only contains a viscous component. In the next two sections, we

investigate the influence of θ and Er on F ∗
D(LC) .

3.2.1 Influence of the contact angle θ

Fig. 7(a) shows the drag force as a function of the contact angle ([45◦ − 135◦]) at two

values of Er . For convenience, we have used the ratio F̃D = F ∗
D(LC)/F

∗
D(iso) to assess

the influence of the nematic ordering around the particle on the drag force. Note that

the interface is maintained flat by shifting the center of the particle across the Iso-N

interface. Gray scale plots of Q2
11 show some illustrative steady [Fig. 7(b,c)] and transient

[Fig. 7(d,e)] states obtained for a few θ values.

We first notice that the curve F̃D = f(θ) [Fig. 7(a)] is asymmetric with respect to

θ = 90◦. This is of course expected since the Iso-N interface breaks the up-down symmetry.

We checked that for an Iso-Iso interface with matched viscosities between the two fluids,

the curve F̃D = f(θ) has the shape of a symmetric concave parabola, in agreement with

previous results [48, 53]. Second, for both Er values, we see that F̃D > 1 in most

cases, and notably, F̃D is maximum for θ ≃ 50◦, i.e. when most of the particle body

is immersed into the N phase [Fig. 7(c)]. In this case, the distorted nematic texture

[see e.g., Fig. 7(b,c)] increases the drag force by about 15 − 20% compared to a purely
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Figure 7: (Problem B) Results of drag simulations for various contact angles and a flat

interface in the P configuration. (a) Normalized drag force F ∗
D(LC)/F

∗
D(iso) as a function

of θ for Er = 0.28, 0.57 . (b)-(e) Flow and nematic fields for different contact angles and

Er = 0.57 . (b) Steady state for θ = 90◦. (c) Steady state for θ = 45◦. (d,e) Transient

states for θ = 135◦. t∗ = t/τ indicates the simulation time. In this case, we see that the

defect, marked by the white arrow in (d), merges with the interface as a result of both flow

advection and an attractive elastic interaction (see text for details). After the merging

(cf. dashed circle in (e)), the system remains in this state till the end (t∗end = 2 × 108).

Gray scale: Q2
11 . Bright (resp., dark) areas correspond to LC molecules aligned parallel

(resp., perpendicular) to the horizontal axis (same meaning hereafter). The green arrow

lines represent the flow streamlines. 24



isotropic system. This drag enhancement may be explained by the fact that the fluid

has to flow through distorted regions of the nematic field where the orientation of LC

molecules changes. This is especially true near topological defects where large gradients

of the order parameter usually occur. Reorientations of mesogens bring up an additional

contribution to F ∗
D(LC) via the rotational viscosity γ1 (Sec. 2.3) [10], which is specific to

nematics. Heuristically, we may imagine that the particle and its companion defect [e.g.,

Fig. 7(b)] form a bigger effective particle in the N phase that has to be dragged along,

thereby enhancing the friction.

Besides, we see that the main effect of the imposed external flow is to shift the topo-

logical defect downstream of the particle, to a steady state position if Er is not too large

[Fig. 7(b,c)]. At this relatively low Er, the viscous forces from the fluid flow are strong

enough to alter the orientation of LC molecules and yield a modified nematic texture. This

is a prominent feature of the coupling between the flow and the LC orientation. Note

that similar defect motions in bulk LC colloids were reported for Er ∼ 1 [54, 55, 56, 57].

Next, as θ increases [Fig. 7(a)], F̃D decreases and tends towards unity, which goes in

line with intuition since the particle is more exposed to the isotropic phase in this case.

However, an anomaly occurs for Er = 0.57 and θ = 135◦ as F̃D jumps to a larger value

(cf. dashed circle). This phenomenon may be ascribed to the merging of the defect with

the Iso-N interface [Fig. 7(d,e)], which induces the formation of a pair of small vortices

on either side of the interface downstream of the particle [see Fig. 7(e)]. These vortices

originate from a Marangoni flow that develops along the interface because of the existence

of an anchoring energy gradient near the contact line, as demonstrated in Fig. 8. Close to

the contact line, the fluids flow along the interface from locations of low anchoring energy

to those of high anchoring energy, in agreement with Rey’s theory on Marangoni flow at

LC interfaces [58]. This anchoring energy gradient arises from the disturbed molecular

orientation in this area as a consequence of the defect-interface merging. Note that the

defect has disappeared from the interfacial area, giving rise to a nonsingular configuration.

The Marangoni eddies persist over long times and might be responsible for the enhanced

drag force exerted on the particle in this case.
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Figure 8: (Problem B) Zoomed-in view of Fig. 7(e) near the contact line downstream

of the particle. The gray scale shows the dimensionless anchoring energy density, f ∗
a =

fa/(L1lnc) , which is defined across the entire diffuse interface [Eq. (3)]. As such, we see

that it spreads both below and above the level set ϕ = 0 . The arrows indicate the velocity

field. The anchoring energy gradient close to the contact line drives a Marangoni flow that

is signaled by a pair of vortices located on either side of the interface (solid curve). These

vortices may increase the drag force exerted on the particle. Parameters: Er = 0.57,

θ = 135◦.

26



The merging of the defect with the interface [Fig. 7(d,e)] may be caused by the com-

bination of two effects: advection and elastic attraction. The merging only occurs for

Er = 0.57 but not for Er = 0.28. In the former case, the flow is strong enough to sweep

the defect sufficiently close to the interface so that it falls within the range of an attractive

elastic interaction there. Indeed, from the dynamic motion of the defect [Figs. 7(d,e)],

it seems as if it is captured by the interface. This phenomenon appears consistent with

what we reported previously in Fig. 5, where a defect trapping occurs, although in the

absence of external flow.

3.2.2 Influence of the Ericksen number

In this section, we address in more detail the influence of the Ericksen number on the

drag force [Fig. 1(b)]. In Sec. 3.2.1, only two different values of Er were considered for a

broad range of θ (Fig. 7). Here, we carry out a complementary study and vary Er more

systematically for only two different values of θ . Besides, the particle’s center of mass is

now kept fixed midway across the interface. Thus, the case θ = 90◦ yields a flat interface,

as before (Sec. 3.2.1), but a nonflat interface results if θ ̸= 90◦. The latter setup is useful

to examine the effect of interfacial deformations on the drag force. The numerical setup

is exactly the same as before [Fig. 1(c)].

Contact angle θ = 90◦ . Fig. 9(a) summarizes the results of our drag force computations

for θ = 90◦ as a function of the dimensionless far-field imposed velocity v∗∞ = τv∞/lnc ,

where lnc is the nematic coherence length and τ a typical molecular time (see appendix A).

For the Iso-N interface, the maximum value of v∗∞ corresponds to Er = 1.71 . We could

not investigate larger Er values here because, for Er > 1.71, the defect ‘escapes’ from the

particle and gets convected downstream continually by the flow, as shown in Fig. 9(b,c).

Even though no steady state can be reached in this case, the drag force acting on the

particle remains about constant once the defect is sufficiently away from it. Previous

3D studies in bulk LC colloids reported similar defect detachments under the influence

of flow [54, 57]. As in our study, it was found that defect separation typically occurs

for Er & 1, i.e. when the viscous forces become stronger than elastic forces. Otherwise
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Figure 9: (Problem B) P configuration, θ = 90◦. (a) Drag force (F ∗
D) as a function of the

prescribed far-field velocity (v∗∞) for both the Iso-N and Iso-Iso interfaces. The solid and

dashed lines are linear fits to the data. The numbers next to the fitting lines indicate the

corresponding slopes. (b,c) Transient snapshots (gray scale: Q2
11) of the Iso-N interface

illustrating the defect escape from the particle for the last data point on (a) corresponding

to Er = 1.71 . The defect, marked by the dashed yellow circle, is swept downstream by the

flow, whose streamlines are represented by green arrow lines. The defect is still located

close to the particle at time t∗ = 1.2 × 107 (b) but is being driven away from it at later

times (c).
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stated, since the defect motion is governed by director rotation, the defect abandons the

particle when the elastic torque can no longer prevent the director from rotating under the

viscous torque due to the passing flow. In Fig. 9(c), notice the sizeable spatial extension

of Q-distortions (dark areas) induced by the flow.

In addition, the graph on Fig. 9(a) clearly reveals a proportionality between F ∗
D and

v∞ in both the Iso-Iso and Iso-N cases. While the linear behavior was expected in the

isotropic situation (Reynolds number Re = ρnv∞R/ηn . 10−5), it was not guaranteed, a

priori, that linearity would hold as well for the Iso-N interface in a regime where Er is not

particularly small (Er ∼ 1). As far as we know, nonlinear drag forces were only reported

by Stark & Ventzki [59] for a spherical particle exhibiting the dipolar configuration in a

bulk nematic matrix.

Moreover, we see that the friction coefficient, F ∗
D/v

∗
∞, which is given by the slope

of linear fits in Fig. 9(a), is slightly larger in the Iso-N case than in the Iso-Iso case.

This result can be explained via the same arguments as those put forward previously

(Sec. 3.2.1): as v∞ increases, areas where the nematic alignment is distorted grow in size

as a result of the coupling between the velocity and order parameter fields. Advection of

the defect is also more pronounced, leading to significant molecular reorientations which

contribute to the friction through the rotational viscosity.

Contact angle θ = 135◦ , nonflat interface. Finally, we consider the case of a nonflat

interface by setting θ = 135◦. Since the particle’s center of mass is fixed, the Iso-N

interface now deforms downwards so that most of the particle body is exposed to the

isotropic phase. The graph in Fig. 10(a) compares the drag force data obtained in this

configuration for the Iso-N and Iso-Iso interfaces, similarly to Fig. 9(a). First, in the Iso-

Iso case, the friction coefficient (slope of the linear fit) is slightly larger than its counterpart

determined in Fig. 9(a) for a flat interface (1.2× 10−4 vs. 1.1× 10−4, respectively). This

result agrees with our previous findings that a deformed fluid interface breaks the up-

down symmetry and leads to more bending of the flow streamlines, which enhances the

friction and the drag coefficient [48]. Second, in the Iso-N case, we observe again a linear

relationship between F ∗
D and v∗∞ . This linearity prevails up to Er = 2.86, corresponding to
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the maximum v∗∞ in the graph. As before, the friction coefficient for the Iso-N interface is

slightly larger than that of the Iso-Iso interface, most likely for the same reasons as those

already mentioned in the flat interface situation [Fig. 9(a)].

Figure 10: (Problem B) P configuration, θ = 135◦. (a) Same as in Fig. 9(a). (b,c)

Transient zoomed-in snapshots (Gray scale: Q2
11) illustrating the merging of the defect

with the Iso-N interface for Er = 0.57 . The yellow dashed circle marks the defect location

just before (b) and right after (c) the merging event. The green arrow lines represent the

streamlines and t∗ is the simulation time.

However, Fig. 10 does show a distinct feature. The defect does not escape from the

particle as observed before with θ = 90◦ and Er > 1.71 [Fig. 9(c)]. Instead, it merges

with the Iso-N interface for Er > 0.57 , as illustrated in Fig. 10(b,c). Since the interface is

now bent downwards, the flow can sweep the defect closer to it so that, at some point, an

attractive elastic interaction between the defect and the interface, already encountered in
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Fig. 5 and Fig. 7(d,e), takes over and results in the trapping of the defect. As in Fig. 7(e),

the defect disappears from the interfacial region once adsorbed, giving rise to a pair of

Marangoni vortices located on either side of the interface [Fig. 10(c)]. The defect merging,

as explained before, is expected to cause additional drag [Fig. 7(a)]. In fact, this seems

to be the case in Fig. 10(a) as well. The merging does not occur for the first data point

of Fig. 10(a) at v∗∞ = 2.7× 10−6 and Er = 0.28, but occurs for all the higher values of Er.

The first data point falls a bit below the linear relationship manifested by the higher-Er

data points by some 15% . This is less than the amount of drag enhancement (≃ 28%)

observed in Fig. 7(a) due to defect merging but the two configurations are different.

4 Concluding remarks

We have performed numerical simulations on the behavior of solid colloidal particles

attached to an Iso-N fluid interface. Building on our previous work, we have employed a

model that combines a diffuse interface method (phase-field) to account for the properties

of the Iso-N interface with a tensor order parameter description of the nematic phase,

including topological defects. Such a model is well suited to describe elastocapillary

phenomena, i.e. situations involving a coupling between elasticity and capillarity. We have

first focused our attention on equilibrium floating configurations for both homeotropic and

planar anchoring types at the Iso-N interface with various anchoring strengths and contact

angles. A rigid homeotropic anchoring was assumed at the particle surface in all cases.

One of the key findings is that the anchoring conditions at the contact line drive the

response of the system in terms of interfacial deformations and/or particle displacements.

We have discovered two regimes with two distinct scaling laws for the magnitude of

interfacial distortions. A strong anchoring conflict generally yields a sizeable particle

shift and interfacial deformation. Note that, because of their negligible buoyant weight,

the particle we considered would not produce any interfacial distortion if adsorbed at

isotropic planar interfaces. Thus, our results bring up the novelty of the Iso-N interface

and highlight the interplay between elastic distortions, surface tension and the anchoring

conditions.
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In the second part, we have studied the dynamic situation of a particle being dragged

along an interface. One of the primary objectives was to assess the influence of elastic

distortions on the drag force exerted on the particle, and more generally, the effect of

the coupling between the velocity and order parameter fields. We have computed drag

forces as a function of the contact angle and the Ericksen number. Only a moderate

planar anchoring has been considered at the Iso-N interface. Our investigation reveals

that (i) drag forces at the Iso-N interface are always greater, albeit only slightly, than

their isotropic counterparts and (ii) generally, greater drag enhancement tends to occur

for smaller contact angles, when more of the particle body is immersed in the N phase.

Defect sweeping, escaping, and merging with the interface, together with large distorted

areas of the order parameter, contribute to the drag enhancement. For both flat and

nonflat interfaces, the drag force is linearly proportional to the velocity in the entire

range examined, up to Ericksen numbers of order unity.

The current 2D implementation of our model may be extended to address the case of a

sphere trapped at the I-N interface in 3D, which can be more directly compared with ex-

periments. Preliminary simulations of a floating sphere carried out in a 2D-axisymmetric

geometry confirm qualitatively the main findings of the present 2D study: the presence of

conflicting anchoring conditions at the contact line is responsible for the onset of interfa-

cial deformations, and the stronger the anchoring, the greater the distortions. A detailed

study will be reported in a forthcoming article. However, the computation of drag forces

acting on a sphere straddling the I-N interface requires a full three-dimensional approach,

which cannot be tackled yet by our current model implementation. Nevertheless, prior

studies in bulk nematics [54, 55, 56, 57] suggest that line defects may be distorted by the

passing flow, detach from the particle, shrink or even transform into a point. As in the

2D case, defects merging with the interface could also be expected. These phenomena, if

they occur, are likely to alter drag forces and perhaps make the force-velocity law deviate

from a linear behavior.

Our two-dimensional results also form the basis for exploring more complex situations

such as multiparticle interactions based on the elastocapillary coupling. Indeed, we have
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shown that sizeable interfacial deformations may take place due to the interplay of elas-

tic and anchoring effects. Thus, in principle, we may expect the capillary and elastic

interactions to contribute simultaneously to the self-assembly properties of the system.

As mentioned in the introduction, a number of experimental and theoretical studies shed

some light on this topic over the past few years [17, 20, 21, 32], but there is still no clear

demonstrations of the interaction mechanisms by accurate computations. We currently

focus our simulation efforts in this direction.
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Appendix A Simulation parameters

The parameters characterizing the nematic LC are close to those of the widely used

compound 5CB [42, 60, 61]. The numerical parameters for the CH dynamics (capillary

width ϵ, mobility γ) are chosen according to the guidelines reported in [38, 44, 45]. The

dimensional base values of all simulation parameters are listed in the following table.
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Table 1: Definitions and base values of the parameters used in the simulations. The

subscript “n” (resp., “i”) stands for nematic (resp., isotropic). The superscript A (resp.,

B) refers to problem A (resp., B). “PS‘” is the abbreviation for Phase-Field.

Parameter Symbol Value Unit

Elastic constant L1 10 pN

Landau-de Gennes coefficients A −105 Pa

B = −C −6× 105 Pa

Scalar order parameter at equilibrium qe 0.81 [33] -

Nematic coherence length lnc =
√

L1

|A| 10 nm

Typical molecular time τ 1 ns

Nematic shape factor ξ 0.6 -

Nematic rotational viscosity γ1 = 1/Γ 0.04 Pa.s

Density ρn , ρi 103 kg.m−3

Viscosity ηn , ηi 0.07 Pa.s

Surface tension σ 10−3 (A), 0.01(B) N.m−1

Anchoring strength Ws 0− 0.016 N.m−1

Particle radius R 1 µm

Contact angle α 45◦ − 135◦ deg

Capillary width (PS) ϵ 20(A), 40(B) nm

Mobility (PS) γ 4× 10−15 m2/(Pa.s)

Far-field velocity v∞ 27− 270 µm.s−1

Box dimensions (height,length) (H,L) (8R, 10R)(A), (20R, 30R)(B) µm
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Appendix B Derivation of [Eq. (12)]

We derive Eq. (12) using simple scaling arguments based on the competition between

the bulk elastic energy of the nematic LC and the surface energies (surface tension and

anchoring).

Fig. 11 specifies the geometry for our reasoning. To derive Eq. (12), there is no need

to consider explicitly a particle attached to the interface (actually, the particle size is not

a relevant length scale of the problem). The right wall of the box ‘stands for’ the particle

surface and we assume that an anchoring conflict exists there resulting in a deformed

interface (dashed curve in Fig. 11). The typical interfacial deformation is denoted ∆yI .

Figure 11: Geometry used for the scaling argument. The right boundary symbolizes the

particle surface in the actual simulation. The small ellipsoids represent the LC molecules

(not to scale). We assume they are oriented parallel to the y-axis everywhere except at the

right wall. These conditions result in an anchoring conflict of the H type there [Fig. 1(b)],

which makes the Iso-N interface bulge upwards.

Bulk elastic energy - As a first approximation, we know that the elastic free energy

density, fe , scales as ∼ L1/ξ
2, where L1 = K/q2e (Sec. 2.3) is proportional to the elastic

constant K of the nematic LC, and ξ is the characteristic length scale of the director

deformations. In the presence of a finite anchoring strength W at the Iso-N interface, we

may take ξ ∼ LW = L1/W , where LW is the anchoring extrapolation length. Indeed, this

is the relevant characteristic length to describe director deformations due to an anchoring
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conflict (cf. Fig. 11). It follows that the change in the elastic energy density due to a

nonzero anchoring strength can be written as δfe ∼ W 2/L1 . Furthermore, assuming that

the area A ∼ L2 of the nematic domain remains about constant (small variation), the

change in the elastic energy reads

δFe ∼
W 2

L1

A . (B.1)

Surface energies - In order to estimate the change in surface energies, we have

to compute the excess length δL of a deformed interface caused by the existence of an

anchoring conflict. The resulting excess surface energy is simply given by δFs = (σ+W )δL

since both interfacial and anchoring energies will be affected by a change in L .

From simple considerations of differential calculus, we have dL′ = dL
√

1 + (dy/dx)2 ,

where dL′ is a length element of the deformed interface and dL its projection along the

x-axis. Assuming small interfacial deformations, and hence small slopes ( (dy/dx) ≪ 1),

we may write dL′ ≈ dL
[
1 + 1

2
(dy/dx)2

]
resulting in δ(dL) = dL′ − dL = 1

2
(dy/dx)2dx .

In terms of orders of magnitude, (dy/dx) ∼ ∆yI/L , leading to δL ≈
(
∆yI
L

)2 ∫ L

0
dx =

∆y2I
L

,

where the (unimportant) prefactor 1/2 has been dropped. Consequently, we may write

δFs ∼ (σ +W )
∆y2I
L

. (B.2)

Balancing the two Eqs. (B.1) and (B.2) yields Eq. (12)

∆yI = w∗L

√
σL

L1(1 + w∗)
.
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