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Abstract—Global wind-wave models such as the National
Oceanic and Atmospheric Administration WaveWatch 3 (NWW3)
play an important role in monitoring the world’s oceans. How-
ever, untransformed data at grid points in deep water provide
a poor estimate of swell characteristics at nearshore locations,
which are often of significant scientific, engineering, and public
interest. Explicit wave modeling, such as the Simulating Waves
Nearshore (SWAN), is one method for resolving the complex wave
transformations affected by bathymetry, winds, and other local
factors. However, obtaining accurate bathymetry and determin-
ing parameters for such models is often difficult. When target
data is available (i.e., from in situ buoys or human observers,
empirical alternatives such artificial neural networks (ANNs) and
linear regression may be considered for inferring nearshore condi-
tions from offshore model output. Using a sixfold cross-validation
scheme, significant wave height Hs and period were estimated at
one onshore and two nearshore locations. In estimating Hs at
the shoreline, the validation performance of the best ANN was
r = 0.91, as compared to those of linear regression (0.82), SWAN
(0.78), and the NWW3 Hs baseline (0.54).

Index Terms—Artificial neural networks (ANNs), National
Oceanic and Atmospheric Administration (NOAA) WW3
(NWW3), nearshore, waves, WaveWatch 3 (WW3).

I. INTRODUCTION

KNOWLEDGE of swell conditions at specific nearshore
locations is often important for research, marine engi-

neering, and policy development. Although global swell models
are an effective approximation of open swell conditions, they
often become less accurate in the nearshore zone. Variations
in nearshore bathymetry, local wind-generated seas, and the
effects of artificial structures transform deep-water swell due to
reflection, shoaling, refraction, diffraction, and breaking [1]. At
a particular location, local topography may lead to attenuation
or accentuation of long- or short-period swells, either directly
or by the contribution of local wind conditions.

The propagation of swell in nearshore areas is conventionally
studied by running either an actual or a virtual simulated
physical model [1]. Physical-scale models require a significant
investment of resources for their construction and simulation.
For this reason, numerical computer simulation of the local
physical environment and local swell conditions is often pre-
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ferred. However, numerical models themselves require care and
expertise in their implementation, typically along with days
of processing time, and produce results that are sometimes
unsatisfactory, especially in shallow water. These techniques
are also sensitive to the accuracy of the bathymetric data for
the study area.

Physical wave recordings and observations are used to cal-
ibrate and validate theoretical [2] and empirical [3], [4] ap-
proaches to modeling the wave transformations that occur as
they progress from deep to shallow water. The method of
[4], for instance, was based on comparisons between buoy-
measured Hs in deep water and visual observations of trough-
to-crest vertical wave height at the break point at nearby
locations.

Artificial neural networks (ANNs) (discussed in Section I-B)
should be regarded as a further extension of empirical (i.e.,
statistical curve fitting to large numbers of observations), as
opposed to model-based, attempts to estimate and predict wave
behavior [5]. The use of ANNs has been reported for numerous
applications in the geological and marine sciences and, in
particular, have been used in forecasting wave climate time
series [6]–[8]. ANNs have been applied to estimating missing
wave-buoy data [9], and recently, Kalra et al. [10] has detailed
an ANN-based effort to map offshore wave data to coastal lo-
cations. Apart from Kalra et al.’s [10] welcome comparison of
ANN performance with that of linear regression, most research
has not compared ANNs with other forms of swell estimation.
As neural networks are unconstrained general-purpose-function
approximators with potentially thousands of degrees of free-
dom, some questions exist regarding the validity of previous
works.1 An empirical approach does not provide the insight
into wave propagation processes that is provided by full-scale
numerical modeling. However, the advantages include com-
putational efficiency and potentially greater predictive power,
without the need for detailed geographic information or the
laborious testing of a range of physical model parameters.

This letter aims to estimate significant wave height Hs at
the shore and two nearshore locations using the input from the
National Oceanic and Atmospheric Administration WaveWatch
3 (NWW3). Nonlinear ANNs of varying complexity are com-
pared with the baseline Hs recorded by the global model, a
linear predictor, and the spectral wave model Simulating Waves
Nearshore (SWAN). Combined with a k-fold cross-validation

1For example, a method of wave forecasting using neural networks was
recently reported in [11] and subsequently, challenged [12] due to issues related
to overfitting, lack of baseline performance comparisons, and an insufficient
degree of cross validation.



Fig. 1. Standard feedforward ANN architecture.

experimental setup, this approach ought to resolve the efficacy
of neural networks for the interesting task of bringing global
ocean wave model output to nearshore locations. A practical
outcome is that the NWW3 output may be utilized inexpen-
sively for the emulation or prediction of surf reporter or buoy
readings at locations of interest.

A. SWAN

SWAN (version 40.01) is a spectral wave model based on
the action density balance equation that describes the evolution
of two-dimensional wave energy spectra under specified condi-
tions of winds, currents, and bathymetry [2]. The nonstationary
mode was employed to simulate time-dependent features of
wind-induced waves. For the present simulations, the third-
generation mode and the bottom dissipation formulations from
Madsen et al. [13] with a physical roughness of 0.085 m [14]
are used.

The bathymetry is deduced from accurate field surveys and
coarser data supplied by Geoscience Australia. A curvilinear
computational grid (76 ∗ 151 meshes, 153◦ 24′ E−153◦ 45′ E,
28◦ 24′ S−27◦ 18′ S) is implemented with the coarsest meshes
around the boundaries. Spatially constant wind, lateral, and
offshore wave boundary conditions are provided by the Wave-
Watch 3 (WW3) grid point, as shown in Fig. 2. Wave outputs
are obtained from the Brisbane and Gold Coast seaway buoys
and Surfers Paradise Beach (at a 9-m depth).

B. ANNs

ANNs are now generally utilized across diverse fields in
science and engineering as a methodology for prediction, esti-
mation, and control. ANNs are generally accepted as a valuable
tool for modeling, approximation, and classification [15]–[17].
The common fully interconnected feedforward architecture im-
plements a mapping y = f(x) : �m → �n and is optimized by
providing multiple (assumed noisy) paired samples of the input
and target output {ip ∈ �m, tp ∈ �n}. The transfer function
g, which generates a unit’s output given net activation from
units in the previous layer, should generally be smooth and
have a well-bounded range for any input, e.g., g : (−∞,∞) →
(−1, 1). Assuming that the activation function at each layer i =
{1, . . . , L} is homogeneous, an ANN implements the function

f(x) = f(a0) = hL (hL−1 (hL−... (h1(a0)))) (1)

Fig. 2. Geographical area considered in this letter: The nearshore region at the
Gold Coast, Australia.

with the layer transformation h defined as

ai = hi(ai−1) = gi

(
Wi

[
aT

i−1 1
])

(2)

where the set of free parameters (which are termed weights) in
the system {Wi} determine the particular nonlinear mapping,
noting that a0 = x is an m element vector, aL = y is an n
element vector, and necessarily, the dimensions {d1

i , d
2
i } of Wi

have the constraints d1
1 = m + 1, d2

L = n + 1, and d1
i = d2

i−1.
ANNs are usually conceptualized as a series of neural layers,
with forward interconnections between subsequent layers, as
shown in Fig. 1.



Fig. 3. High temporal resolution (30-min sampling interval) significant wave height Hs and wave period Tz data gathered from the Point Lookout (dotted) and
Seaway (solid line) buoys over the time period of the study.

Conventional applications of feedforward networks involve a
fixed architecture or topology, with two or three layers L, each
having an arbitrary number of neurons (defined by d2

i ). Training
a neural network generally involves minimizing the error func-
tion εn =

∑
p (yp − tp)2 and utilizing local gradient search

algorithms operating on −δεn/δ{Wi}. Sophisticated and ef-
ficient search algorithms, such as the Levenburg–Marquardt
method or conjugate gradient descent [18], [19], along with
modern computational resources allow for fast optimization of
medium-sized networks. Applications of ANNs in a scientific
context should take into account the fact that optimization based
on local gradients may be expected to yield solutions located in
some form of local minima.

II. DATA

This letter incorporated global wave model data gathered
from NWW3, in situ readings from local Environmental Pro-
tection Agency (EPA) buoys, and human observations of swell
conditions in the nearshore zone from January 1, 2005 to March
31, 2005. The three forms of observations differ significantly
in terms of the rate of sampling (with details given later in
text), with the buoys representing the highest level of temporal
resolution and the human observations representing the lowest.
In addition, observations from the three sources occurred on
separate time schedules: buoy and NWW3 represented regular
sampling, whereas the human observations were sampled on
an irregular schedule. Resampling was performed in order to
generate a common time index (at 6-h intervals, generating
540 data points). In the case of the human observer and the
NWW3 model, this involved upsampling/interpolation and was
achieved via determining the value of the exact cubic polyno-
mial fitted to the nearest four (4) sample points at the required
time point. In the case of the higher resolution buoy data,
downsampling took place using a Gaussian weighted average
centered on the desired time point with a bandwidth of σ = 6 h.
This approach also dealt satisfactorily with small regions of
missing data that are present (which are less than 2% of the
total data). The temporal resolution of the predictive model was
necessarily limited by the lowest resolution data stream (that
of the human observer). This relatively low sample rate was
sufficient for measuring the broad-scale variation in significant
wave height, which as shown in Fig. 3 occurred over a time
scale of days rather than hours.

TABLE I
BIVARIATE CORRELATIONS BETWEEN THE NWW3 INPUT

AND THE SIGNIFICANT WAVE HEIGHT TARGETS

A. Buoy Data

EPA waverider buoy data from two locations were used in
this letter; the locations of these buoys are shown in Fig. 2.
Waverider buoys measure wave climate by means of vertical
displacement through an accelerometer mounted on a gravity-
stabilized platform that is suspended in a fluid-filled plastic
sphere. The Gold Coast buoy is located at 27◦ 57.789′ S
latitude and 153◦ 26.523′ E longitude, with a 15.5-m depth.
The Point Lookout buoy is located at 27◦ 29.638′ S latitude and
153◦ 37.483′ E longitude. Data were logged at 30-min intervals
over the time period of the study. Fig. 3 displays the significant
wave height Hs and wave period Tz recorded over the study
period.

B. Wave Model (NWW3)

An automated data collection system has been implemented
to archive analysis and forecast data from the NWW3 oper-
ational wave model [20]. NWW3 uses the output from the
National Centres for Environmental Protection Global Fore-
cast System (NCEP GFS) as input for the operational wave
models and generates global output on a grid measuring
1◦ × 1.25◦ from latitude 78 to −78 (×1◦) and from longi-
tude 0 to 358.75 (×1.25◦). Gridded binary output was ac-
cessed four times daily at 6-h intervals, extracting wind speed
and direction, significant wave height Hs, wind-wave mean
period and direction, primary wave mean period and direction,



TABLE II
AVERAGE ESTIMATION PERFORMANCE (FOR ANNS ON A SIXFOLD CROSS-VALIDATION SET)

and secondary wave mean period and direction. These variables
represent a parameterization of the complete directional-wave
spectra. In many regions such as Australia, wave parameters
are more readily available than full directional-wave spectra.

The data collected at the closest grid point, which is 31.5 km
east of Surfers Paradise (28S, 153.75 E), were used as input to
the ANNs and as boundary conditions for the nearshore wave
model SWAN [2]. So as to avoid discontinuities in the 360◦/0◦

region, NWW3 data d in degree format was transformed into
a two-element coordinate description {n, e} for input to the
empirical neural network estimators via n

e = sin
cos (360−12πd).

C. Beach Observations

Time-stamped recordings were made by visual inspection
by a professional surf reporter on location at Surfers Paradise.
These estimates of the significant wave height were logged
via wireless Internet link. Beach observations were logged at
least once a day, in the morning. When significant changes in
swell size were observed, a second report was logged in the
afternoon.

III. RESULTS

Empirical estimation using the feedforward neural network
architecture described in Section I-B was performed using
the nine transformed and scaled input variables from NWW3
zero-hour predictions. The target outputs were significant wave
heights Hs, as measured by the two wave buoys and the
surf reporter. Estimation of the observed wave period Tz , as
measured by the two buoys, was also attempted. The available
data were partitioned into six sections of equal size (90 data
points) for the purpose of sixfold validation. This involved
training models using five sections, with testing of model per-
formance on the remaining unseen data. For nonlinear models
(i.e., ANNs with a hidden layer), training was repeated using
ten random initialization conditions, with the best performing
network performance recorded. The process is repeated six
times, so that each section is used for testing once. Optimization
was halted when performance on the validation set stabilized.
The reported results are the average performance over the six
sections. Networks varied with respect to the number of hidden
neurons. All networks had one hidden layer and used tan-
sigmoid and linear transfer functions in the hidden and output
layers, respectively. Numerical simulation was carried out using

Fig. 4. Significant wave heights at the beach as measured directly by hu-
man observer and as predicted by the multilayer feedforward (MLFF) ANN
with seven hidden neurons using full NWW3 ocean state variables as input
(SE = 11.59 cm). Untransformed NWW3 Hs is shown for comparison
(SE = 94 cm).

SWAN, and parameters were adjusted several times in order to
improve results.

Table I displays the bivariate correlations of the NWW3 input
variables with the significant wave height recorded at the three
locations.

Table II displays the estimation performance in terms of
standard error (SE) and normalized correlation coefficient with
the target series. The input to all predictive models was the
13 environmental variables provided by the NWW3 system.
The rows compare the performance of ANN architectures with
variable numbers of hidden neurons with a linear network
(equivalent to linear regression). For Hs, the baseline for evalu-
ating performance is represented by the relationship between
the readings from NWW3 and the various target series. As
the NWW3 model decomposes the swell period into primary,
secondary, and wind-driven components, a baseline comparison
was not possible for Tz . Fig. 4 displays the best performing
ANN for estimation of the surf reporter observations (results for
buoys are not plotted in this letter). It should be noted that the
ANN output is a concatenation of the six validation sets. Thus,
the correspondence in the graph is an indication of performance
on unseen data.



IV. CONCLUSION

From Table II, it may be seen that the baseline NWW3 Hs

has a poor correlation with actual Hs measurements at the
buoys and beach, with the relationship being weakest for beach-
side surf reports. ANNs outperformed the linear regression
approach for each prediction task, and generally, the empirical
methods were more effective than the numerical modeling
using SWAN (apart from estimating Ts at the Brisbane Buoy,
where they failed to generalize well). This is not surprising
because any theoretical model will be subject to inaccuracies
in parameters and survey data. In particular, the current model
could have benefited from further calibration, especially in
terms of bottom friction. This highlights a significant benefit
of empirical prediction, in that good results can be quickly
obtained without the need for long development time of sim-
ulation and adjusting model parameters.

Estimates of Hs for the surf reporter had a correlation of 0.91
and an SE of 11.86 cm. Although early stopping of training
was clearly effective in preventing overlearning, medium-sized
networks appeared to generally perform better. This conforms
to the ANN theory that a network of complexity comparable to,
or slightly more, than the function-mapping problem at hand,
produces the best results.

In isolation, the basic ANN method provides little or no in-
sight into the actual physical transformative processes involved.
However, it appears to be a powerful approach for approximat-
ing the unknown transformation required to estimate local wave
properties from a global wind-wave model and has a number
of practical applications. From Tables I and II, it is reasonable
to suggest that the improvement over baseline in estimation
of significant wave height is a result of an approximation of
the actual physical transformation as waves move from deep to
shallow water. It is unlikely that any single NWW3 parameter
can be singled out as the one providing the critical information
required for the approximation. However, the local bathyme-
tries would determine which variables were most important.
For example, the amount of wave energy that reaches the shore
at the surf reporter location in the present study is strongly
determined by sheltering from the islands and headlands to the
north and south. The bivariate correlations in Table I indicate
that the direction of offshore waves affect the amount of energy
that reaches the beach. In this form of application, it is not
necessarily clear what aspect of the offshore wave climate best
predicts nearshore activity. A useful point of view is to make
the assumption that observed wave activity at any nearshore
location is a deterministic outcome of the interaction between
(fixed) local bathymetry and (variable) offshore wave climate.
When provided with reasonable estimates of the variable wave
climate, it may approximate the transformation required to
emulate the modulation effected by local bathymetry. Because
any aspect of the offshore wave climate may conceivably af-
fect nearshore measurements, as complete a representation as
possible should be exposed to the ANN.

More systematic comparisons of empirical and numerical
estimations of nearshore waves have just been completed. We
are preparing a report that explains differential ANN perfor-
mance at several locations in terms of the complexity of the

local reflective and diffractive processes using SWAN model-
ing. Future studies might consider contrasting the use of the
full directional-wave spectrum with the (less complete) wave
parameters used in the current study. We are currently inves-
tigating the potential of using empirical methods to model the
nearshore wave transformation at a large number of continental
locations for longer time periods. Preliminary results indicate
that nonlinear empirical methods provide larger increases in
estimation performance at locations where the local bathymetry
generates complex wave transformations.
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