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High-throughput sequencing (HTS) technologies are revolutionizing the research and
molecular diagnosis landscape by allowing the exploration of millions of nucleotide
sequences at an unprecedented scale. These technologies are of particular interest
in the identification of genetic variations contributing to the risk of rare (Mendelian) and
common (multifactorial) human diseases. So far, they have led to numerous successes
in identifying rare disease-causing mutations in coding regions, but few in non-coding
regions that include introns, untranslated (UTR), and intergenic regions. One class of
neglected non-coding variations is that of 5′UTR variants that alter upstream open
reading frames (upORFs) of the coding sequence (CDS) of a natural protein coding
transcript. Following a brief summary of the molecular bases of the origin and functions
of upORFs, we will first review known 5′UTR variations altering upORFs and causing
rare cardiovascular disorders (CVDs). We will then investigate whether upORF-affecting
single nucleotide polymorphisms could be good candidates for explaining association
signals detected in the context of genome-wide association studies for common
complex CVDs.

Keywords: open reading frame (ORF), genome wide association analysis (GWAS), Mendelian disease, non-coding
mutations, polymorphism

INTRODUCTION

Upstream open reading frames (upORFs) are key regulatory elements located in the 5′untranslated
(UTR) region of coding transcripts. UpORFs result from the presence of an upstream translation
initiation site (uTIS) located within the 5′UTR and associated with an in-frame stop codon (uStop)
located within the 5′UTR or the coding sequence (CDS). Different types of upORFs can be
distinguished according to the position of the uStop with respect to the CDS (Figure 1). More
precisely, when the uStop (i) is located within the 5′UTR, this results in a fully upstream ORF
(uORF), (ii) is located within the CDS and is distinct from the main stop codon of the CDS, the
uTIS is at the origin of an overlapping uORF (uoORF), and (iii) is the main stop codon of the CDS,
this leads to an elongated CDS (eCDS). Approximately, half of the human transcripts naturally
contain upORFs in their 5′UTR (1, 2) and these upORFs can contribute to modulate the production
of the main protein encoded by the CDS by disturbing the translation initiation step and then the
recognition of the main TIS by the ribosomes (3–5). The functional effect of a given upORF is highly
variable and could be influenced by elements including the number of upORFs in the 5′UTR, their
length, and the nucleotide context of the upORF as extensively discussed previously (6).
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Often, the presence of upORF in general, and uoORF in
particular, leads to a decrease of the expression of the main
transcript (1). That could happen via the alteration of the
translation mechanism (i.e., ribosome dissociation and ribosome
stalling) or via transcript degradation by the non-sense-mediated
decay process that recognizes the uStop as a premature stop
codon (1, 7, 8). Nevertheless, under some conditions (i.e., hypoxia
or cell stress), the presence of upORFs in a given transcript
could be associated with an increase of the translation efficiency
(9, 10). Indeed, upORF can modulate the activity of coexisting
internal ribosome entry site (IRES) located on the same 5′UTR
(11), thus regulating the IRES-dependent translation initiation in
a context dependent manner. For instance, Chen et al., showed
that the increase of fibroblst growth factor 9 (FGF9) protein
levels under hypoxia happens via an IRES-dependent translation,
regulated by the presence of a small upORF upstream to the
IRES (12). In normal conditions (i.e., normaxia), FGF9 is present
in low levels in human cells, thanks to the upORF-mediated
translation inhibition of the CDS. Under hypoxia conditions,
ribosomes probably switch from the upORF to IRES, thus
activating the IRES-dependent translation and leading to efficient
translation of FGF9 (12). That explains the increase of FGF9
under hypoxia conditions in cancer cells. In addition, upORFs
could be translated into small-encoded peptides (SEPs) and play
a regulatory role in health and disease contexts (13, 14).

High-throughput genomic studies have identified an
increasingly number of single nucleotide variations (SNVs)
located in 5′UTR and possibly altering upORFs by creating new
ones or deleting/modifying existing ones suggesting that this kind
of variants has been underestimated (15). Many of these variants
have been characterized as disease causing by creating upORF
and, thus, altering the production of the canonical protein, but
surprisingly this has still not been investigated systematically.
In fact, among the ∼4,000 disease-associated 5′UTR variants
reported in different databases, the most deleterious ones
are those creating or deleting uTIS or uStop, responsible of
the creation or the disruption of upORFs (15). Whiffin et al.
have recently shown that, among all the SNVs reported in the
genome aggregation (GnomAD) database to locate in 5′UTR
of 18,593 canonical transcripts, on an average of 30 SNVs
per gene are variations creating a uAUG canonical initiation
codon (15). They also showed that only 39 uAUG-creating and
four stop-removing extremely rare variants were reported in
Human Gene Mutation Database (HGMD) or likely pathogenic
in ClinVar (15). Very interestingly, among these rare variants,
nine uAUG-creating variants are located in genes implicated in
cystic fibrosis, familial hypercholesterolemia, and hematologic
diseases (16–22). Moreover, recent studies have also shown that
upORF could be initiated by non-AUG codons and be disease
causing (23, 24). Given the diversity of the functional implication
of existing upORFs in the regulation of protein expression,
the possible functional impacts of upORF-altering variants,
hereafter called upSNVs, on protein expression could be highly
variable. Up to very recently (25, 26), this type of genetic variants
was not easily predicted by available bioinformatics tools. In
addition, their functional characterization requires dedicated
experimental strategies that have not yet been harmonized in

order to demonstrate how they could affect gene expression
and how the resulting dysregulations could lead to disease.
Nevertheless, a first step in the assessment of the effect of
upSNVs on the protein levels can be obtained using in vitro
functional assays in which the 5′UTR and CDS of a given
transcript are cloned in expression vectors followed by the
expression of the produced vectors in human cells, both in
the wild-type and upSNV contexts (27). upSNV-associated
protein levels could then be evaluated by Western blot in
comparison to the wild-type construct. Luciferase assays have
also been widely used to study upSNVs. These assays are based
on the cloning of the entire promoter of a given transcript
before the coding sequence of a luciferase and the evaluation
of the promoter activity in wild-type and mutant contexts
in vitro by measuring the obtained luciferase luminescence
normalized to a control vector. Additional methods used to
characterize small ORFs and their potential translation into
SEPs has been recently reviewed in (28). Altogether, upSNVs
are still a neglected class of non-coding variations, and are
often called as Variants of Unknown Significance when they
are identified in routine clinical diagnosis, contributing then
to medical wandering. In this work, with the aim of putting
new light on upSNVs, we first provide a general overview
of such type of variants known to cause rare cardiovascular
disorders (CVDs). Then, we explore their potential role as
candidates for explaining association signals detected in the
context of genome-wide association studies (GWASs) for
common complex CVDs.

METHODS

Two complementary strategies were adopted to identify rare
uAUG-creating variants in CVD genes. First, we selected variants
from Supplementary Table 2 of (15) reporting upSNVs from
ClinVar and HGMD. Then, we looked for additional variants
in ClinVar and HGMD that were not reported in Whiffin et al.,
and scanned research articles in PubMed using the following
keywords: “upstream ORF” and “cardio-vascular.”

To investigate whether some association signals detected
in GWAS for CVDs could be explained by upSNVs, we
deployed MORFEE1 on the 1,000 Genome reference dataset
(phase 3-v20130502) in order to identify all the common (allele
frequency > 1%) predicted upSNVs in 5′UTR regions. In a
second step, we checked whether these predicted upSNVs could
be in linkage disequilibrium (LD) with lead SNVs identified in
GWAS studies for coronary artery disease (CAD), stroke, venous
thrombosis (VT), platelets, and lipid traits. LD information
was retrieved from the European populations genetic database
available through the LDlink web-based tool2 and from which
we considered two SNVs to be in LD when the absolute
value of their pairwise D’ was greater than 0.7. For CAD,
GWAS loci and lead SNVs were selected from Matsui et al.
(29) and Hartiala et al. (30), while Malik et al. (31) and

1https://github.com/daissi/MORFEE
2https://ldlink.nci.nih.gov/?tab=home

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 March 2022 | Volume 9 | Article 841032

https://github.com/daissi/MORFEE
https://ldlink.nci.nih.gov/?tab=home
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-841032 March 15, 2022 Time: 19:11 # 3

Soukarieh et al. upORF-Creating Variants in Cardiovascular Disorders

FIGURE 1 | Different types of upstream open reading frames (upORFs) located in the 5′UTR of coding transcripts. The upper, middle, and lower panels show the
position on coding transcripts of fully upstream ORF (uORF), overlapping ORF (uoORF), and elongated coding sequence (eCDS), respectively. The start and stop
codons associated to the described upORF are indicated by green and red circles, respectively. AUG corresponds to the canonical start codon and UAA, UAG, and
UGA correspond to the stop codons. TSS, transcription start site; UTR, untranslated region; CDS, coding sequence.

Lindström et al. (32) were used to identify GWAS loci and
corresponding lead SNVs for stroke and VT, respectively. For
platelets and lipids traits, we selected all the SNVs reported
in the Geospatial Resource for Agriculture Species and Pests
(GRASP) server3 (33) as of September 2021 to associate at
p < 5.10−8 with any of their related quantitative traits, including
mean platelet volume, platelet count, platelet aggregation or
platelets’ response to medication for platelet therapy, and high-
density lipoprotein (HDL)-/low-density lipoprotein (LDL)/total
cholesterol, triglycerides for lipids. Finally, this selection strategy
led to a list of 749 CVD traits associated loci scrutinized for
harboring common upSNVs.

RESULTS

Rare upSNVs Causing Cardiovascular
Disorders
This section describes in detail upSNVs known to cause rare
CVDs, most of which have been cataloged in (15). Information
is summarized in Table 1.

HBB c.-29G>A appeared to be one of the first examples
of uAUG-creating variants associated with tan inherited blood
disorder, β-thalassemia characterized by marked reduce or
absence of the beta-chain of hemoglobins (16). The created

3https://grasp.nhlbi.nih.gov/Overview.aspx

uAUG generates a uoORF of 42 nucleotides in the NM_000518.5
transcript of the HBB and has been shown to be associated
with an increased risk of β-Thalassemia (16). Moreover, Calvo
and collaborators demonstrated that the c.-29G>A variant is
associated with a decrease of the luciferase activity in vitro,
suggesting that the presence of the uoORF could alter the levels
of the main protein (1).

Disseminated bronchiectasis (DB) is characterized by
abnormal dilation of bronchi associated with pulmonary
dysfunction. A uAUG-creating variant in the 5′UTR of the
CFTR gene (NM_000492.3:c.-34C>T) at the origin of a 108
nucleotide overlapping upORF has been described as associated
with DB (19). This variant leads to a decrease of the luciferase
activity in two different cell lines, in the context of two CFTR
isoforms starting at positions c.-132 or c.-69. Moreover, the
authors performed additional experiments in vitro confirming
the recognition of the created uAUG by the ribosomes at the
origin of a normal luciferase activity when the uAUG and its
Kozak sequence were cloned in frame with the luciferase. These
observations strongly support a role of the c.-34C>T variant on
the reduction of the translation efficiency at the main ORF by the
presence of the uoORF.

The Endoglin (ENG) gene is one of the main disease-
causing genes for hereditary hemorrhagic telangiectasia (HHT),
also known as Osler–Weber–Rendu syndrome, a rare vascular
disorder causing abnormal vessel formation. ENG can be
considered as a special gene with respect to upORFs. Indeed,
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four rare 5′UTR variants have been described so far in HHT
patients to create uAUGs potentially at the origin of upORFs
(18, 34–37, 77). These variants are NM_001114753.3: c.-142A>T,
c.-127C>T, c.-10C>T, and c.-9G>A. Functional studies have
been conducted for three of them (c.-142A>T, c.-127C>T, and
c.-9G>A), bringing out an effect of the analyzed variants on the
protein levels in vitro (18, 35–37, 77). Interestingly, a moderate
decrease (∼20%) of the protein levels has been associated with
c.-9G>A variant compared to a drastic reduction observed for c.-
142A>T and c.-127C>T (∼60% and ∼75%, respectively). These
studies also indicate that c.-142A>T and c.-127C>T variants
are associated with severe phenotypes while patients carrying
the c.-9G>A variant exhibited moderate HHT phenotype. At
the molecular level, c.-142A>T, c.-127C>T, and c.-10C>T are
predicted to be at the origin of uoORF (270, 255, and 138
nucleotides, respectively). The only exception holds for the c.-
9G>A variant, that creates a uAUG in frame with the CDS, and
generates an elongated CDS, probably at the origin of a longer
form of the ENG protein carrying three additional amino acids.
These molecular findings are in perfect concordance with clinical
and familial data, suggesting that uoORF-creating variants in
ENG are causative of a severe form of HHT. Among these four
ENG variants, c.-9G>A, c.-10C>T, and c.-127C>T but not c.-
142A>T are reported in public databases (ClinVar and HGMD).
Interestingly, c.-10C>T and c.-127C>T are classified as likely
pathogenic in ClinVar but the classification of the c.-9G>A is still
conflicting. An additional uAUG-creating variant in the 5′UTR
of ENG (c.-79C>T) at the origin of a 207 nucleotide uoORF.
Of note, even though the c.-10C>T and c.-79C>T variants have
not been evaluated in functional studies, one could speculate
that in a similar way as for the c.-142A>T and to c.-127C>T
variants, these variants would be associated with a reduction of
the protein level.

Our group recently identified a disease-causing mutation
in the 5′UTR of PROS1 in an extended family affected with
protein S deficiency (PSD) and familial thrombophilia (27). The
identified variant was a never reported C>T substitution at c.-
39 position creating a uAUG at the origin of an overlapping
ORF of 156 nucleotides (NM_000313.4). Using in vitro assays,
we demonstrated that this variant is associated with a total
abolition of protein S levels. With the aim of restoring the
main open reading frame in presence of the identified variant,
we deleted one base pair at the new stop codon associated
to the generated uoORF and, based on the detected protein
weight by western blot, identified a protein probably starting
at the c.-39C>T-created uAUG. This result indicated that
the created uAUG could be used for translation and thus
reduces or completely abolishes the translation rate at the
main AUG, which explains null protein S level in vitro in
presence of the variant.

Finally, three additional genes coding for proteins involved in
CVDs have been highlighted in Whiffin et al. (15) from public
databases as harboring rare uAUG-creating variants.

One is the F8 gene coding for the coagulation factor VIII,
a known susceptibility gene for venous thrombosis (38). The
reported uAUG creating variant is the NM_000132.4:c.-5A>G
variant that creates an overlapping upORF of 63 nucleotides

(20). Very interestingly, this variant is simultaneously predicted
to modify a TAA stop codon into a TGA, in frame with two
different non-canonical TIS (CTG) generating fully upstream
upORFs of 39 and 123 nucleotides. upORFs ending with TGA
have been shown to be associated with less translation efficiency
of the main protein comparing to TAA ending ones (5). This
variant was identified in a patient with mild FVIII activity, an
observation compatible with an inhibitory effect on F8 expression
of a variant associated with many upORFs. However, even if
this variant is reported in HGMD database, its pathogenicity still
needs to be validated.

The second gene is HAMP, coding for hepicidin whose
increased plasma levels have recently been reported to associate
with the risk of venous thrombosis (39). Whiffin et al., reported
one rare variant in the 5′UTR of HAMP at the origin of a
uAUG and catalogued in HGMD. While the HAMP variant
has been described at the origin of an out of frame uoORF
in (15) and described by Matthes and collaborators (17) as
potentially generating an abnormal protein responsible for
juvenile hereditary hemochromatosis, we did not find any stop
codon in the transcript NM_021175.4 sequence that could be in
frame with this created uAUG. Thus, this uAUG is unlikely at the
origin of an ORF. Nonetheless, one cannot exclude a potential
competition between the uAUG and the main TIS regarding the
affinity of ribosomes. Indeed, no hepcidin was found in the urine
of homozygous patient, suggesting that this variant could alter the
translation of the main protein. As for F8 c.-5A>G, experimental
validation of its possible function impact on the translation of the
associated protein is still needed.

The last cited gene is LDLR implicated in familial
hypercholesterolemia associated with increased risk of
cardiovascular diseases (40). The deletion of the cytosine
at position c.-22 in the 5′UTR of the latest version of the
LDLR transcript (NM_000527.5) has been identified in a
homozygous form in an 8-year-old child diagnosed with familial
hypercholesterolemia (22, 41). Interestingly, the c.-22delC is at
the origin of an AUG generating an overlapping upORF of 174
nucleotides. This predicted effect could explain the potential
pathogenicity of this variant and its association with familial
hypercholesterolemia. Nonetheless, the impact of this variant on
the LDLR levels still need to be evaluated.

Common upSNVs Associated With
Cardiovascular Disorders and Their
Quantitative Risk Factors
In this section, we report the few examples where common
upSNVs were identified to be in LD with lead GWAS
SNVs (Table 2).

F12 rs1801020 (NM_000505.4:c.-4C>T) and Venous
Thrombosis
This variant is one of the most well-known and studied common
upSNVs. It generates a very small overlapping ORF (nine
nucleotides) and has been demonstrated in several independent
studies to associate with decreased plasma levels of the clotting
factor FXII (42–47). Calvo and colleagues have also demonstrated
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TABLE 1 | Rare upSNVs in CVD-related diseases.

Gene (orientation) cDNA position Predicted effect Disease Databases Classification (ClinVar) References

HBB (−1) NM_000518.5 c.-29G>A uoORF (42 nts) β-Thalassaemia ClinVar Pathogenic 1, 16

CFTR (1) NM_000492.3 c.-34C>T uoORF (108 nts) Disseminated
bronchiectasis

HGMD, ClinVar Conflicting interpretations of
pathogenicity

19

ENG (−1) NM_001114753.3 c.-142A>T uoORF (270 nts) Hereditary Haemorrhagic
TelangiectasiaT

NA NA 77

ENG (−1) NM_001114753.3 c.-127C>T uoORF (255 nts) HGMD Pathogenic/Likely pathogenic 18, 35, 77

ENG (−1) NM_001114753.3 c.-10C>T uoORF (138 nts) HGMD Likely pathogenic 34

ENG (−1) NM_001114753.3 c.-9G>A eCDS (+ 3 nts) HGMD Conflicting interpretations 35

ENG (−1) NM_001114753.3 c.-79C>T uoORF (207 nts) NA* ClinVar Uncertain significance NA

PROS1 (−1) NM_000313.4 c.-39C>T uoORF (156 nts) Protein S deficiency NA NA 27

F8 (−1) NM_000132.4 c.-5A>G uoORF (63 nts) Hemophilia A HGMD NA 20

HAMP (1) NM_021175.4 c.-25G>A uAUG** Juvenile Hereditary
Hemochromatosis

HGMD NA 15, 17

LDLR (1) NM_000527.5 c.-22delC uoORF (174 nts) Familial
Hypercholesterolaemia

ClinVar Uncertain significance 22, 41

uoORF, upstream overlapping Open Reading Frame; eCDS, elongated coding sequence; nts, nucleotides; NA, non-available.
*This variant is reported in ClinVar without any clinical annotation (https://www.ncbi.nlm.nih.gov/clinvar/variation/618621/?new_evidence=false).
**No in frame stop codon predicted.

that this polymorphism is associated with a decrease of the
protein levels in vitro (1) and that this decrease was due to the
creation of the uoORF. While this variant has also been found
(48, 49) associated with activated partial thromboplastin time,
a biomarker for venous thrombosis, its impact on thrombosis
risk is highly debated (1, 42, 47, 50, 51), especially as it never
emerged from large-scale genetic association studies on arterial,
cerebral, nor venous thrombosis. However, keeping in mind that
the effect of a given upORF could be dependent on the cellular
environment [e.g., hypoxia (12) and stress conditions (9)], it
cannot be excluded that the rs1801020 could be associated with
an increased prothrombotic state under certain environmental
conditions that need to be further investigated.

FRMD5 rs492571 (NM_001286491.2:c.-487A>G) and
Lipids
The rs492571 located in the 5′UTR of the FRMD5
NM_001286491.2, at c.-487 position, is in nearly complete
association (r2>0.80, D’∼ 1) with several intronic SNPs reported
to be associated with triglycerides and HDL-cholesterol levels
(52). The A>G substitution at this position is predicted to create
a new start codon and could generate a uORF of 39 nucleotides.
These observations suggest that the rs492571 could be a good
culprit candidate for the observed associations with lipids.

PEAR1 rs75699653 (NM_001353683.2:c.-491C>T)
and Platelet Aggregation
PEAR1 was identified as one of the first GWAS loci for
platelet aggregation (53) with the intronic rs12566888 (or any
polymorphism in strong LD with it) as lead SNV. PEAR1
harbors one upSNV, the rs75699653, in complete negative LD
(D’ = − 1) with rs12566888. Because of the difference in their
allele frequencies, the minor allele frequency of the former being
∼0.02, that of rs12566888 being ∼0.09, their pairwise LD r2 is
close to null. However, they generate three haplotypes where
the rs75699653-T allele, predicted to be at the origin of a uORF

of 63 nucleotides, is always carried by the rs12566888-G allele
(Supplementary Table 1). Interestingly, the rs1256688-G allele is
either positively or negatively associated with platelet aggregation
depending on how platelets are stimulated (54). Haplotype
association analysis of these two SNVs in relation with platelet
aggregation would be mandatory to determine if the original
GWAS signal could be (partially) explained by the rs75699653-T
carrying haplotype.

SLC18A1 rs58852338 (NM_001135691.3:c.-276G>A)
and Triglycerides
SLC18A1 is one of the numerous loci associated with triglycerides
levels (55). It harbors in its 5′UTR one upSNV, rs58852338,
whose minor T allele (corresponding to c.-276A on the antisense
transcript) with frequency ∼1% is predicted to create a uORF of
36 nucleotides. The rs58852338-T allele is always carried by the
haplotype carrying the rs55682243-C allele that was observed to
associate with decreased triglycerides levels (55). This case is then
similar to the PEAR1’s discussed above.

Fibroblast Growth Factor 21 (FGF21) rs2231861
(NM_019113.4:c.-173C>G) and Triglycerides
FGF21 is another locus identified by GWAS as influencing
triglycerides levels in plasma (56). The lead SNV is the
synonymous rs838133 that does not show strong LD with
any other SNVs when one uses the pairwise r2 threshold of
0.80. However, it is in complete negative LD (D’ = − 1)
with the rs2231861 upSNV. As a consequence, these two SNVs
generate 3 haplotypes. As for the two previously described
examples, the rare rs2231861-G allele predicted to create a
uORF of 36 nucleotides is always carried by the haplotype
harboring the rs838133-G allele associated with decreased
triglycerides (56). Of note, the latter has also being found
associated with decreased levels of homocysteine (57), another
cardiovascular biomarker.
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IL1F10 rs3811050 (NM_032556.6:c.-143C>T) and
Coronary Artery Disease Risk
One common upSNV is present in the 5′UTR region of the
IL1F10 gene, a susceptibility locus for myocardial infarction (MI)
(30). This is rs3811050 where the rs3811050-T is predicted to
create an eCDS of 603 nucleotides while the canonical CDS is of
459 nucleotides. At IL1F10, the rs6761276-T allele of the missense
p.Ile44Thr was found to be associated with increased risk of MI
(30). According to the variant effect predictor (VEP) tool (58),
the predicted pathogenicity of rs6761276 could be transcript-
dependent4. It makes then sense to hypothesize that the impact
on MI of the rs6761276-T allele may be different according
whether or not it is present on the eCDS. As a consequence
of their LD pattern (D’ = 0.74, r2 = 0.06), the rs6761276 and
rs3811050 generate 4 haplotypes among which one (frequency
∼0.015) is carrying both the rs6761276-T risk allele and the eCDS
rs3811050-T creating allele. It would be interesting to determine
whether this specific rare haplotype is more at risk of MI than the
haplotype carrying the rs6761276-T risk allele but not the eCDS
creating allele.

ANGPTL4 rs35137994 (NM_139314.3:c.-140C>T),
and Cardiovascular Traits
The ANGPTL4 gene is an interesting locus for CVD as
it has been shown to associate with several cardiovascular
phenotypes, including CAD risk (59), lipid-related (56, 60),
and red blood cells (61, 62) traits, with lead SNV being the
missense rs116843064 (p.Glu40Lys) polymorphism. The minor
rs116843064-A allele, with frequency ∼1% is associated with
decreases in CAD risk, in triglycerides levels, in reticulocyte

4https://gnomad.broadinstitute.org/variant/2-113832312-T-C?dataset=gnomad_
r2_1

counts and with increases in HDL levels, mean corpuscular
volume and red cell distribution width. ANGPTL4 harbors in
its 5′UTR a common upSNV, rs35137994, whose minor T allele
with frequency ∼5% and that is predicted to generate an eCDS
of 1362 nucleotides. However, due to complete negative LD
(D’ =−1), the rs116843064-A and rs35137994-T alleles are never
present on the same haplotype, indicating that the effect of the
rs116843064-A allele cannot depend on whether it is present on
the elongated isoform. As a consequence, the upSNV is unlikely
to explain the observed GWAS signals, especially as the missense
rs116843064 is predicted to be deleterious according to several
standard prediction tools such as PolyPhen (probably damaging),
SIFT (damaging), and CADD (score 31.0). That said, given
these current observations, one cannot completely exclude that
the rs35137994-T could exert additional independent and less
pronounced effects on the aforementioned CVD traits.

PSORS1C1 (NM_014068.3: c.-199G>A and
c.-94G>A) and Lipids
The last discussed GWAS locus is PSORS1C1 that has been
associated with plasma triglycerides levels (52) and hemoglobin
levels (63). This locus has also been found associated with
Psoriasis (64). PSORS1C1 presents with two common upSNVs
in its 5′UTR region, rs3131003 (c.-199G>A) and rs3815087 (c.-
94G>A) with minor allele frequencies of ∼0.40 and ∼0.20,
respectively. Individually, these two upSNVs could be at the
origin of two uORFs of 183 and 78 nucleotides, respectively,
both terminating at the same stop codon at c-19. However,
because of complete positive LD (D’ = 1), the rs3815087-
A is always associated with the rs3131003-A allele, meaning
that the predicted uORFs always exist together, with the 78
nucleotide length uORF always included in the longer one of
183 nucleotides. Whether this could result in one or two small

TABLE 2 | Common upSNVs in GWAS loci for CVDs and associated traits.

upSNV Gene (orientation) cDNA position Genomic position
(GRCh38.p13)

Predicted functional
effect

GWAS lead
SNPs

r2/D’ ∗ References

rs1801020 F12 (−1) NM_000505.4
c.-4C>T

chr5:177409531 ACG>ATG uoORF = 9 nts
uSTOP = TGA

rs1801020 1.0/1 1

rs492571 FRMD5 (−1) NM_001286491.2
c.-487A>G

chr15:43919075 ATA>ATG uORF = 39 nts
uSTOP = TAA

rs492571 1.0/1 52

rs75699653 PEAR1 (1) NM_001353683.2
c.-491C>T

chr1:156902203 ACG>ATG uORF = 63 nts
uSTOP = TGA

rs12566888 (0.00/−1 53

rs58852338 SLC18A1 (−1) NM_001135691.3
c.-276G ( A

chr8:20181901 GTG>ATG uORF ( 36 nts
uSTOP ( TAG

rs55682243 (0.00/−1 55

rs2231861 FGF21 (1) NM_019113.4
c.-173C>G

chr19:48756064 ATC>ATG uORF = 36 nts
uSTOP = TGA

rs838133 0.04/−1 56

rs3811050 IL1F10 (1) NM_032556.6
c.-143C>T

chr2:113072596 ACG>ATG eCDS = 603 nts
uSTOP ( TAG

rs6761276 0.06/0.74 30

rs35137994 ANGPTL4 (1) NM_139314.3
c.-140C ( T

chr19:8364182 ACG>ATG eCDS = 1362
nts uSTOP = TAG

rs116843064 ∼0.00/−1 56, 59, 60

rs3131003
rs3815087

PSORS1C1 (1) NM_014068.3
c.-199G>A
c.-94G>A

chr6:31125705
chr6:31125810

GTG>ATG uORF = 183
and 78 nts same
uSTOP = TGA

rs3094205 0.61/0.97
0.03/0.26

52, 63

uoORF, upstream overlapping open reading frame, uORF, fully upstream open reading frame; nts, nucleotides; uStop, upstream stop codon, eCDS, elongated
coding sequence.
*Pairwise linkage disequilibrium metrics (r2, D’) between upSNV and lead GWAS SNP.
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peptides depends on the competition between the created uAUGs
and remains to be elucidated. The rs3131003 is also in nearly
complete positive LD (D’ =∼ 0.97, r2

∼ 0.60) with the rs3094205
lead SNV associated with triglycerides, suggesting that the former
could be a good candidate for explaining the GWAS signal.

Of note, we did not observe any common upSNVs that exhibit
strong LD with stroke- nor VT-associated lead SNVs and that
could then explain the GWAS signals observed at their locus.

DISCUSSION/PERSPECTIVES

While there is increasingly awareness of the impact of rare
upSNVs in rare Mendelian disorders, there has been so far
little initiative to investigate the possible role of such variants
in the susceptibility to common diseases and their quantitative
risk factors. From a list of ∼700 loci identified in GWAS for
CVD traits, we only identified a very minor proportion of loci
(5: FGF21, FRDM5, PEAR1, PSORS1C1, and SLC18A1) where
the GWAS signal could be partially explained by upSNVs. We
focused here on CVDs but similar investigations merit to be
conducted for other human diseases. Our results were based
on in silico observations (bioinformatics predictions coupled to
LD analyses) and deserve to be further investigated through
fine-mapping association analysis and experimental molecular
characterization. Several molecular techniques (gene reporter
assays, toeprinting, polysome profiling, among others) are
available to evaluate the effect of upSNVs on the translation
machinery and/or protein expression. Here, we would like to
highlight the recent advances in the antisense oligonucleotides
(ASOs) strategy targeting upORFs, as it also offers therapeutic
perspectives in the context of rare diseases. ASOs are very
efficient molecular tools designed to modulate gene expression
through Watson–Crick base pairing with specific motifs on target
transcripts (65, 66). Initially, ASOs were used to downregulate
gene expression or to modify RNA splicing. Recently, ASOs have
been proposed to ameliorate gene expression by directly targeting
uAUG (67). Liang et al., have shown that this technique depends
on many factors on the RNA and on the chemical structure
of the used ASOs (67). However, targeting upORF using ASOs
seems to be a very innovative and efficient genetic tool to assess
in vitro the functional impact of upSNVs on protein levels.
Beyond their in vitro utility, effective ASOs capable of restoring
protein levels could be used as a therapeutic approach to treat
rare diseases caused by upSNVs. ASOs have indeed demonstrated
great potential for treating rare diseases (68–71) due to coding or
splice mutations. The antisense field has remarkably progressed
over the last few years with the approval of several antisense drugs
and with the development of even more potent compounds (72),
opening promising perspectives to treat upORF-altering variants.

In this analytic review, we focused on SNVs known, or
predicted, to create upORFs. We did not discuss molecular
tools that are available to determine whether these upORFs
could be at the origin of functional small micropeptides that
could have specific physiological roles. This topic has recently
been addressed in an independent review (28). Finally, we only
examined in this work SNVs that could create uAUG resulting
upORFs, the most known class of variants among those that affect
non-canonical ORFs. Ribosome profiling data have shown the
presence of small ORFs (sORFs) in coding transcripts outside
the 5′UTR but also in non-coding RNAs (73, 74). Some of these
sORFs have been shown to be translated into small encoded
peptides and/or to have a regulatory role on gene expression
(75, 76). Thus, one can easily speculate that genetic alterations
in such sORFs could also have functional consequences and be
involved in human diseases. The next steps would then be to
characterize the spectrum of SNVs creating or deleting TIS or
Stop in non-coding transcripts.
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